Non-orthogonal multiple access (NOMA) represents the latest addition to the array of multiple access techniques, enabling simultaneous servicing of multiple users within a singular resource block in terms of time, frequency, and code. A typical NOMA configuration comprises a base station along with proximate and distant users. The proximity users experience more favorable channel conditions in contrast to distant users, resulting in a compromised performance for the latter due to the less favorable channel conditions. When cooperative communication is integrated with NOMA, the overall system performance, including spectral efficiency and capacity, is further elevated. This study introduces a cooperative NOMA setup in the downlink, involving three users, and employs dynamic power allocation (DPA). Within this framework, User 2 acts as a relay, functioning under the decode-and-forward protocol, forwarding signals to both User 1 and User 3. This arrangement aims to bolster the performance of the user positioned farthest from the base station, who is adversely affected by weaker channel conditions. Theoretical and simulation outcomes reveal enhancements within the system’s performance.
{"title":"Cooperative Relaying in a Three User Downlink NOMA System Using Dynamic Power Allocation","authors":"Mwewa Mabumba, Simon Tembo, Lukumba Phiri","doi":"10.30564/ssid.v5i1.6028","DOIUrl":"https://doi.org/10.30564/ssid.v5i1.6028","url":null,"abstract":"Non-orthogonal multiple access (NOMA) represents the latest addition to the array of multiple access techniques, enabling simultaneous servicing of multiple users within a singular resource block in terms of time, frequency, and code. A typical NOMA configuration comprises a base station along with proximate and distant users. The proximity users experience more favorable channel conditions in contrast to distant users, resulting in a compromised performance for the latter due to the less favorable channel conditions. When cooperative communication is integrated with NOMA, the overall system performance, including spectral efficiency and capacity, is further elevated. This study introduces a cooperative NOMA setup in the downlink, involving three users, and employs dynamic power allocation (DPA). Within this framework, User 2 acts as a relay, functioning under the decode-and-forward protocol, forwarding signals to both User 1 and User 3. This arrangement aims to bolster the performance of the user positioned farthest from the base station, who is adversely affected by weaker channel conditions. Theoretical and simulation outcomes reveal enhancements within the system’s performance.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"63 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139252543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minus Infinity Plus Infinity","authors":"Kasturi Vasudevan","doi":"10.30564/ssid.v5i1.5644","DOIUrl":"https://doi.org/10.30564/ssid.v5i1.5644","url":null,"abstract":"","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126500569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Air is one of the essential elements of human’s surroundings. The earth’s atmosphere is full of air which contains gases such as Nitrogen, Oxygen, Carbon Monoxide and traces of some rare elements. But quality of the air has been degrading for some decades due to various activities conducted by the human beings that directly or indirectly affect the atmosphere leading to the air pollution. There are different techniques to measure air quality.However, with the evolution of time the expensive and less efficient analog devices have been replaced by more efficient and less expensive electronics device. In this research, MQ135 sensor is used to measure air quality of a particular location. I2C display is used to monitor the data. Indeed, with the increasing in number of vehicles, unplanned urbanization and rapid population growth, air pollution has considerably increased in the last decades in various areas of Kathmandu. Thus, this project ‘Air Pollution Monitoring System’ was focused on collection of the data specific location of Chandragiri municipality of Kathmandu city. In conclusion,analysis of the data is done with the help of origin software which shows that the Arduino device in this device works perfectly for measuring the air pollution. Air quality of the selected area is found to be less than 500 PPM which concludes that the air quality of this area is normal.
{"title":"Air Pollution Monitoring System Using Micro Controller Atmega 32A and MQ135 Gas Sensor at Chandragiri Municipality of Kathmandu City","authors":"R. Shrestha, M. Maharjan, Mahesh Sharma","doi":"10.30564/ssid.v4i2.4884","DOIUrl":"https://doi.org/10.30564/ssid.v4i2.4884","url":null,"abstract":"Air is one of the essential elements of human’s surroundings. The earth’s atmosphere is full of air which contains gases such as Nitrogen, Oxygen, Carbon Monoxide and traces of some rare elements. But quality of the air has been degrading for some decades due to various activities conducted by the human beings that directly or indirectly affect the atmosphere leading to the air pollution. There are different techniques to measure air quality.However, with the evolution of time the expensive and less efficient analog devices have been replaced by more efficient and less expensive electronics device. In this research, MQ135 sensor is used to measure air quality of a particular location. I2C display is used to monitor the data. Indeed, with the increasing in number of vehicles, unplanned urbanization and rapid population growth, air pollution has considerably increased in the last decades in various areas of Kathmandu. Thus, this project ‘Air Pollution Monitoring System’ was focused on collection of the data specific location of Chandragiri municipality of Kathmandu city. In conclusion,analysis of the data is done with the help of origin software which shows that the Arduino device in this device works perfectly for measuring the air pollution. Air quality of the selected area is found to be less than 500 PPM which concludes that the air quality of this area is normal.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131313254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electronic states of “wurtzite” CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors. The calculated gap values in the range of 2.84 eV ~ 3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data. The CdSe/CdS nanosystems were considered as layered ones and as quantum dots. The layered CdSe/CdS systems with twolayer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps (2.6 eV and 3.3 eV), while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure. Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps: approximately of 2.5 eV and 3.0 eV.
计算了含有80对Cd-Se或CdS原子的“纤锌矿”CdS纳米粒子和CdSe/CdS纳米体系的电子态。将CdS粒子的结果与先前获得的相同大小的CdSe粒子的结果以及其他作者发表的计算结果进行了比较。计算得到的间隙值在2.84 eV ~ 3.78 eV范围内,与已发表的数据一致。CdSe/CdS纳米系统被认为是层状的和量子点。具有两层CdS覆盖层的CdSe/CdS系统可以被解释为具有不同能带隙(2.6 eV和3.3 eV)的两种半导体的组合,而具有单层CdS覆盖层的类似系统则不表现出两层隙电子结构。对CdSe/CdS量子点的模拟表明,单层CdS壳层倾向于形成具有两个能隙的电子结构:大约2.5 eV和3.0 eV。
{"title":"Electronic Structure of CdS Nanoparticles and CdSe/CdS Nanosystems","authors":"V. Zavodinsky, O. Gorkusha, A. Kuz’menko","doi":"10.30564/ssid.v4i2.4708","DOIUrl":"https://doi.org/10.30564/ssid.v4i2.4708","url":null,"abstract":"The electronic states of “wurtzite” CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors. The calculated gap values in the range of 2.84 eV ~ 3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data. The CdSe/CdS nanosystems were considered as layered ones and as quantum dots. The layered CdSe/CdS systems with twolayer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps (2.6 eV and 3.3 eV), while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure. Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps: approximately of 2.5 eV and 3.0 eV.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126721887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Riaz, A. Ibrahim, M. Bashir, Masroor Asghar, Muhammad Abdullah, Ajmal Shah
In this paper, an experimental study of laminar, steady state natural convection heat transfer from heated thin cylinders in an infinite air medium has been reported. Two electrically heated cylinders having the same slenderness ratio (L/D) i.e. 6.1 but different diameters i.e. 3.8 cm and 5.08 cm were used. 105 experiments were carried out to study the effect of diameter and inclination angle of thin cylinder on natural convection heat transfer. After mandatory corrections of radiation and endcap heat losses, convective heat transfer results were presented in the form of local and average dimensionless numbers. For vertical configuration of thin cylinder, Nusselt number was varied from 52.99 to 95.10 corresponding to 1.28×108≤Ra*L≤1.08×1010. While for horizontal configuration,Nusselt number was varied from 10.74 to 17.78 corresponding to 9.42×104≤Ra*D≤8.17×106. Results were compared with the published data and found satisfactory as the maximum percentage difference was only 3.09%. The essence of research is that the heat transfer coefficient increases with decrease in diameter and increase in inclination angle. Smoke flow visualization was done to capture patterns of fluid flow. Finally, comparison was made to quantify increase in Nusselt number from slender cylinder as compared to the flat plate.
{"title":"Experimentation on Optimal Configuration and Size of Thin Cylinders in Natural Convection","authors":"A. Riaz, A. Ibrahim, M. Bashir, Masroor Asghar, Muhammad Abdullah, Ajmal Shah","doi":"10.30564/ssid.v4i2.4720","DOIUrl":"https://doi.org/10.30564/ssid.v4i2.4720","url":null,"abstract":"In this paper, an experimental study of laminar, steady state natural convection heat transfer from heated thin cylinders in an infinite air medium has been reported. Two electrically heated cylinders having the same slenderness ratio (L/D) i.e. 6.1 but different diameters i.e. 3.8 cm and 5.08 cm were used. 105 experiments were carried out to study the effect of diameter and inclination angle of thin cylinder on natural convection heat transfer. After mandatory corrections of radiation and endcap heat losses, convective heat transfer results were presented in the form of local and average dimensionless numbers. For vertical configuration of thin cylinder, Nusselt number was varied from 52.99 to 95.10 corresponding to 1.28×108≤Ra*L≤1.08×1010. While for horizontal configuration,Nusselt number was varied from 10.74 to 17.78 corresponding to 9.42×104≤Ra*D≤8.17×106. Results were compared with the published data and found satisfactory as the maximum percentage difference was only 3.09%. The essence of research is that the heat transfer coefficient increases with decrease in diameter and increase in inclination angle. Smoke flow visualization was done to capture patterns of fluid flow. Finally, comparison was made to quantify increase in Nusselt number from slender cylinder as compared to the flat plate.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127820449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Riaz, A. Ibrahim, M. Bashir, Muhammad Abdullah, Ajmal Shah, A. Quddus
Experimental study was conducted to determine the effect of velocity of axial fan, outlet vent height, position, area, and aspect ratio (h/w) of ventilated enclosure on convection heat transfer. Rectangular wooden ventilated enclosure having top and front transparent wall was made up of Perspex for visualization, and internal physical dimensions of box were 200 mm × 200 mm × 400 mm. Inlet vent was at bottom while outlet vents were at the side and top wall. Electrically heated cylindrical heat source having 6.1 slenderness ratio was fabricated and hanged at the centre of the enclosure. To calculate heat transfer rates, thermocouples were attached to the inner surface of heat source with silica gel. Heat source was operated at constant heat flux in order to quantify the effect of velocity of air on heat transfer. It was observed that average Nusselt number was increased from 68 to 216 by changing velocity from 0 to 3.34 m/s at constant modified Grashof number i.e. 5.67E+09. While variation in outlet height at the front wall did not affect heat transfer in forced convection region. However, Nusselt number decreased to 5% by changing the outlet position from top to the front wall or by 50% reduction in outlet area during forced convection. Mean rise in temperature of enclosure increased from 8.19 K to 9.40 K by increasing aspect ratio of enclosure from 1.5 to 2 by operating heat source at constant heat flux i.e. 541.20 w/m2.
{"title":"Convection Heat Transfer from Heated Thin Cylinders Inside a Ventilated Enclosure","authors":"A. Riaz, A. Ibrahim, M. Bashir, Muhammad Abdullah, Ajmal Shah, A. Quddus","doi":"10.30564/ssid.v4i2.4719","DOIUrl":"https://doi.org/10.30564/ssid.v4i2.4719","url":null,"abstract":"Experimental study was conducted to determine the effect of velocity of axial fan, outlet vent height, position, area, and aspect ratio (h/w) of ventilated enclosure on convection heat transfer. Rectangular wooden ventilated enclosure having top and front transparent wall was made up of Perspex for visualization, and internal physical dimensions of box were 200 mm × 200 mm × 400 mm. Inlet vent was at bottom while outlet vents were at the side and top wall. Electrically heated cylindrical heat source having 6.1 slenderness ratio was fabricated and hanged at the centre of the enclosure. To calculate heat transfer rates, thermocouples were attached to the inner surface of heat source with silica gel. Heat source was operated at constant heat flux in order to quantify the effect of velocity of air on heat transfer. It was observed that average Nusselt number was increased from 68 to 216 by changing velocity from 0 to 3.34 m/s at constant modified Grashof number i.e. 5.67E+09. While variation in outlet height at the front wall did not affect heat transfer in forced convection region. However, Nusselt number decreased to 5% by changing the outlet position from top to the front wall or by 50% reduction in outlet area during forced convection. Mean rise in temperature of enclosure increased from 8.19 K to 9.40 K by increasing aspect ratio of enclosure from 1.5 to 2 by operating heat source at constant heat flux i.e. 541.20 w/m2.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123057412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the increasing desire for more compact, portable devices outpaces Moore’s law, innovation in packaging and system design has played a significant role in the continued miniaturization of electronic systems.Integrating more active and passive components into the package itself, as the case for system-on-package (SoP), has shown very promising results in overall size reduction and increased performance of electronic systems.With this ability to shrink electrical systems comes the many challenges of sustaining, let alone improving, reliability and performance. The fundamental signal, power, and thermal integrity issues are discussed in detail, along with published techniques from around the industry to mitigate these issues in SoP applications.
{"title":"Signal and Power Integrity Challenges for High Density System-on-Package","authors":"Nathan Totorica, Feng Li","doi":"10.30564/ssid.v4i2.4475","DOIUrl":"https://doi.org/10.30564/ssid.v4i2.4475","url":null,"abstract":"As the increasing desire for more compact, portable devices outpaces Moore’s law, innovation in packaging and system design has played a significant role in the continued miniaturization of electronic systems.Integrating more active and passive components into the package itself, as the case for system-on-package (SoP), has shown very promising results in overall size reduction and increased performance of electronic systems.With this ability to shrink electrical systems comes the many challenges of sustaining, let alone improving, reliability and performance. The fundamental signal, power, and thermal integrity issues are discussed in detail, along with published techniques from around the industry to mitigate these issues in SoP applications.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125547188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The data and internet are highly growing which causes problems in management of the big-data. For these kinds of problems, there are many software frameworks used to increase the performance of the distributed system. This software is used for the availability of large data storage. One of the most beneficial software frameworks used to utilize data in distributed systems is Hadoop. This paper introduces Apache Hadoop architecture, components of Hadoop, their significance in managing vast volumes of data in a distributed system. Hadoop Distributed File System enables the storage of enormous chunks of data over a distributed network. Hadoop Framework maintains fsImage and edits files, which supports the availability and integrity of data. This paper includes cases of Hadoop implementation, such as monitoring weather, processing bioinformatics.
{"title":"Apache Hadoop Architecture, Applications, and Hadoop Distributed File System","authors":"Pratit Raj Giri, Gajendra Sharma","doi":"10.30564/ssid.v4i1.4619","DOIUrl":"https://doi.org/10.30564/ssid.v4i1.4619","url":null,"abstract":"The data and internet are highly growing which causes problems in management of the big-data. For these kinds of problems, there are many software frameworks used to increase the performance of the distributed system. This software is used for the availability of large data storage. One of the most beneficial software frameworks used to utilize data in distributed systems is Hadoop. This paper introduces Apache Hadoop architecture, components of Hadoop, their significance in managing vast volumes of data in a distributed system. Hadoop Distributed File System enables the storage of enormous chunks of data over a distributed network. Hadoop Framework maintains fsImage and edits files, which supports the availability and integrity of data. This paper includes cases of Hadoop implementation, such as monitoring weather, processing bioinformatics.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131456644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges and Opportunities for Privacy Computing","authors":"Jianhong Zhang, Chenghe Dong","doi":"10.30564/ssid.v4i1.4659","DOIUrl":"https://doi.org/10.30564/ssid.v4i1.4659","url":null,"abstract":"","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133590499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flip chip die-to-wafer bonding faces challenges for industry adoption due to a variety of technical gaps or process integration factors that are not fully developed to high volume manufacturing (HVM) maturity. In this paper,flip-chip and wire bonding are compared, then flip-chip bonding techniques are compared to examine advantages for scaling and speed. Specific recent 3-year trends in flip-chip die-to-wafer bonding are reviewed to address the key gaps and challenges to HVM adoption. Finally, some thoughts on the care needed by the packaging technology for successful HVM introduction are reviewed.
{"title":"Flip Chip Die-to-Wafer Bonding Review: Gaps to High Volume Manufacturing","authors":"Mario Di Cino, Feng Li","doi":"10.30564/ssid.v4i1.4474","DOIUrl":"https://doi.org/10.30564/ssid.v4i1.4474","url":null,"abstract":"Flip chip die-to-wafer bonding faces challenges for industry adoption due to a variety of technical gaps or process integration factors that are not fully developed to high volume manufacturing (HVM) maturity. In this paper,flip-chip and wire bonding are compared, then flip-chip bonding techniques are compared to examine advantages for scaling and speed. Specific recent 3-year trends in flip-chip die-to-wafer bonding are reviewed to address the key gaps and challenges to HVM adoption. Finally, some thoughts on the care needed by the packaging technology for successful HVM introduction are reviewed.","PeriodicalId":315789,"journal":{"name":"Semiconductor Science and Information Devices","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132028745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}