Enclos has identified a novel technique to substantially stiffen glass via prestress. Significant reductions in deflection of thin glass have been demonstrated numerically and on prototype mockups using this technique. The potential integration of this technology with glass such as AGC’s Falcon Glass presents opportunities for performance improvement and material optimization. This study examines prestressed glass specimens which are 0.5mm, 1.1mm, and 2.1mm thick in comparison to glass of the same thicknesses that has not been enhanced by the novel stiffening method. The technology relies on a prestress pattern generated by cold-forming a double-curved surface into a flat pane. Unlike most cold-warping that starts with a flat sheet of glass deformed to a final warped surface, this approach begins with a hot-formed glass shape that is flattened elastically to a planar lite. The process results in a pattern of membrane prestress contained within the glass. As a result of the deformation, the center region of the glass is put into tension, which is balanced by regions of compression within the glass at the perimeter, adjacent to the frame. The membrane tension region that develops increases the glass stiffness for deflections out-of-plane, in a similar manner to the way tensioning a cable generates higher stiffness to resist applied lateral loads acting on it. Numerical models and test results from Enclos and AGC are presented in this study.
{"title":"Reducing Deflection of Thin Glass by Prestress","authors":"A. Bensend, Marco Zaccaria","doi":"10.47982/cgc.9.600","DOIUrl":"https://doi.org/10.47982/cgc.9.600","url":null,"abstract":"Enclos has identified a novel technique to substantially stiffen glass via prestress. Significant reductions in deflection of thin glass have been demonstrated numerically and on prototype mockups using this technique. The potential integration of this technology with glass such as AGC’s Falcon Glass presents opportunities for performance improvement and material optimization. This study examines prestressed glass specimens which are 0.5mm, 1.1mm, and 2.1mm thick in comparison to glass of the same thicknesses that has not been enhanced by the novel stiffening method. The technology relies on a prestress pattern generated by cold-forming a double-curved surface into a flat pane. Unlike most cold-warping that starts with a flat sheet of glass deformed to a final warped surface, this approach begins with a hot-formed glass shape that is flattened elastically to a planar lite. The process results in a pattern of membrane prestress contained within the glass. As a result of the deformation, the center region of the glass is put into tension, which is balanced by regions of compression within the glass at the perimeter, adjacent to the frame. The membrane tension region that develops increases the glass stiffness for deflections out-of-plane, in a similar manner to the way tensioning a cable generates higher stiffness to resist applied lateral loads acting on it. Numerical models and test results from Enclos and AGC are presented in this study.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gertjan Peters, Erwin Ten Brincke, Josefien Van der Laan Dijkhuis
The adoption of glass reuse in construction faces challenges due to higher costs and more perceived risks compared to new glass. This conflicts with the goal of a circular economy. To challenge this status quo, this article explores a hypothetical scenario where glass becomes a scarce commodity. What if the float glass production process ceases to exist due to energy resource depletion, raw material scarcity, or carbon budget constraints? In such a context, glass reuse will be crucial. This article discusses the design, logistics and quality related challenges of reusing float glass, including structural integrity and energy performance considerations. Additionally, this article investigates the potential for glass reuse by analysing ongoing and future research, supply-demand dynamics, innovative building design, the concept of the future glass factory, and the re-evaluation and promotion of regulatory frameworks. To promote glass reuse, the article emphasizes customization over standardization. Considering the diverse dynamics of projects, from high-rise buildings to terraced houses, and varying regional construction requirements, solutions must be specific and adaptable, rather than standardized.
{"title":"Glass a Scarce Commodity","authors":"Gertjan Peters, Erwin Ten Brincke, Josefien Van der Laan Dijkhuis","doi":"10.47982/cgc.9.653","DOIUrl":"https://doi.org/10.47982/cgc.9.653","url":null,"abstract":"The adoption of glass reuse in construction faces challenges due to higher costs and more perceived risks compared to new glass. This conflicts with the goal of a circular economy. To challenge this status quo, this article explores a hypothetical scenario where glass becomes a scarce commodity. What if the float glass production process ceases to exist due to energy resource depletion, raw material scarcity, or carbon budget constraints? In such a context, glass reuse will be crucial. This article discusses the design, logistics and quality related challenges of reusing float glass, including structural integrity and energy performance considerations. Additionally, this article investigates the potential for glass reuse by analysing ongoing and future research, supply-demand dynamics, innovative building design, the concept of the future glass factory, and the re-evaluation and promotion of regulatory frameworks. To promote glass reuse, the article emphasizes customization over standardization. Considering the diverse dynamics of projects, from high-rise buildings to terraced houses, and varying regional construction requirements, solutions must be specific and adaptable, rather than standardized.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the results of an experimental and numerical investigation of the mechanical response of undamaged and damaged 2-ply laminated glass plates. Two types of glass plies, thermally toughened and heat-strengthened, coupled with SentryGlas (SG) were considered. Laminated glass plates supported with articulated point fixing bolt under out-of-plane uniform pressure were investigated under four different damage configurations: (i) undamaged; (ii) partially damaged, with the bottom ply broken; (iii) partially damaged, over-flipping the specimen of mode II; (iv) both two glass plies broken, which was applicable for LG plates made by heat-strengthened glass. In the above four modes, the top ply is always subjected to compression while the bottom one is in tension. The different responses of each configuration (different glass types and damage modes) were discussed and compared in this study. In addition, numerical models were adopted to reproduce the experimental results. The influence of the hitting location and glass types on the mechanical behavior of LG plates was analyzed. The results showed that the contribution of the broken glass ply could not be disregarded in the evaluation of the global stiffness of partially damaged LG plates and their bearing capacity.
本文介绍了对未损坏和已损坏的两层夹层玻璃板的机械响应进行实验和数值研究的结果。研究考虑了两种类型的玻璃层,热增韧玻璃层和热强化玻璃层,以及 SentryGlas (SG)。在平面外均匀压力下,用铰接点固定螺栓支撑的夹层玻璃板在四种不同的损坏配置下进行了研究:(i) 未损坏;(ii) 部分损坏,底层破裂;(iii) 部分损坏,模式 II 的试样过度翻转;(iv) 两层玻璃均破裂,这适用于由热强化玻璃制成的 LG 板。在上述四种模式中,顶层总是受到压缩,而底层则处于拉伸状态。本研究讨论并比较了每种配置(不同玻璃类型和损坏模式)的不同响应。此外,还采用了数值模型来再现实验结果。分析了撞击位置和玻璃类型对 LG 板机械行为的影响。结果表明,在评估部分损坏的 LG 板的整体刚度及其承载能力时,不能忽略破碎玻璃层的贡献。
{"title":"Post-Failure Behavior of Point-Fixing Laminated Glass Plates under Out-of-Plane Uniform Pressure","authors":"Sicheng Zhou, S. Cattaneo, L. Biolzi","doi":"10.47982/cgc.9.603","DOIUrl":"https://doi.org/10.47982/cgc.9.603","url":null,"abstract":"This paper presents the results of an experimental and numerical investigation of the mechanical response of undamaged and damaged 2-ply laminated glass plates. Two types of glass plies, thermally toughened and heat-strengthened, coupled with SentryGlas (SG) were considered. Laminated glass plates supported with articulated point fixing bolt under out-of-plane uniform pressure were investigated under four different damage configurations: (i) undamaged; (ii) partially damaged, with the bottom ply broken; (iii) partially damaged, over-flipping the specimen of mode II; (iv) both two glass plies broken, which was applicable for LG plates made by heat-strengthened glass. In the above four modes, the top ply is always subjected to compression while the bottom one is in tension. The different responses of each configuration (different glass types and damage modes) were discussed and compared in this study. In addition, numerical models were adopted to reproduce the experimental results. The influence of the hitting location and glass types on the mechanical behavior of LG plates was analyzed. The results showed that the contribution of the broken glass ply could not be disregarded in the evaluation of the global stiffness of partially damaged LG plates and their bearing capacity.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"10 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141336231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper we will discuss a challenging, iconic, heritage, refurbishment project – Channel 4’s headquarters building located in London, England. The building was originally designed by Richard Rogers and Partners in collaboration with Arup, RFR and was executed in 1994 by Eiffel under a sub-contract package with Permasteelisa. We will methodically outline the procedures that were followed to assess and restore this ageing, iconic cable net façade where, in an almost unprecedented way, the face glass is used structurally to support the dead load of the panels below to create a chain of suspended glass panes. After approximately 25 years of service Arup was called back to provide advice to the client following a glass breakage incident. This triggered a detailed condition survey which concluded that a project refurbishment was overdue. Arup then provided further studies to inform strategic options as to how to best refurbish the façade. This advice led to the appointment of Octatube to provide Pre-Construction Services Agreement (PCSA) support to assist the façade appraisal and to carry out design, material testing, calculation and to provide critical construction advice, and then lead to Ocatatube’s appointment to fully refurbish the iconic façade.
在本文中,我们将讨论一个具有挑战性的标志性遗产翻新项目--位于英国伦敦的第四频道总部大楼。该建筑最初由理查德-罗杰斯及合伙人公司(Richard Rogers and Partners)与奥雅纳工程顾问公司(Arup)和英国皇家建筑师协会(RFR)合作设计,1994 年由埃菲尔公司(Eiffel)根据与 Permasteelisa 公司签订的一揽子分包合同实施。我们将有条不紊地概述评估和修复这一老化的标志性索网外墙所遵循的程序,该外墙以一种几乎前所未有的方式,在结构上使用面玻璃来支撑下方面板的自重,从而形成一条悬挂的玻璃板链。在玻璃破损事件发生后,奥雅纳被客户召回,为其提供建议。 这引发了一项详细的状况调查,得出的结论是项目翻新已经过期。 奥雅纳随后进行了进一步的研究,为如何以最佳方式翻新外墙提供了战略选择。 奥克塔图公司根据这些建议提供了施工前服务协议(PCSA)支持,以协助外墙评估、进行设计、材料测试、计算并提供重要的施工建议,随后奥克塔图公司被任命对标志性外墙进行全面翻新。
{"title":"Restoring Hi-Tech Architecture","authors":"Peter Lenk, Peter Van de Rotten, Ed Forwood","doi":"10.47982/cgc.9.610","DOIUrl":"https://doi.org/10.47982/cgc.9.610","url":null,"abstract":"In this paper we will discuss a challenging, iconic, heritage, refurbishment project – Channel 4’s headquarters building located in London, England. The building was originally designed by Richard Rogers and Partners in collaboration with Arup, RFR and was executed in 1994 by Eiffel under a sub-contract package with Permasteelisa. We will methodically outline the procedures that were followed to assess and restore this ageing, iconic cable net façade where, in an almost unprecedented way, the face glass is used structurally to support the dead load of the panels below to create a chain of suspended glass panes. After approximately 25 years of service Arup was called back to provide advice to the client following a glass breakage incident. This triggered a detailed condition survey which concluded that a project refurbishment was overdue. Arup then provided further studies to inform strategic options as to how to best refurbish the façade. This advice led to the appointment of Octatube to provide Pre-Construction Services Agreement (PCSA) support to assist the façade appraisal and to carry out design, material testing, calculation and to provide critical construction advice, and then lead to Ocatatube’s appointment to fully refurbish the iconic façade.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The organic design and seamlessly reflective surface of “The Henderson” establish it as a landmark in Hong Kong. With its all-glass façade and a height of 210 m, the skyscraper designed by Zaha Hadid Architects offers spectacular panoramic views. Particularly noteworthy is the “Banquet Hall” on the top floor, distinguished by its fully glazed roof and engineered by Eckersley O’Callaghan. Large-format, coated and curved glass panes with the best possible technical specification in terms of thickness and minimal dimensional tolerances counterbalance architectural aesthetics and structural resilience. Engineered, manufactured and installed by seele, they serve as effective shields against solar radiation and glare, seamlessly complementing the organic architecture. Collaborative efforts focused on maximizing the transparency of the building envelope as interdisciplinary teams navigated challenges in structural engineering, design aesthetics and compliance with strict regulatory standards of the building authorities in Hong Kong. Thanks to targeted investigations, advancements in glass construction technology and engineering innovation, a procedure was developed that ensured optimum bearing of the panoramic glass panes. This project contributes to the safety and durability of high-rise glass structures to withstand extreme conditions and showcases the transformative potential of bold design concepts, rigorous testing, and international collaboration. The result is a visually stunning and structurally outstanding masterpiece.
{"title":"Panoramic Perfection: Unveiling Technical Insights from “The Henderson” in Hong Kong","authors":"Andreas Komm, Markus Bruckner, Anna-Maria Heinz","doi":"10.47982/cgc.9.650","DOIUrl":"https://doi.org/10.47982/cgc.9.650","url":null,"abstract":"The organic design and seamlessly reflective surface of “The Henderson” establish it as a landmark in Hong Kong. With its all-glass façade and a height of 210 m, the skyscraper designed by Zaha Hadid Architects offers spectacular panoramic views. Particularly noteworthy is the “Banquet Hall” on the top floor, distinguished by its fully glazed roof and engineered by Eckersley O’Callaghan. Large-format, coated and curved glass panes with the best possible technical specification in terms of thickness and minimal dimensional tolerances counterbalance architectural aesthetics and structural resilience. Engineered, manufactured and installed by seele, they serve as effective shields against solar radiation and glare, seamlessly complementing the organic architecture. Collaborative efforts focused on maximizing the transparency of the building envelope as interdisciplinary teams navigated challenges in structural engineering, design aesthetics and compliance with strict regulatory standards of the building authorities in Hong Kong. Thanks to targeted investigations, advancements in glass construction technology and engineering innovation, a procedure was developed that ensured optimum bearing of the panoramic glass panes. This project contributes to the safety and durability of high-rise glass structures to withstand extreme conditions and showcases the transformative potential of bold design concepts, rigorous testing, and international collaboration. The result is a visually stunning and structurally outstanding masterpiece.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"1 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It has been identified that current standardised method for structural sealant joint dimensioning is applicable to flat rectangular panels only and no provisions are made for panels with curved surfaces. The purpose of this study is to investigate the stress distribution along the sealant joint of a cylindrically curved glass panel subjected to wind pressure and to establish if the panel curvature influences the stress distribution along the joint length. Using numerical method, several curved units were analysed and the results have shown that the out of plane wind action generate compression and shear forces within the joint, both occurring at the same time. This means that in the case of a structurally bonded curved panel, additionally to the shear caused by differential thermal expansion of elements or glass self-wight which is covered by ETAG 002 and EN 13022 the designer must also consider the shear stress induced due to the panel curvature. The magnitude and location of this additional shear stress and also of the tension/compression stress can be identified using Finite Element Analysis.
研究发现,目前结构密封胶接缝尺寸的标准化方法仅适用于扁平矩形面板,并没有针对曲面面板的规定。本研究的目的是调查承受风压的圆柱形曲面玻璃板密封胶接缝处的应力分布,并确定面板曲率是否会影响接缝长度方向的应力分布。研究采用数值方法对多个曲面单元进行了分析,结果表明,平面外的风力作用会在接缝处产生压缩力和剪切力,两者同时发生。这意味着,对于结构性粘接的曲面面板,除了 ETAG 002 和 EN 13022 所涵盖的元件或玻璃自重的热膨胀差引起的剪力外,设计人员还必须考虑面板曲率引起的剪应力。这种附加剪应力以及拉伸/压缩应力的大小和位置可以通过有限元分析来确定。
{"title":"Stress Distribution along the Structural Sealant Joint Length of a Cylindrically Curved Glazing Panel","authors":"Mihail Istratii","doi":"10.47982/cgc.9.595","DOIUrl":"https://doi.org/10.47982/cgc.9.595","url":null,"abstract":"It has been identified that current standardised method for structural sealant joint dimensioning is applicable to flat rectangular panels only and no provisions are made for panels with curved surfaces. The purpose of this study is to investigate the stress distribution along the sealant joint of a cylindrically curved glass panel subjected to wind pressure and to establish if the panel curvature influences the stress distribution along the joint length. Using numerical method, several curved units were analysed and the results have shown that the out of plane wind action generate compression and shear forces within the joint, both occurring at the same time. This means that in the case of a structurally bonded curved panel, additionally to the shear caused by differential thermal expansion of elements or glass self-wight which is covered by ETAG 002 and EN 13022 the designer must also consider the shear stress induced due to the panel curvature. The magnitude and location of this additional shear stress and also of the tension/compression stress can be identified using Finite Element Analysis.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The presented research investigates loose sand forming as a reconfigurable molding strategy for custom glass parts. Doubly curved glass parts usually require the labor-intense fabrication of individual ceramic or steel molds. Reconfigurable molds for glass are limited to specific modular geometries and require costly heat-resistant actuation mechanisms. Three-dimensionally (3D) printed sand molds for glass slumping require binders and cannot be reused. The objective of this research is to facilitate a waste-free fabrication of doubly curved glass elements and a facile, fast, low-cost mold-making process for the hot bending of glass. The molding system employs granular loose sand material, which is heat resistant and can be quickly reformed. In combination with novel digital tools and robotic fabrication, the technique provides a flexible molding system for the transformation of industry-ready float glass. This research presents the first results, including possible granular material systems for loose granular molding, robotic setup and placement strategies for granular materials, and volumetric material formation considering robotic process parameters. Furthermore, it investigates mold stability during slumping and the geometric precision of mold and resulting glass elements. The resulting glass elements are fully transparent with no contamination caused. The presented approach allows for smooth curvatures, easy mold removal, and complete mold recycling without further processing. The method was applied in several mid-scale experiments, including investigations into which family of forms can be produced. The geometric freedom and limitations of the proposed fabrication method are discussed. Reconfigurable sand molding for glass could enable the geometric customization of glass elements and allow for novel optical, structural, or decorative properties in glass facades and windows.
{"title":"Robotic Reconfigurable Sand Molding for Doubly Curved Float Glass","authors":"Rena Giesecke, B. Dillenburger","doi":"10.47982/cgc.8.469","DOIUrl":"https://doi.org/10.47982/cgc.8.469","url":null,"abstract":"The presented research investigates loose sand forming as a reconfigurable molding strategy for custom glass parts. Doubly curved glass parts usually require the labor-intense fabrication of individual ceramic or steel molds. Reconfigurable molds for glass are limited to specific modular geometries and require costly heat-resistant actuation mechanisms. Three-dimensionally (3D) printed sand molds for glass slumping require binders and cannot be reused. The objective of this research is to facilitate a waste-free fabrication of doubly curved glass elements and a facile, fast, low-cost mold-making process for the hot bending of glass. The molding system employs granular loose sand material, which is heat resistant and can be quickly reformed. In combination with novel digital tools and robotic fabrication, the technique provides a flexible molding system for the transformation of industry-ready float glass. This research presents the first results, including possible granular material systems for loose granular molding, robotic setup and placement strategies for granular materials, and volumetric material formation considering robotic process parameters. Furthermore, it investigates mold stability during slumping and the geometric precision of mold and resulting glass elements. The resulting glass elements are fully transparent with no contamination caused. The presented approach allows for smooth curvatures, easy mold removal, and complete mold recycling without further processing. The method was applied in several mid-scale experiments, including investigations into which family of forms can be produced. The geometric freedom and limitations of the proposed fabrication method are discussed. Reconfigurable sand molding for glass could enable the geometric customization of glass elements and allow for novel optical, structural, or decorative properties in glass facades and windows.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131749801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Interlocking cast glass assemblies are a promising solution for architectural cast-glass applications aiming for high transparency and a reversible structure that allows the reuse of the glass components (Oikonomopoulou et al.,2018; Oikonomopoulou,2019b). In such a system, an interlayer material between the glass elements is essential, to assist the homogenous stress distribution and account for the surface microasperities of the glass elements. Towards circularity, this material should be dry (and not an adhesive), allowing for the eventual disassembly of the system. Previous experimental work by (Aurik at al.,2018; Oikonomopoulou at al.,2019b) has focused on the use of PU and PVC interlayers as suitable candidates; the focus in those studies has been solely placed on the mechanical performance of the interlayer material. This research provides a review of potential material candidates suitable for interlayers of an interlocking cast glass assembly based on a set of revised design and performance criteria that are divided into primary and secondary. Furthermore, the impact their unique material properties have on the potential application of the interlocking system is examined. The whole process, from fabrication to construction of the entire assembly, based on an assumed building scenario, is presented in a chain reaction manner, whose starting point is the interlayer itself. After defining the design criteria the interlayer should adhere to, the proposed candidates are: PETG sheets (Vivak®), Neoprene, Aluminum, Laminated Polyurethane (PU) and a Soft-core aluminum interlayer. The unique properties and fabrication challenges of all five proposed interlayers are considered, as well as their properties in relation to assembly, which leads to the development of two distinct assembly sequences. The main distinction concerns the interlayers that risk creeping and those that do not. The research concludes with a comparison between the interlocking assembly and the other glass block assemblies currently applied.
互锁铸造玻璃组件是建筑铸造玻璃应用的一个很有前途的解决方案,旨在实现高透明度和可逆结构,允许玻璃组件的重复使用(Oikonomopoulou等人,2018;Oikonomopoulou, 2019 b)。在这样的系统中,玻璃元素之间的夹层材料是必不可少的,以帮助均匀的应力分布和解释玻璃元素的表面微凹凸。朝向圆形,这种材料应该是干燥的(而不是粘合剂),允许系统的最终拆卸。(Aurik at al.,2018;Oikonomopoulou等人,20119b)专注于使用PU和PVC夹层作为合适的候选者;这些研究的重点仅仅放在夹层材料的机械性能上。本研究基于一套修改后的设计和性能标准(分为主要和次要标准),对适用于互锁铸造玻璃组件中间层的潜在候选材料进行了回顾。此外,还研究了它们独特的材料性能对联锁系统潜在应用的影响。整个过程,从制造到整个组装的施工,基于假设的建筑场景,以连锁反应的方式呈现,其起点是中间层本身。在确定中间层应遵循的设计标准后,建议的候选材料有:PETG片材(Vivak®)、氯丁橡胶、铝、层压聚氨酯(PU)和软芯铝中间层。考虑了所有五种夹层的独特性能和制造挑战,以及它们与组装相关的性能,从而开发了两种不同的组装序列。主要的区别在于有蔓延风险的中间层和没有蔓延风险的中间层。研究的最后,比较了联锁组件和目前应用的其他玻璃块组件。
{"title":"IN BETWEEN: An Interlayer Material Study for Interlocking Cast Glass Blocks","authors":"Maria Dimas, F. Oikonomopoulou, M. Bilow","doi":"10.47982/cgc.8.416","DOIUrl":"https://doi.org/10.47982/cgc.8.416","url":null,"abstract":"Interlocking cast glass assemblies are a promising solution for architectural cast-glass applications aiming for high transparency and a reversible structure that allows the reuse of the glass components (Oikonomopoulou et al.,2018; Oikonomopoulou,2019b). In such a system, an interlayer material between the glass elements is essential, to assist the homogenous stress distribution and account for the surface microasperities of the glass elements. Towards circularity, this material should be dry (and not an adhesive), allowing for the eventual disassembly of the system. Previous experimental work by (Aurik at al.,2018; Oikonomopoulou at al.,2019b) has focused on the use of PU and PVC interlayers as suitable candidates; the focus in those studies has been solely placed on the mechanical performance of the interlayer material. This research provides a review of potential material candidates suitable for interlayers of an interlocking cast glass assembly based on a set of revised design and performance criteria that are divided into primary and secondary. Furthermore, the impact their unique material properties have on the potential application of the interlocking system is examined. The whole process, from fabrication to construction of the entire assembly, based on an assumed building scenario, is presented in a chain reaction manner, whose starting point is the interlayer itself. After defining the design criteria the interlayer should adhere to, the proposed candidates are: PETG sheets (Vivak®), Neoprene, Aluminum, Laminated Polyurethane (PU) and a Soft-core aluminum interlayer. The unique properties and fabrication challenges of all five proposed interlayers are considered, as well as their properties in relation to assembly, which leads to the development of two distinct assembly sequences. The main distinction concerns the interlayers that risk creeping and those that do not. The research concludes with a comparison between the interlocking assembly and the other glass block assemblies currently applied.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121347399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the structural design of facade glazing, various types of loads such as dead weight, wind and climatic loads (pressure differences) must be taken into account. In practice, however, there are many cases of damage that can be attributed to direct solar radiation. In these cases, a so-called thermally induced fracture takes place, which can occur as a result of large in-plane temperature differences within the glass. Due to the increasing complexity of glazing constructions, this load type should be taken into account in future glass design. For this reason, thermal-mechanical investigations, were conducted. Commercially used double and triple insulating glass units were considered as vertical glazing and the solar direct absorptance per glass pane was varied. For numerical calculations, measured temperature data from the German Weather Service and free available Clear Sky model data were used as meteorological input. The results show that solar irradiance, along with temperature, is the driving influence on the thermally induced stress in insulating glass units. The investigations indicate that the inner pane becomes relevant on colder days and the outer pane on warmer days. Results also show, that the level of the outside temperature plays a negligible role for the thermally induced stresses of the middle pane.
{"title":"Case Studies on the Thermally Induced Stresses in Insulating Glass Units via Numerical Calculation","authors":"G. Schwind, F. Paschke, J. Schneider","doi":"10.47982/cgc.8.388","DOIUrl":"https://doi.org/10.47982/cgc.8.388","url":null,"abstract":"\u0000In the structural design of facade glazing, various types of loads such as dead weight, wind and climatic loads (pressure differences) must be taken into account. In practice, however, there are many cases of damage that can be attributed to direct solar radiation. In these cases, a so-called thermally induced fracture takes place, which can occur as a result of large in-plane temperature differences within the glass. Due to the increasing complexity of glazing constructions, this load type should be taken into account in future glass design. For this reason, thermal-mechanical investigations, were conducted. Commercially used double and triple insulating glass units were considered as vertical glazing and the solar direct absorptance per glass pane was varied. For numerical calculations, measured temperature data from the German Weather Service and free available Clear Sky model data were used as meteorological input. The results show that solar irradiance, along with temperature, is the driving influence on the thermally induced stress in insulating glass units. The investigations indicate that the inner pane becomes relevant on colder days and the outer pane on warmer days. Results also show, that the level of the outside temperature plays a negligible role for the thermally induced stresses of the middle pane.\u0000 \u0000","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132029241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bridging behavior between fragments is one vital factor in the post-fracture stage of glass laminates. A particle-based discrete element model was developed in this work to simulate the bridging behavior of fractured glass laminates. The model was based on the calibration of hyperelastic PVB material properties using soft-bond model and further validated with the experimental data as well as the observations from through-crack-tensile tests. In order to investigate the bridging performance of fractured glass laminates with multiple fragments under uniaxial tension, three factors encompassing the crack aligning, fragment number and adhesion conditions were considered to perform a parametric study. The results give an exploratory application of the developed discrete element models in the estimation of the post-fracture behaviors. It is found that the smaller fragment size can diminish the tension-stiffening effect in the non-aligned case which might generate an enhancing ratio of initial modulus up to nearly 3.6. The non-aligned cracks can also lead to a very high strength if the adhesion ability can be guaranteed. However, the delamination of fragments is expected to control the post-fracture strength of fractured glass laminates with PVB interlayer.
{"title":"Microscale Discrete Element Model for Simulating Bridging Behavior of Fractured Glass Laminates","authors":"Xing-er Wang, Jian Yang, Shennan Peng, Yige Wang, X. Hou","doi":"10.47982/cgc.8.451","DOIUrl":"https://doi.org/10.47982/cgc.8.451","url":null,"abstract":"The bridging behavior between fragments is one vital factor in the post-fracture stage of glass laminates. A particle-based discrete element model was developed in this work to simulate the bridging behavior of fractured glass laminates. The model was based on the calibration of hyperelastic PVB material properties using soft-bond model and further validated with the experimental data as well as the observations from through-crack-tensile tests. In order to investigate the bridging performance of fractured glass laminates with multiple fragments under uniaxial tension, three factors encompassing the crack aligning, fragment number and adhesion conditions were considered to perform a parametric study. The results give an exploratory application of the developed discrete element models in the estimation of the post-fracture behaviors. It is found that the smaller fragment size can diminish the tension-stiffening effect in the non-aligned case which might generate an enhancing ratio of initial modulus up to nearly 3.6. The non-aligned cracks can also lead to a very high strength if the adhesion ability can be guaranteed. However, the delamination of fragments is expected to control the post-fracture strength of fractured glass laminates with PVB interlayer.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131632682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}