Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722294
Duo Ding, A. Torres, F. Pikus, D. Pan
Under real and continuously improving manufacturing conditions, lithography hotspot detection faces several key challenges. First, real hotspots become less but harder to fix at post-layout stages; second, false alarm rate must be kept low to avoid excessive and expensive post-processing hotspot removal; third, full chip physical verification and optimization require fast turn-around time. To address these issues, we propose a high performance lithographic hotspot detection flow with ultra-fast speed and high fidelity. It consists of a novel set of hotspot signature definitions and a hierarchically refined detection flow with powerful machine learning kernels, ANN (artificial neural network) and SVM (support vector machine). We have implemented our algorithm with industry-strength engine under real manufacturing conditions in 45nm process, and showed that it significantly outperforms previous state-of-the-art algorithms in hotspot detection false alarm rate (2.4X to 2300X reduction) and simulation run-time (5X to 237X reduction), meanwhile archiving similar or slightly better hotspot detection accuracies. Such high performance lithographic hotspot detection under real manufacturing conditions is especially suitable for guiding lithography friendly physical design.
{"title":"High performance lithographic hotspot detection using hierarchically refined machine learning","authors":"Duo Ding, A. Torres, F. Pikus, D. Pan","doi":"10.1109/ASPDAC.2011.5722294","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722294","url":null,"abstract":"Under real and continuously improving manufacturing conditions, lithography hotspot detection faces several key challenges. First, real hotspots become less but harder to fix at post-layout stages; second, false alarm rate must be kept low to avoid excessive and expensive post-processing hotspot removal; third, full chip physical verification and optimization require fast turn-around time. To address these issues, we propose a high performance lithographic hotspot detection flow with ultra-fast speed and high fidelity. It consists of a novel set of hotspot signature definitions and a hierarchically refined detection flow with powerful machine learning kernels, ANN (artificial neural network) and SVM (support vector machine). We have implemented our algorithm with industry-strength engine under real manufacturing conditions in 45nm process, and showed that it significantly outperforms previous state-of-the-art algorithms in hotspot detection false alarm rate (2.4X to 2300X reduction) and simulation run-time (5X to 237X reduction), meanwhile archiving similar or slightly better hotspot detection accuracies. Such high performance lithographic hotspot detection under real manufacturing conditions is especially suitable for guiding lithography friendly physical design.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121317293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To guarantee that an application specific integrated circuits (ASIC) meets its timing requirement, at-speed scan testing becomes an indispensable procedure for verifying the performance of ASIC. However, at-speed scan test suffers the test-induced yield loss. Because the switching activity in test mode is much higher than that in normal mode, the switching-induced large current drawn causes severe IR drop and increases gate delay. X-filling is the most commonly used technique to reduce IR-drop effect during at-speed test. However, the effectiveness of X-filling depends on the number and the characteristic of X-bit distribution. In this paper, we propose a physical-location-aware X-identification1 which redistributes faults so that the maximum switching activity is guaranteed to be reduced after X-filling. The experimental results on ITC'99 show that our method has an average of 8.54% more reduction of maximum IR-drop as compared to a previous work which re-distributes X-bits evenly in all test vectors.
{"title":"A physical-location-aware fault redistribution for maximum IR-drop reduction","authors":"Fu-Wei Chen, Shih-Liang Chen, Yung-Sheng Lin, TingTing Hwang","doi":"10.1109/ASPDAC.2011.5722277","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722277","url":null,"abstract":"To guarantee that an application specific integrated circuits (ASIC) meets its timing requirement, at-speed scan testing becomes an indispensable procedure for verifying the performance of ASIC. However, at-speed scan test suffers the test-induced yield loss. Because the switching activity in test mode is much higher than that in normal mode, the switching-induced large current drawn causes severe IR drop and increases gate delay. X-filling is the most commonly used technique to reduce IR-drop effect during at-speed test. However, the effectiveness of X-filling depends on the number and the characteristic of X-bit distribution. In this paper, we propose a physical-location-aware X-identification1 which redistributes faults so that the maximum switching activity is guaranteed to be reduced after X-filling. The experimental results on ITC'99 show that our method has an average of 8.54% more reduction of maximum IR-drop as compared to a previous work which re-distributes X-bits evenly in all test vectors.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"780 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123285823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722214
Wenmin Hu, Zhonghai Lu, A. Jantsch, Hengzhu Liu
In this paper, a novel hardware support for multicast on mesh Networks-on-Chip (NoC) is proposed. It supports multicast routing on any shape of tree-based paths. Two power-efficient tree-based multicast routing algorithms, Optimized tree (OPT) and Left-XY-Right-Optimized tree (LXYROPT) are also proposed. XY tree-based (XYT) algorithm and multiple unicast copies (MUC) are also implemented on the router as baselines. Along with the increase of the destination size, compared with MUC, OPT and LXYROPT achieve a remarkable improvement in both latency and throughput while the average power consumption is reduced by 50% and 45%, respectively. Compared with XYT, OPT is 10% higher in latency but gains 17% saving in power consumption. LXYROPT is 3% lower in latency and 8% lower in power consumption. In some cases, OPT and LXYROPT give power saving up to 70% less than the XYT.
{"title":"Power-efficient tree-based multicast support for Networks-on-Chip","authors":"Wenmin Hu, Zhonghai Lu, A. Jantsch, Hengzhu Liu","doi":"10.1109/ASPDAC.2011.5722214","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722214","url":null,"abstract":"In this paper, a novel hardware support for multicast on mesh Networks-on-Chip (NoC) is proposed. It supports multicast routing on any shape of tree-based paths. Two power-efficient tree-based multicast routing algorithms, Optimized tree (OPT) and Left-XY-Right-Optimized tree (LXYROPT) are also proposed. XY tree-based (XYT) algorithm and multiple unicast copies (MUC) are also implemented on the router as baselines. Along with the increase of the destination size, compared with MUC, OPT and LXYROPT achieve a remarkable improvement in both latency and throughput while the average power consumption is reduced by 50% and 45%, respectively. Compared with XYT, OPT is 10% higher in latency but gains 17% saving in power consumption. LXYROPT is 3% lower in latency and 8% lower in power consumption. In some cases, OPT and LXYROPT give power saving up to 70% less than the XYT.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123288461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722162
Xin Zhang, K. Ishida, M. Takamiya, T. Sakurai
New characterizing system for within-die delay variations of individual standard cells is presented. The proposed characterizing system is able to measure rising and falling delay variations separately by directly measuring the input and output waveforms of individual gate using an on-chip sampling oscilloscope in 65nm CMOS process. 7 types of standard cells are measured with 60 DUT's for each type. Thanks to the proposed system, a relationship between the rising and falling delay variations and the active area of the standard cells is experimentally shown for the first time.
{"title":"An on-chip characterizing system for within-die delay variation measurement of individual standard cells in 65-nm CMOS","authors":"Xin Zhang, K. Ishida, M. Takamiya, T. Sakurai","doi":"10.1109/ASPDAC.2011.5722162","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722162","url":null,"abstract":"New characterizing system for within-die delay variations of individual standard cells is presented. The proposed characterizing system is able to measure rising and falling delay variations separately by directly measuring the input and output waveforms of individual gate using an on-chip sampling oscilloscope in 65nm CMOS process. 7 types of standard cells are measured with 60 DUT's for each type. Thanks to the proposed system, a relationship between the rising and falling delay variations and the active area of the standard cells is experimentally shown for the first time.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115578541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722272
Wenjian Yu, Chao Hu, Wangyang Zhang
In this paper, a new geometric variation model, referred to as the improved continuous surface variation (ICSV) model, is proposed to accurately imitate the random variation of on-chip interconnects. In addition, a new statistical capacitance solver is implemented to incorporate the ICSV model, the HPC [5] and weighted PFA [6] techniques. The solver also employs a parallel computing technique to greatly improve its efficiency. Experiments show that on a typical 65nm-technology structure, ICSV model has significant advantage over other existing models, and the new solver is at least 10X faster than the MC simulation with 10000 samples. The parallel solver achieves 7X further speedup on an 8-core machine. We conclude this paper with several criteria to discuss the trade-off between different geometric models and statistical methods for different scenarios.
{"title":"Parallel statistical capacitance extraction of on-chip interconnects with an improved geometric variation model","authors":"Wenjian Yu, Chao Hu, Wangyang Zhang","doi":"10.1109/ASPDAC.2011.5722272","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722272","url":null,"abstract":"In this paper, a new geometric variation model, referred to as the improved continuous surface variation (ICSV) model, is proposed to accurately imitate the random variation of on-chip interconnects. In addition, a new statistical capacitance solver is implemented to incorporate the ICSV model, the HPC [5] and weighted PFA [6] techniques. The solver also employs a parallel computing technique to greatly improve its efficiency. Experiments show that on a typical 65nm-technology structure, ICSV model has significant advantage over other existing models, and the new solver is at least 10X faster than the MC simulation with 10000 samples. The parallel solver achieves 7X further speedup on an 8-core machine. We conclude this paper with several criteria to discuss the trade-off between different geometric models and statistical methods for different scenarios.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115786954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722299
Y. Higami, Hiroshi Takahashi, Shin-ya Kobayashi, K. Saluja
In this paper, we investigate the effects of delay faults on clock lines under launch-on-capture test strategy. In this fault model we assume that scan-in and scan-out operations, being relatively slow, can perform correctly even in the presence of a fault. However, a flip-flop may fail to capture a value at correct timing during system clock operation, thus requiring the use of launch-on-capture test strategy to detect such a fault. In the paper, we first show simulation results providing a relation between the duration of the delay and difficulty of detecting such faults in the launch-on-capture test. Next, we propose test generation methods to detect such clock delay faults, and show some experimental results to establish the effectiveness of our methods.
{"title":"Fault simulation and test generation for clock delay faults","authors":"Y. Higami, Hiroshi Takahashi, Shin-ya Kobayashi, K. Saluja","doi":"10.1109/ASPDAC.2011.5722299","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722299","url":null,"abstract":"In this paper, we investigate the effects of delay faults on clock lines under launch-on-capture test strategy. In this fault model we assume that scan-in and scan-out operations, being relatively slow, can perform correctly even in the presence of a fault. However, a flip-flop may fail to capture a value at correct timing during system clock operation, thus requiring the use of launch-on-capture test strategy to detect such a fault. In the paper, we first show simulation results providing a relation between the duration of the delay and difficulty of detecting such faults in the launch-on-capture test. Next, we propose test generation methods to detect such clock delay faults, and show some experimental results to establish the effectiveness of our methods.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115890543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722305
Alireza Rakhshanfar, J. Anderson
Clock signals are responsible for a significant portion of dynamic power in FPGAs owing to their high toggle frequency and capacitance. Clock signals are distributed to loads through a programmable routing tree network, designed to provide low delay and low skew. The placement step of the FPGA CAD flow plays a key role in influencing clock power, as clock tree branches are connected based solely on the placement of the clock loads. In this paper, we present a placement-based approach to clock power reduction based on an integer linear programming (ILP) formulation. Our technique is intended to be used as an optimization post-pass executed after traditional placement, and it offers fine-grained control of the amount by which clock power is optimized versus other placement criteria. Results show that the proposed technique reduces clock network capacitance by over 50% with minimal deleterious impact on post-routed wirelength and circuit speed.
{"title":"An integer programming placement approach to FPGA clock power reduction","authors":"Alireza Rakhshanfar, J. Anderson","doi":"10.1109/ASPDAC.2011.5722305","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722305","url":null,"abstract":"Clock signals are responsible for a significant portion of dynamic power in FPGAs owing to their high toggle frequency and capacitance. Clock signals are distributed to loads through a programmable routing tree network, designed to provide low delay and low skew. The placement step of the FPGA CAD flow plays a key role in influencing clock power, as clock tree branches are connected based solely on the placement of the clock loads. In this paper, we present a placement-based approach to clock power reduction based on an integer linear programming (ILP) formulation. Our technique is intended to be used as an optimization post-pass executed after traditional placement, and it offers fine-grained control of the amount by which clock power is optimized versus other placement criteria. Results show that the proposed technique reduces clock network capacitance by over 50% with minimal deleterious impact on post-routed wirelength and circuit speed.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115932628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722268
T. Nakajima, Y. Kinebuchi, H. Shimada, Alexandre Courbot, Tsung-Han Lin
A virtualization layer makes it possible to compose multiple functionalities on a multi-core processor with minimum modifications of OS kernels and applications. A multi-core processor is a good candidate to compose various software independently developed for dedicated processors into one multi-core processor to reduce both the hardware and development cost. In this paper, we present SPUMONE, which is a virtualization layer suitable for developing multi-core processor based-information appliances.
{"title":"Temporal and spatial isolation in a virtualization layer for multi-core processor based information appliances","authors":"T. Nakajima, Y. Kinebuchi, H. Shimada, Alexandre Courbot, Tsung-Han Lin","doi":"10.1109/ASPDAC.2011.5722268","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722268","url":null,"abstract":"A virtualization layer makes it possible to compose multiple functionalities on a multi-core processor with minimum modifications of OS kernels and applications. A multi-core processor is a good candidate to compose various software independently developed for dedicated processors into one multi-core processor to reduce both the hardware and development cost. In this paper, we present SPUMONE, which is a virtualization layer suitable for developing multi-core processor based-information appliances.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131564746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722293
Dan Bao, Chuan Wu, Yan Ying, Yun Chen, Xiaoyang Zeng
An energy-efficient programmable LDPC decoder is proposed for WiMax and Wi-Fi applications. The proposed decoder is designed with overlapped processing units, flexible message passing network and medium-grain partitioned memories to achieve flexibility, area reduction, and energy efficiency. The decoder can be programmed by host processor with several special-purpose micro-instructions. Thus, various operation modes can be reconfigured. Fabricated in SMIC 0.13μm 1P8M CMOS process, the chip occupies 4.32 mm2 with core area 2.97 mm2, and consumes 170mW with a throughput of 302Mb/s when operating at 145MHz and 1.2V.
{"title":"A 4.32 mm2 170mW LDPC decoder in 0.13μm CMOS for WiMax/Wi-Fi applications","authors":"Dan Bao, Chuan Wu, Yan Ying, Yun Chen, Xiaoyang Zeng","doi":"10.1109/ASPDAC.2011.5722293","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722293","url":null,"abstract":"An energy-efficient programmable LDPC decoder is proposed for WiMax and Wi-Fi applications. The proposed decoder is designed with overlapped processing units, flexible message passing network and medium-grain partitioned memories to achieve flexibility, area reduction, and energy efficiency. The decoder can be programmed by host processor with several special-purpose micro-instructions. Thus, various operation modes can be reconfigured. Fabricated in SMIC 0.13μm 1P8M CMOS process, the chip occupies 4.32 mm2 with core area 2.97 mm2, and consumes 170mW with a throughput of 302Mb/s when operating at 145MHz and 1.2V.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132309996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-25DOI: 10.1109/ASPDAC.2011.5722227
H. Posadas, L. Diaz, E. Villar
Efficient design of large multiprocessor embedded systems requires fast, early performance modeling techniques. Native co-simulation has been proposed as a fast solution for evaluating systems in early design steps. Annotated SW execution can be performed in conjunction with a virtual model of the HW platform to generate a complete system simulation. To obtain sufficiently accurate performance estimations, the effect of all the system components, as processor caches, must be considered. ISS-based cache models slow down the simulation speed, greatly reducing the efficiency of native-based co-simulations. To solve the problem, cache modeling techniques for fast native co-simulation have been proposed, but only considering instruction-caches. In this paper, a fast technique for datacache modeling is presented, together with the instrumentation required for its application in native execution. The model allows the designer to obtain cache hit/miss rate estimations with a speed-up of two orders of magnitude with respect to ISS. Miss rate estimation error remains below 5% for representative examples.
{"title":"Fast data-cache modeling for native co-simulation","authors":"H. Posadas, L. Diaz, E. Villar","doi":"10.1109/ASPDAC.2011.5722227","DOIUrl":"https://doi.org/10.1109/ASPDAC.2011.5722227","url":null,"abstract":"Efficient design of large multiprocessor embedded systems requires fast, early performance modeling techniques. Native co-simulation has been proposed as a fast solution for evaluating systems in early design steps. Annotated SW execution can be performed in conjunction with a virtual model of the HW platform to generate a complete system simulation. To obtain sufficiently accurate performance estimations, the effect of all the system components, as processor caches, must be considered. ISS-based cache models slow down the simulation speed, greatly reducing the efficiency of native-based co-simulations. To solve the problem, cache modeling techniques for fast native co-simulation have been proposed, but only considering instruction-caches. In this paper, a fast technique for datacache modeling is presented, together with the instrumentation required for its application in native execution. The model allows the designer to obtain cache hit/miss rate estimations with a speed-up of two orders of magnitude with respect to ISS. Miss rate estimation error remains below 5% for representative examples.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131083039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}