Younghwan Yang, Trevon Badloe, and Junsuk Rho* Pohang University of Science and Technology (POSTECH), Department of Mechanical Engineering, Pohang, Republic of Korea Pohang University of Science and Technology (POSTECH), Graduate School of Artificial Intelligence, Pohang, Republic of Korea Pohang University of Science and Technology (POSTECH), Department of Chemical Engineering, Pohang, Republic of Korea POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
{"title":"Writing nanometer-scale structures for centimeter-scale color printing","authors":"Younghwan Yang, Trevon Badloe, J. Rho","doi":"10.1117/1.ap.5.3.030501","DOIUrl":"https://doi.org/10.1117/1.ap.5.3.030501","url":null,"abstract":"Younghwan Yang, Trevon Badloe, and Junsuk Rho* Pohang University of Science and Technology (POSTECH), Department of Mechanical Engineering, Pohang, Republic of Korea Pohang University of Science and Technology (POSTECH), Graduate School of Artificial Intelligence, Pohang, Republic of Korea Pohang University of Science and Technology (POSTECH), Department of Chemical Engineering, Pohang, Republic of Korea POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46557085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. Augmented reality (AR) display, which superimposes virtual images on ambient scene, can visually blend the physical world and the digital world and thus opens a new vista for human–machine interaction. AR display is considered as one of the next-generation display technologies and has been drawing huge attention from both academia and industry. Current AR display systems operate based on a combination of various refractive, reflective, and diffractive optical elements, such as lenses, prisms, mirrors, and gratings. Constrained by the underlying physical mechanisms, these conventional elements only provide limited light-field modulation capability and suffer from issues such as bulky volume and considerable dispersion, resulting in large size, severe chromatic aberration, and narrow field of view of the composed AR display system. Recent years have witnessed the emerging of a new type of optical elements—metasurfaces, which are planar arrays of subwavelength electromagnetic structures that feature an ultracompact footprint and flexible light-field modulation capability, and are widely believed to be an enabling tool for overcoming the limitations faced by current AR displays. Here, we aim to provide a comprehensive review on the recent development of metasurface-enabled AR display technology. We first familiarize readers with the fundamentals of AR display, covering its basic working principle, existing conventional-optics-based solutions, as well as the associated pros and cons. We then introduce the concept of optical metasurfaces, emphasizing typical operating mechanisms, and representative phase modulation methods. We elaborate on three kinds of metasurface devices, namely, metalenses, metacouplers, and metaholograms, which have empowered different forms of AR displays. Their physical principles, device designs, and the performance improvement of the associated AR displays are explained in details. In the end, we discuss the existing challenges of metasurface optics for AR display applications and provide our perspective on future research endeavors.
{"title":"Metasurface-enabled augmented reality display: a review","authors":"Zeyang Liu, Danyan Wang, Hao Gao, Moxin Li, Huixian Zhou, Cheng Zhang","doi":"10.1117/1.AP.5.3.034001","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.034001","url":null,"abstract":"Abstract. Augmented reality (AR) display, which superimposes virtual images on ambient scene, can visually blend the physical world and the digital world and thus opens a new vista for human–machine interaction. AR display is considered as one of the next-generation display technologies and has been drawing huge attention from both academia and industry. Current AR display systems operate based on a combination of various refractive, reflective, and diffractive optical elements, such as lenses, prisms, mirrors, and gratings. Constrained by the underlying physical mechanisms, these conventional elements only provide limited light-field modulation capability and suffer from issues such as bulky volume and considerable dispersion, resulting in large size, severe chromatic aberration, and narrow field of view of the composed AR display system. Recent years have witnessed the emerging of a new type of optical elements—metasurfaces, which are planar arrays of subwavelength electromagnetic structures that feature an ultracompact footprint and flexible light-field modulation capability, and are widely believed to be an enabling tool for overcoming the limitations faced by current AR displays. Here, we aim to provide a comprehensive review on the recent development of metasurface-enabled AR display technology. We first familiarize readers with the fundamentals of AR display, covering its basic working principle, existing conventional-optics-based solutions, as well as the associated pros and cons. We then introduce the concept of optical metasurfaces, emphasizing typical operating mechanisms, and representative phase modulation methods. We elaborate on three kinds of metasurface devices, namely, metalenses, metacouplers, and metaholograms, which have empowered different forms of AR displays. Their physical principles, device designs, and the performance improvement of the associated AR displays are explained in details. In the end, we discuss the existing challenges of metasurface optics for AR display applications and provide our perspective on future research endeavors.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"034001 - 034001"},"PeriodicalIF":17.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48334909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Yang, M. Shalaginov, Hung-I Lin, S. An, A. Agarwal, Hualiang Zhang, C. Rivero‐Baleine, T. Gu, Juejun Hu
Abstract. Wide field-of-view (FOV) optics are essential components in many optical systems, with applications spanning imaging, display, sensing, and beam steering. Conventional refractive wide FOV optics often involve multiple stacked lenses, resulting in large size and weight as well as high cost. Metasurface lenses or metalenses promise a viable solution to realizing wide FOV optics without complex lens assembly. We review the various architectures of wide FOV metalenses, elucidate their fundamental operating principles and design trade-offs, and quantitatively evaluate and contrast their imaging performances. Emerging applications enabled by wide FOV metasurface optics are also discussed.
{"title":"Wide field-of-view metalens: a tutorial","authors":"F. Yang, M. Shalaginov, Hung-I Lin, S. An, A. Agarwal, Hualiang Zhang, C. Rivero‐Baleine, T. Gu, Juejun Hu","doi":"10.1117/1.AP.5.3.033001","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.033001","url":null,"abstract":"Abstract. Wide field-of-view (FOV) optics are essential components in many optical systems, with applications spanning imaging, display, sensing, and beam steering. Conventional refractive wide FOV optics often involve multiple stacked lenses, resulting in large size and weight as well as high cost. Metasurface lenses or metalenses promise a viable solution to realizing wide FOV optics without complex lens assembly. We review the various architectures of wide FOV metalenses, elucidate their fundamental operating principles and design trade-offs, and quantitatively evaluate and contrast their imaging performances. Emerging applications enabled by wide FOV metasurface optics are also discussed.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"033001 - 033001"},"PeriodicalIF":17.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42711953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingcong Xu, Biye Xie, Lihua Xu, Ming Deng, Weijin Chen, Heng Wei, Fengliang Dong, Jian Wang, C. Qiu, Shuang Zhang, Lin Chen
Abstract. Topological edge states (TESs), arising from topologically nontrivial phases, provide a powerful toolkit for the architecture design of photonic integrated circuits, since they are highly robust and strongly localized at the boundaries of topological insulators. It is highly desirable to be able to control TES transport in photonic implementations. Enhancing the coupling between the TESs in a finite-size optical lattice is capable of exchanging light energy between the boundaries of a topological lattice, hence facilitating the flexible control of TES transport. However, existing strategies have paid little attention to enhancing the coupling effects between the TESs through the finite-size effect. Here, we establish a bridge linking the interaction between the TESs in a finite-size optical lattice using the Landau–Zener model so as to provide an alternative way to modulate/control the transport of topological modes. We experimentally demonstrate an edge-to-edge topological transport with high efficiency at telecommunication wavelengths in silicon waveguide lattices. Our results may power up various potential applications for integrated topological photonics.
{"title":"Topological Landau–Zener nanophotonic circuits","authors":"Bingcong Xu, Biye Xie, Lihua Xu, Ming Deng, Weijin Chen, Heng Wei, Fengliang Dong, Jian Wang, C. Qiu, Shuang Zhang, Lin Chen","doi":"10.1117/1.AP.5.3.036005","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.036005","url":null,"abstract":"Abstract. Topological edge states (TESs), arising from topologically nontrivial phases, provide a powerful toolkit for the architecture design of photonic integrated circuits, since they are highly robust and strongly localized at the boundaries of topological insulators. It is highly desirable to be able to control TES transport in photonic implementations. Enhancing the coupling between the TESs in a finite-size optical lattice is capable of exchanging light energy between the boundaries of a topological lattice, hence facilitating the flexible control of TES transport. However, existing strategies have paid little attention to enhancing the coupling effects between the TESs through the finite-size effect. Here, we establish a bridge linking the interaction between the TESs in a finite-size optical lattice using the Landau–Zener model so as to provide an alternative way to modulate/control the transport of topological modes. We experimentally demonstrate an edge-to-edge topological transport with high efficiency at telecommunication wavelengths in silicon waveguide lattices. Our results may power up various potential applications for integrated topological photonics.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"036005 - 036005"},"PeriodicalIF":17.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45653497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. The article provides information about the image on the cover of Advanced Photonics, Volume 5, Issue 3.
摘要文章提供了关于《先进光子学》第5卷第3期封面上图像的信息。
{"title":"About the cover: Advanced Photonics Volume 5, Issue 3","authors":"Qian Cao, Zhuo Chen, Chong Zhang, Andy Chong","doi":"10.1117/1.AP.5.3.039901","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.039901","url":null,"abstract":"Abstract. The article provides information about the image on the cover of Advanced Photonics, Volume 5, Issue 3.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"039901 - 039901"},"PeriodicalIF":17.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63557293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Luo, Fang Bo, Y. Kong, Guoquan Zhang, Jingjun Xu
Abstract. Lithium niobate (LN) thin film has received much attention as an integrated photonic platform, due to its rich and great photoelectric characteristics, based on which various functional photonic devices, such as electro-optic modulators and nonlinear wavelength converters, have been demonstrated with impressive performance. As an important part of the integrated photonic system, the long-awaited laser and amplifier on the LN thin-film platform have made a series of breakthroughs and important progress recently. In this review paper, the research progress of lasers and amplifiers realized on lithium niobate thin film platforms is reviewed comprehensively. Specifically, the research progress on optically pumped lasers and amplifiers based on rare-earth ions doping of LN thin films is introduced. Some important parameters and existing limitations of the current development are discussed. In addition, the implementation scheme and research progress of electrically pumped lasers and amplifiers on LN thin-film platforms are summarized. The advantages and disadvantages of optically and electrically pumped LN thin film light sources are analyzed. Finally, the applications of LN thin film lasers and amplifiers and other on-chip functional devices are envisaged.
{"title":"Advances in lithium niobate thin-film lasers and amplifiers: a review","authors":"Q. Luo, Fang Bo, Y. Kong, Guoquan Zhang, Jingjun Xu","doi":"10.1117/1.AP.5.3.034002","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.034002","url":null,"abstract":"Abstract. Lithium niobate (LN) thin film has received much attention as an integrated photonic platform, due to its rich and great photoelectric characteristics, based on which various functional photonic devices, such as electro-optic modulators and nonlinear wavelength converters, have been demonstrated with impressive performance. As an important part of the integrated photonic system, the long-awaited laser and amplifier on the LN thin-film platform have made a series of breakthroughs and important progress recently. In this review paper, the research progress of lasers and amplifiers realized on lithium niobate thin film platforms is reviewed comprehensively. Specifically, the research progress on optically pumped lasers and amplifiers based on rare-earth ions doping of LN thin films is introduced. Some important parameters and existing limitations of the current development are discussed. In addition, the implementation scheme and research progress of electrically pumped lasers and amplifiers on LN thin-film platforms are summarized. The advantages and disadvantages of optically and electrically pumped LN thin film light sources are analyzed. Finally, the applications of LN thin film lasers and amplifiers and other on-chip functional devices are envisaged.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"034002 - 034002"},"PeriodicalIF":17.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44658677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jue Wang, Chengkun Cai, Feng Cui, Min Yang, Yize Liang, Jian Wang
Abstract. Explosive growth in demand for data traffic has prompted exploration of the spatial dimension of light waves, which provides a degree of freedom to expand data transmission capacity. Various techniques based on bulky optical devices have been proposed to tailor light waves in the spatial dimension. However, their inherent large size, extra loss, and precise alignment requirements make these techniques relatively difficult to implement in a compact and flexible way. In contrast, three-dimensional (3D) photonic chips with compact size and low loss provide a promising miniaturized candidate for tailoring light in the spatial dimension. Significantly, they are attractive for chip-assisted short-distance spatial mode optical interconnects that are challenging to bulky optics. Here, we propose and fabricate femtosecond laser-inscribed 3D photonic chips to tailor orbital angular momentum (OAM) modes in the spatial dimension. Various functions on the platform of 3D photonic chips are experimentally demonstrated, including the generation, (de)multiplexing, and exchange of OAM modes. Moreover, chip-chip and chip–fiber–chip short-distance optical interconnects using OAM modes are demonstrated in the experiment with favorable performance. This work paves the way to flexibly tailor light waves on 3D photonic chips and offers a compact solution for versatile optical interconnects and other emerging applications with spatial modes.
{"title":"Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects","authors":"Jue Wang, Chengkun Cai, Feng Cui, Min Yang, Yize Liang, Jian Wang","doi":"10.1117/1.AP.5.3.036004","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.036004","url":null,"abstract":"Abstract. Explosive growth in demand for data traffic has prompted exploration of the spatial dimension of light waves, which provides a degree of freedom to expand data transmission capacity. Various techniques based on bulky optical devices have been proposed to tailor light waves in the spatial dimension. However, their inherent large size, extra loss, and precise alignment requirements make these techniques relatively difficult to implement in a compact and flexible way. In contrast, three-dimensional (3D) photonic chips with compact size and low loss provide a promising miniaturized candidate for tailoring light in the spatial dimension. Significantly, they are attractive for chip-assisted short-distance spatial mode optical interconnects that are challenging to bulky optics. Here, we propose and fabricate femtosecond laser-inscribed 3D photonic chips to tailor orbital angular momentum (OAM) modes in the spatial dimension. Various functions on the platform of 3D photonic chips are experimentally demonstrated, including the generation, (de)multiplexing, and exchange of OAM modes. Moreover, chip-chip and chip–fiber–chip short-distance optical interconnects using OAM modes are demonstrated in the experiment with favorable performance. This work paves the way to flexibly tailor light waves on 3D photonic chips and offers a compact solution for versatile optical interconnects and other emerging applications with spatial modes.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"036004 - 036004"},"PeriodicalIF":17.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44808957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. The optical angular momentum is ubiquitous to the science of light, especially whenever the polarization state and the spatial distribution of the phase are involved, which are most often associated with the spin and orbital parts of the total angular momentum, respectively. Notably, the independent introduction of these two contributions to the total optical angular momentum was accompanied by suggestions regarding the possible detection of their mechanical effects using a torsion pendulum. Today, the classical and quantum mechanical aspects of spin and orbital angular momentum of light and their mutual coupling remain active research topics offering exciting perspectives for photonic technologies. Our brief historical overview shows how the torsion pendulum has accompanied scientific advances on mechanical effects based on the angular degrees of freedom of light since Beth’s pioneering contribution published in 1935.
{"title":"Torsion pendulum driven by the angular momentum of light: Beth’s legacy continues","authors":"E. Brasselet","doi":"10.1117/1.AP.5.3.034003","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.034003","url":null,"abstract":"Abstract. The optical angular momentum is ubiquitous to the science of light, especially whenever the polarization state and the spatial distribution of the phase are involved, which are most often associated with the spin and orbital parts of the total angular momentum, respectively. Notably, the independent introduction of these two contributions to the total optical angular momentum was accompanied by suggestions regarding the possible detection of their mechanical effects using a torsion pendulum. Today, the classical and quantum mechanical aspects of spin and orbital angular momentum of light and their mutual coupling remain active research topics offering exciting perspectives for photonic technologies. Our brief historical overview shows how the torsion pendulum has accompanied scientific advances on mechanical effects based on the angular degrees of freedom of light since Beth’s pioneering contribution published in 1935.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"034003 - 034003"},"PeriodicalIF":17.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49628100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}