Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722199
M. Hashimoto
This paper discusses run-time adaptive performance control with on-chip sensors that predict timing errors. The sensors embedded into functional circuits capture delay variations due to not only die-to-die process variation but also random process variation, environmental fluctuation and aging. By compensating circuit performance according to the sensor outputs, we can overcome PVT worst-case design and reduce power dissipation while satisfying circuit performance. We applied the adaptive speed control to subthreshold circuits that are very sensitive to random variation and environmental fluctuation. Measurement results of a 65nm test chip show that the adaptive speed control can compensate PVT variations and improve energy efficiency by up to 46% compared to the worst-case design and operation with guardbanding.
{"title":"Run-time adaptive performance compensation using on-chip sensors","authors":"M. Hashimoto","doi":"10.1109/ASPDAC.2011.5722199","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722199","url":null,"abstract":"This paper discusses run-time adaptive performance control with on-chip sensors that predict timing errors. The sensors embedded into functional circuits capture delay variations due to not only die-to-die process variation but also random process variation, environmental fluctuation and aging. By compensating circuit performance according to the sensor outputs, we can overcome PVT worst-case design and reduce power dissipation while satisfying circuit performance. We applied the adaptive speed control to subthreshold circuits that are very sensitive to random variation and environmental fluctuation. Measurement results of a 65nm test chip show that the adaptive speed control can compensate PVT variations and improve energy efficiency by up to 46% compared to the worst-case design and operation with guardbanding.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125913387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722233
Yu Pang, K. Radecka, Z. Zilic
Range analysis is an important task in obtaining the correct, yet fast and inexpensive arithmetic circuits. The traditional methods, either simulation-based or static, have the disadvantage of low efficiency and coarse bounds, which may lead to unnecessary bits. In this paper, we propose a new method that combines several techniques to perform fixed-point range analysis in a datapath towards obtaining the much tighter ranges efficiently. We show that the range and the bit-width allocation can be obtained with better results relative to the past methods, and in significantly shorter time.
{"title":"An efficient hybrid engine to perform range analysis and allocate integer bit-widths for arithmetic circuits","authors":"Yu Pang, K. Radecka, Z. Zilic","doi":"10.1109/ASPDAC.2011.5722233","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722233","url":null,"abstract":"Range analysis is an important task in obtaining the correct, yet fast and inexpensive arithmetic circuits. The traditional methods, either simulation-based or static, have the disadvantage of low efficiency and coarse bounds, which may lead to unnecessary bits. In this paper, we propose a new method that combines several techniques to perform fixed-point range analysis in a datapath towards obtaining the much tighter ranges efficiently. We show that the range and the bit-width allocation can be obtained with better results relative to the past methods, and in significantly shorter time.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121597358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722207
M. Zamani, M. Tahoori
Programmable nano-architectures fabricated based on bottom-up self-assembly process are alternative for CMOS technology to overcome physical barriers as well as increased lithography-based fabrication costs in downscaling. Extreme process variation and high failure rate due to nondeter-ministic self assembly fabrication process pose serious challenges for logic implementation in this technology. In this paper, we analyze the effect of variations on mapped designs and propose an efficient mapping method to reduce variation effects on crossbar nano-architectures. This method takes advantage of reconfigurability and abundance of resources for tolerating variation and improving reliability. The main idea is based on duplicating crossbar input lines as well as swapping rows (columns) of a crossbar to reduce the output dependency and be able to reduce delay variation. Experimental results on a set of benchmarks show that the proposed method can reduce critical path delay up to 74% (57% in average).
{"title":"Variation-aware logic mapping for crossbar nano-architectures","authors":"M. Zamani, M. Tahoori","doi":"10.1109/ASPDAC.2011.5722207","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722207","url":null,"abstract":"Programmable nano-architectures fabricated based on bottom-up self-assembly process are alternative for CMOS technology to overcome physical barriers as well as increased lithography-based fabrication costs in downscaling. Extreme process variation and high failure rate due to nondeter-ministic self assembly fabrication process pose serious challenges for logic implementation in this technology. In this paper, we analyze the effect of variations on mapped designs and propose an efficient mapping method to reduce variation effects on crossbar nano-architectures. This method takes advantage of reconfigurability and abundance of resources for tolerating variation and improving reliability. The main idea is based on duplicating crossbar input lines as well as swapping rows (columns) of a crossbar to reduce the output dependency and be able to reduce delay variation. Experimental results on a set of benchmarks show that the proposed method can reduce critical path delay up to 74% (57% in average).","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"360 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121719401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722263
Tung-Yeh Wu, Shih-Hsin Hu, J. Abraham
The wakeup sequence for power gating techniques has become an important issue as the rush current typically causes a high voltage drop. This paper proposes a new wakeup scheme utilizing an on-chip detector which continuously monitors the power supply noise in real time. Therefore, this scheme is able to dynamically throttle the wakeup sequence according to ambient voltage level. As a result, even the adjacent active circuit blocks induce an unexpectedly high voltage drop, the possibility of the occurrence of excessive voltage drop is reduced significantly.
{"title":"Robust power gating reactivation by dynamic wakeup sequence throttling","authors":"Tung-Yeh Wu, Shih-Hsin Hu, J. Abraham","doi":"10.1109/ASPDAC.2011.5722263","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722263","url":null,"abstract":"The wakeup sequence for power gating techniques has become an important issue as the rush current typically causes a high voltage drop. This paper proposes a new wakeup scheme utilizing an on-chip detector which continuously monitors the power supply noise in real time. Therefore, this scheme is able to dynamically throttle the wakeup sequence according to ambient voltage level. As a result, even the adjacent active circuit blocks induce an unexpectedly high voltage drop, the possibility of the occurrence of excessive voltage drop is reduced significantly.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"48 7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125729474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722215
J. Anderson, Qiang Wang
We consider architecture and synthesis techniques for FPGA logic elements (function generators) and show that the LUT-based logic elements in modern commercial FPGAs are over-engineered. Circuits mapped into traditional LUT-based logic elements have speeds that can be achieved by alternative logic elements that consume considerably less silicon area. We introduce the concept of a trimming input to a logic function, which is an input to a K-variable function about which Shannon decomposition produces a cofactor having fewer than K −1 variables. We show that trimming inputs occur frequently in circuits and we propose low-cost asymmetric FPGA logic element architectures that leverage the trimming input concept, as well as some other properties of a circuit's AND-inverter graph (AIG) functional representation. We describe synthesis techniques for the proposed architectures that combine a standard cut-based FPGA technology mapping algorithm with two straightforward procedures: 1) Shannon decomposition, and 2) finding non-inverting paths in the circuit's AIG. The proposed architectures exhibit improved logic density versus traditional LUT-based architectures with minimal impact on circuit speed.
{"title":"Area-efficient FPGA logic elements: Architecture and synthesis","authors":"J. Anderson, Qiang Wang","doi":"10.1109/ASPDAC.2011.5722215","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722215","url":null,"abstract":"We consider architecture and synthesis techniques for FPGA logic elements (function generators) and show that the LUT-based logic elements in modern commercial FPGAs are over-engineered. Circuits mapped into traditional LUT-based logic elements have speeds that can be achieved by alternative logic elements that consume considerably less silicon area. We introduce the concept of a trimming input to a logic function, which is an input to a K-variable function about which Shannon decomposition produces a cofactor having fewer than K −1 variables. We show that trimming inputs occur frequently in circuits and we propose low-cost asymmetric FPGA logic element architectures that leverage the trimming input concept, as well as some other properties of a circuit's AND-inverter graph (AIG) functional representation. We describe synthesis techniques for the proposed architectures that combine a standard cut-based FPGA technology mapping algorithm with two straightforward procedures: 1) Shannon decomposition, and 2) finding non-inverting paths in the circuit's AIG. The proposed architectures exhibit improved logic density versus traditional LUT-based architectures with minimal impact on circuit speed.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114482485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722223
Chul-Hong Park, D. Pan, K. Lucas
Design rule has been a primary metric to link design and technology, and is likely to be considered as IC manufacturer's role for the generation due to the empirical and unsystematic in nature. Disruptive and radical changes in terms of layout style, lithography and device in the next decade require the design rule evaluation in early development stage. In this paper, we explore VLSI CAD researches for early and systematic evaluation of design rule, which will be a key technique for enhancing the competitiveness in IC market.
{"title":"Exploration of VLSI CAD researches for early design rule evaluation","authors":"Chul-Hong Park, D. Pan, K. Lucas","doi":"10.1109/ASPDAC.2011.5722223","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722223","url":null,"abstract":"Design rule has been a primary metric to link design and technology, and is likely to be considered as IC manufacturer's role for the generation due to the empirical and unsystematic in nature. Disruptive and radical changes in terms of layout style, lithography and device in the next decade require the design rule evaluation in early development stage. In this paper, we explore VLSI CAD researches for early and systematic evaluation of design rule, which will be a key technique for enhancing the competitiveness in IC market.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126869760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722220
S. Inoue, S. Kobayashi
The concept of design-manufacturing collaboration for nano-lithography era has been clarified. The novel design-manufacturing system that the manufacturing tolerance reflecting design intention properly can be allocated to the layout has been proposed. According to the system, one can assign the “weak portion” explicitly on the layout, and can control the process for reducing the burden of manufacturing and further getting higher yield. More specifically, the extraction of electrically critical portion and conversion to the manufacturing tolerance has been demonstrated. The tolerance has applied to reduce computational burden of mask data preparation. Besides, the yield model-based layout scoring system has been also suggested to be significant remarkably. One can check the layout and modify not to loose the yield. Creation of yield function, layout scoring, and layout modification based upon the yield model have been demonstrated.
{"title":"All-out fight against yield losses by design-manufacturing collaboration in nano-lithography era","authors":"S. Inoue, S. Kobayashi","doi":"10.1109/ASPDAC.2011.5722220","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722220","url":null,"abstract":"The concept of design-manufacturing collaboration for nano-lithography era has been clarified. The novel design-manufacturing system that the manufacturing tolerance reflecting design intention properly can be allocated to the layout has been proposed. According to the system, one can assign the “weak portion” explicitly on the layout, and can control the process for reducing the burden of manufacturing and further getting higher yield. More specifically, the extraction of electrically critical portion and conversion to the manufacturing tolerance has been demonstrated. The tolerance has applied to reduce computational burden of mask data preparation. Besides, the yield model-based layout scoring system has been also suggested to be significant remarkably. One can check the layout and modify not to loose the yield. Creation of yield function, layout scoring, and layout modification based upon the yield model have been demonstrated.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128923647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722159
W. Deng, K. Okada, A. Matsuzawa
This paper proposes a 0.5-V LC-VCO with a frequency extension circuit to replace ring oscillators for ultra-low-voltage sub-1ps-jitter clock generation. Significant performances, in terms of 0.6-ps jitter, 50MHz-to-6.4GHz frequency tuning range with 2 bands and sub-1mW PDC, indicates the successful replacement of ring VCO for the future 0.5-V LSIs and power aware LSIs.
本文提出了一种带频率扩展电路的0.5 v LC-VCO,以取代环形振荡器,用于超低电压亚1ps抖动时钟的产生。在0.6 ps抖动、50mhz -6.4 ghz频率调谐范围和2个频段以及低于1mw的PDC方面的显著性能表明,环形压控振荡器成功替代了未来的0.5 v lsi和功率感知lsi。
{"title":"An ultra-low-voltage LC-VCO with a frequency extension circuit for future 0.5-V clock generation","authors":"W. Deng, K. Okada, A. Matsuzawa","doi":"10.1109/ASPDAC.2011.5722159","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722159","url":null,"abstract":"This paper proposes a 0.5-V LC-VCO with a frequency extension circuit to replace ring oscillators for ultra-low-voltage sub-1ps-jitter clock generation. Significant performances, in terms of 0.6-ps jitter, 50MHz-to-6.4GHz frequency tuning range with 2 bands and sub-1mW PDC, indicates the successful replacement of ring VCO for the future 0.5-V LSIs and power aware LSIs.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133284701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722244
Li Li, Jian Sun, Yinghai Lu, H. Zhou, Xuan Zeng
Multiple Supply Voltage (MSV) assignment has emerged as an appealing technique in low power IC design, due to its flexibility in balancing power and performance. However, clock skew scheduling, which has great impact on criticality of combinational paths in sequential circuit, has not been explored in the merit of MSV assignment. In this paper, we propose a discrete voltage assignment algorithm for sequential circuit under clock scheduling. The sequential MSV assignment problem is first formulated as a convex cost dual network flow problem, which can be optimally solved in polynomial time assuming delay of each gate can be chosen in continuous domain. Then a mincut-based heuristic is designed to convert the unfeasible continuous solution into feasible discrete solution while largely preserving the global optimality. Besides, we revisit the hardness of the general discrete voltage assignment problem and point out some misunderstandings on the approximability of this problem in previous related work. Benchmark test for our algorithm shows 9.2% reduction in power consumption on average, in compared with combinational MSV assignment. Referring to the continuous solution obtained from network flow as the lower bound, the gap between our solution and the lower bound is only 1.77%.
{"title":"Low power discrete voltage assignment under clock skew scheduling","authors":"Li Li, Jian Sun, Yinghai Lu, H. Zhou, Xuan Zeng","doi":"10.1109/ASPDAC.2011.5722244","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722244","url":null,"abstract":"Multiple Supply Voltage (MSV) assignment has emerged as an appealing technique in low power IC design, due to its flexibility in balancing power and performance. However, clock skew scheduling, which has great impact on criticality of combinational paths in sequential circuit, has not been explored in the merit of MSV assignment. In this paper, we propose a discrete voltage assignment algorithm for sequential circuit under clock scheduling. The sequential MSV assignment problem is first formulated as a convex cost dual network flow problem, which can be optimally solved in polynomial time assuming delay of each gate can be chosen in continuous domain. Then a mincut-based heuristic is designed to convert the unfeasible continuous solution into feasible discrete solution while largely preserving the global optimality. Besides, we revisit the hardness of the general discrete voltage assignment problem and point out some misunderstandings on the approximability of this problem in previous related work. Benchmark test for our algorithm shows 9.2% reduction in power consumption on average, in compared with combinational MSV assignment. Referring to the continuous solution obtained from network flow as the lower bound, the gap between our solution and the lower bound is only 1.77%.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132221995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722231
S. Pasricha, Yong Zou
In sub-65nm CMOS technologies, interconnection networks-on-chip (NoC) will increasingly be susceptible to design time permanent faults and runtime intermittent faults, which can cause system failure. To overcome these faults, NoC routing schemes can be enhanced by adding fault tolerance capabilities, so that they can adapt communication flows to follow fault-free paths. A majority of existing fault tolerant routing algorithms are based on the turn model approach due to its simplicity and inherent freedom from deadlock. However, these turn model based algorithms are either too restrictive in the choice of paths that flits can traverse, or are tailored to work efficiently only on very specific fault distribution patterns. In this paper, we propose a novel fault tolerant routing scheme (NS-FTR) for NoC architectures that combines the North-last and South-last turn models to create a robust hybrid NoC routing scheme. The proposed scheme is shown to have a low implementation overhead and adapt to design time and runtime faults better than existing turn model, stochastic random walk, and dual virtual channel based routing schemes.
{"title":"NS-FTR: A fault tolerant routing scheme for networks on chip with permanent and runtime intermittent faults","authors":"S. Pasricha, Yong Zou","doi":"10.1109/ASPDAC.2011.5722231","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722231","url":null,"abstract":"In sub-65nm CMOS technologies, interconnection networks-on-chip (NoC) will increasingly be susceptible to design time permanent faults and runtime intermittent faults, which can cause system failure. To overcome these faults, NoC routing schemes can be enhanced by adding fault tolerance capabilities, so that they can adapt communication flows to follow fault-free paths. A majority of existing fault tolerant routing algorithms are based on the turn model approach due to its simplicity and inherent freedom from deadlock. However, these turn model based algorithms are either too restrictive in the choice of paths that flits can traverse, or are tailored to work efficiently only on very specific fault distribution patterns. In this paper, we propose a novel fault tolerant routing scheme (NS-FTR) for NoC architectures that combines the North-last and South-last turn models to create a robust hybrid NoC routing scheme. The proposed scheme is shown to have a low implementation overhead and adapt to design time and runtime faults better than existing turn model, stochastic random walk, and dual virtual channel based routing schemes.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132530117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}