Jingxin Zhang, Peixing Li, Ray C. C. Cheung, A. Wong, Jensen Li
Abstract. The recently proposed extreme-ultraviolet beams with time-varying orbital angular momentum (OAM) realized by high-harmonic generation provide extraordinary tools for quantum excitation control and particle manipulation. However, such an approach is not easily scalable to other frequency regimes. We design a space-time-coding digital metasurface operating in the microwave regime to experimentally generate time-varying OAM beams. Due to the flexible programmability of the metasurface, a higher-order twist in the envelope wavefront structure of time-varying OAM beams can be further designed as an additional degree of freedom. The time-varying OAM field patterns are dynamically mapped by developing a two-probe measurement technique. Our approach in combining the programmability of space-time-coding digital metasurfaces and the two-probe measurement technique provides a versatile platform for generating and observing time-varying OAM and other spatiotemporal excitations in general. The proposed time-varying OAM beams have application potentials in particle manipulation, time-division multiplexing, and information encryption.
{"title":"Generation of time-varying orbital angular momentum beams with space-time-coding digital metasurface","authors":"Jingxin Zhang, Peixing Li, Ray C. C. Cheung, A. Wong, Jensen Li","doi":"10.1117/1.AP.5.3.036001","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.036001","url":null,"abstract":"Abstract. The recently proposed extreme-ultraviolet beams with time-varying orbital angular momentum (OAM) realized by high-harmonic generation provide extraordinary tools for quantum excitation control and particle manipulation. However, such an approach is not easily scalable to other frequency regimes. We design a space-time-coding digital metasurface operating in the microwave regime to experimentally generate time-varying OAM beams. Due to the flexible programmability of the metasurface, a higher-order twist in the envelope wavefront structure of time-varying OAM beams can be further designed as an additional degree of freedom. The time-varying OAM field patterns are dynamically mapped by developing a two-probe measurement technique. Our approach in combining the programmability of space-time-coding digital metasurfaces and the two-probe measurement technique provides a versatile platform for generating and observing time-varying OAM and other spatiotemporal excitations in general. The proposed time-varying OAM beams have application potentials in particle manipulation, time-division multiplexing, and information encryption.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"036001 - 036001"},"PeriodicalIF":17.3,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41767971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Cao, Zhuo Chen, Chong Zhang, A. Chong, Q. Zhan
Abstract. Spatiotemporal optical vortex (STOV) pulses can carry transverse orbital angular momentum (OAM) that is perpendicular to the direction of pulse propagation. For a STOV pulse, its spatiotemporal profile can be significantly distorted due to unbalanced dispersive and diffractive phases. This may limit its use in many research applications, where a long interaction length and a tight confinement of the pulse are needed. The first demonstration of STOV pulse propagation through a few-mode optical fiber is presented. Both numerical and experimental analysis on the propagation of STOV pulse through a commercially available SMF-28 standard telecommunication fiber is performed. The spatiotemporal phase feature of the pulse can be well kept after the pulse propagates a few-meter length through the fiber even with bending. Further propagation of the pulse will result in a breakup of its spatiotemporal spiral phase structure due to an excessive amount of modal group delay dispersion. The stable and robust transmission of transverse photonic OAM through optical fiber may open new opportunities for transverse photonic OAM studies in telecommunications, OAM lasers, and nonlinear fiber-optical research.
{"title":"Propagation of transverse photonic orbital angular momentum through few-mode fiber","authors":"Qian Cao, Zhuo Chen, Chong Zhang, A. Chong, Q. Zhan","doi":"10.1117/1.AP.5.3.036002","DOIUrl":"https://doi.org/10.1117/1.AP.5.3.036002","url":null,"abstract":"Abstract. Spatiotemporal optical vortex (STOV) pulses can carry transverse orbital angular momentum (OAM) that is perpendicular to the direction of pulse propagation. For a STOV pulse, its spatiotemporal profile can be significantly distorted due to unbalanced dispersive and diffractive phases. This may limit its use in many research applications, where a long interaction length and a tight confinement of the pulse are needed. The first demonstration of STOV pulse propagation through a few-mode optical fiber is presented. Both numerical and experimental analysis on the propagation of STOV pulse through a commercially available SMF-28 standard telecommunication fiber is performed. The spatiotemporal phase feature of the pulse can be well kept after the pulse propagates a few-meter length through the fiber even with bending. Further propagation of the pulse will result in a breakup of its spatiotemporal spiral phase structure due to an excessive amount of modal group delay dispersion. The stable and robust transmission of transverse photonic OAM through optical fiber may open new opportunities for transverse photonic OAM studies in telecommunications, OAM lasers, and nonlinear fiber-optical research.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"036002 - 036002"},"PeriodicalIF":17.3,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44191807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. Free-space optical information transfer through diffusive media is critical in many applications, such as biomedical devices and optical communication, but remains challenging due to random, unknown perturbations in the optical path. We demonstrate an optical diffractive decoder with electronic encoding to accurately transfer the optical information of interest, corresponding to, e.g., any arbitrary input object or message, through unknown random phase diffusers along the optical path. This hybrid electronic-optical model, trained using supervised learning, comprises a convolutional neural network-based electronic encoder and successive passive diffractive layers that are jointly optimized. After their joint training using deep learning, our hybrid model can transfer optical information through unknown phase diffusers, demonstrating generalization to new random diffusers never seen before. The resulting electronic-encoder and optical-decoder model was experimentally validated using a 3D-printed diffractive network that axially spans <70λ, where λ = 0.75 mm is the illumination wavelength in the terahertz spectrum, carrying the desired optical information through random unknown diffusers. The presented framework can be physically scaled to operate at different parts of the electromagnetic spectrum, without retraining its components, and would offer low-power and compact solutions for optical information transfer in free space through unknown random diffusive media.
{"title":"Optical information transfer through random unknown diffusers using electronic encoding and diffractive decoding","authors":"Yuhang Li, Tianyi Gan, Bijie Bai, Çaǧatay Işıl, M. Jarrahi, Aydogan Ozcan","doi":"10.1117/1.AP.5.4.046009","DOIUrl":"https://doi.org/10.1117/1.AP.5.4.046009","url":null,"abstract":"Abstract. Free-space optical information transfer through diffusive media is critical in many applications, such as biomedical devices and optical communication, but remains challenging due to random, unknown perturbations in the optical path. We demonstrate an optical diffractive decoder with electronic encoding to accurately transfer the optical information of interest, corresponding to, e.g., any arbitrary input object or message, through unknown random phase diffusers along the optical path. This hybrid electronic-optical model, trained using supervised learning, comprises a convolutional neural network-based electronic encoder and successive passive diffractive layers that are jointly optimized. After their joint training using deep learning, our hybrid model can transfer optical information through unknown phase diffusers, demonstrating generalization to new random diffusers never seen before. The resulting electronic-encoder and optical-decoder model was experimentally validated using a 3D-printed diffractive network that axially spans <70λ, where λ = 0.75 mm is the illumination wavelength in the terahertz spectrum, carrying the desired optical information through random unknown diffusers. The presented framework can be physically scaled to operate at different parts of the electromagnetic spectrum, without retraining its components, and would offer low-power and compact solutions for optical information transfer in free space through unknown random diffusive media.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"046009 - 046009"},"PeriodicalIF":17.3,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48084811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haoyang Zhou, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Z. Tao, Qiong He, Lei Zhou
Abstract. Dynamically controlling terahertz (THz) waves with an ultracompact device is highly desired, but previously realized tunable devices are bulky in size and/or exhibit limited light-tuning functionalities. Here, we experimentally demonstrate dynamic modulation on THz waves with a dielectric metasurface in mode-selective or mode-unselective manners through pumping the system at different optical wavelengths. Quasi-normal-mode theory reveals that the physics is governed by the spatial overlap between wave functions of resonant modes and regions inside resonators perturbed by pump laser excitation at different wavelengths. We further design/fabricate a dielectric metasurface and experimentally demonstrate that it can dynamically control the polarization state of incident THz waves, dictated by the strength and wavelength of the pumping light. We finally numerically demonstrate pump wavelength-controlled optical information encryption based on a carefully designed dielectric metasurface. Our studies reveal that pump light wavelength can be a new external knob to dynamically control THz waves, which may inspire many tunable metadevices with diversified functionalities.
{"title":"Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves","authors":"Haoyang Zhou, Sheng Zhang, Shunjia Wang, Yao Yao, Qingnan Cai, Jing Lin, Xiaoying Zheng, Zhuo Wang, Z. Tao, Qiong He, Lei Zhou","doi":"10.1117/1.AP.5.2.026005","DOIUrl":"https://doi.org/10.1117/1.AP.5.2.026005","url":null,"abstract":"Abstract. Dynamically controlling terahertz (THz) waves with an ultracompact device is highly desired, but previously realized tunable devices are bulky in size and/or exhibit limited light-tuning functionalities. Here, we experimentally demonstrate dynamic modulation on THz waves with a dielectric metasurface in mode-selective or mode-unselective manners through pumping the system at different optical wavelengths. Quasi-normal-mode theory reveals that the physics is governed by the spatial overlap between wave functions of resonant modes and regions inside resonators perturbed by pump laser excitation at different wavelengths. We further design/fabricate a dielectric metasurface and experimentally demonstrate that it can dynamically control the polarization state of incident THz waves, dictated by the strength and wavelength of the pumping light. We finally numerically demonstrate pump wavelength-controlled optical information encryption based on a carefully designed dielectric metasurface. Our studies reveal that pump light wavelength can be a new external knob to dynamically control THz waves, which may inspire many tunable metadevices with diversified functionalities.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"026005 - 026005"},"PeriodicalIF":17.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44986579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. The article provides information about the image on the cover of Advanced Photonics, Volume 5, Issue 2.
摘要这篇文章在《高级光子学》第5卷第2期的封面上提供了有关该图像的信息。
{"title":"About the cover: Advanced Photonics Volume 5, Issue 2","authors":"","doi":"10.1117/1.ap.5.2.029901","DOIUrl":"https://doi.org/10.1117/1.ap.5.2.029901","url":null,"abstract":"Abstract. The article provides information about the image on the cover of Advanced Photonics, Volume 5, Issue 2.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"029901 - 029901"},"PeriodicalIF":17.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45554283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. On-demand modification of the electronic band structures of high-mobility two-dimensional (2D) materials is of great interest for various applications that require rapid tuning of electrical and optical responses of solid-state devices. Although electrically tunable superlattice (SL) potentials have been proposed for band structure engineering of the Dirac electrons in graphene, the ultimate goal of engineering emergent quasiparticle excitations that can hybridize with light has not been achieved. We show that an extreme modulation of one-dimensional (1D) SL potentials in monolayer graphene produces ladder-like electronic energy levels near the Fermi surface, resulting in optical conductivity dominated by intersubband transitions (ISBTs). A specific and experimentally realizable platform comprising hBN-encapsulated graphene on top of a 1D periodic metagate and a second unpatterned gate is shown to produce strongly modulated electrostatic potentials. We find that Dirac electrons with large momenta perpendicular to the modulation direction are waveguided via total internal reflections off the electrostatic potential, resulting in flat subbands with nearly equispaced energy levels. The predicted ultrastrong coupling of surface plasmons to electrically controlled ISBTs is responsible for emergent polaritonic quasiparticles that can be optically probed. Our study opens an avenue for exploring emergent polaritons in 2D materials with gate-tunable electronic band structures.
{"title":"Emergence of tunable intersubband-plasmon-polaritons in graphene superlattices","authors":"Minwoo Jung, G. Shvets","doi":"10.1117/1.AP.5.2.026004","DOIUrl":"https://doi.org/10.1117/1.AP.5.2.026004","url":null,"abstract":"Abstract. On-demand modification of the electronic band structures of high-mobility two-dimensional (2D) materials is of great interest for various applications that require rapid tuning of electrical and optical responses of solid-state devices. Although electrically tunable superlattice (SL) potentials have been proposed for band structure engineering of the Dirac electrons in graphene, the ultimate goal of engineering emergent quasiparticle excitations that can hybridize with light has not been achieved. We show that an extreme modulation of one-dimensional (1D) SL potentials in monolayer graphene produces ladder-like electronic energy levels near the Fermi surface, resulting in optical conductivity dominated by intersubband transitions (ISBTs). A specific and experimentally realizable platform comprising hBN-encapsulated graphene on top of a 1D periodic metagate and a second unpatterned gate is shown to produce strongly modulated electrostatic potentials. We find that Dirac electrons with large momenta perpendicular to the modulation direction are waveguided via total internal reflections off the electrostatic potential, resulting in flat subbands with nearly equispaced energy levels. The predicted ultrastrong coupling of surface plasmons to electrically controlled ISBTs is responsible for emergent polaritonic quasiparticles that can be optically probed. Our study opens an avenue for exploring emergent polaritons in 2D materials with gate-tunable electronic band structures.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"026004 - 026004"},"PeriodicalIF":17.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41576734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. Quantum state sharing, an important protocol in quantum information, can enable secure state distribution and reconstruction when part of the information is lost. In (k, n) threshold quantum state sharing, the secret state is encoded into n shares and then distributed to n players. The secret state can be reconstructed by any k players (k > n / 2), while the rest of the players get nothing. In the continuous variable regime, the implementation of quantum state sharing needs the feedforward technique, which involves optic-electro and electro-optic conversions. These conversions limit the bandwidth of the quantum state sharing. Here, to avoid the optic-electro and electro-optic conversions, we experimentally demonstrate (2, 3) threshold deterministic all-optical quantum state sharing. A low-noise phase-insensitive amplifier based on the four-wave mixing process is utilized to replace the feedforward technique. We experimentally demonstrate that any two of three players can cooperate to implement the reconstruction of the secret state, while the rest of the players cannot get any information. Our results provide an all-optical platform to implement arbitrary (k, n) threshold deterministic all-optical quantum state sharing and pave the way to construct the all-optical broadband quantum network.
摘要量子状态共享是量子信息中的一个重要协议,当部分信息丢失时,它可以实现安全的状态分配和重建。在(k,n)阈值量子态共享中,秘密状态被编码为n个共享,然后分发给n个参与者。秘密状态可以由任意k个参与者(k > n / 2) ,而其他玩家一无所获。在连续变量系统中,量子态共享的实现需要前馈技术,该技术涉及光电转换和电光转换。这些转换限制了量子态共享的带宽。在这里,为了避免光电转换和电光转换,我们实验证明了(2,3)阈值确定性全光量子态共享。采用基于四波混频过程的低噪声相位不敏感放大器来代替前馈技术。我们通过实验证明,三个参与者中的任何两个都可以合作实现秘密状态的重建,而其他参与者则无法获得任何信息。我们的结果为实现任意(k,n)阈值确定性全光量子态共享提供了一个全光平台,并为构建全光宽带量子网络铺平了道路。
{"title":"Deterministic all-optical quantum state sharing","authors":"Ying-Xuan Chen, Qiqi Zhu, Xutong Wang, Yanbo Lou, Shengshuai Liu, J. Jing","doi":"10.1117/1.AP.5.2.026006","DOIUrl":"https://doi.org/10.1117/1.AP.5.2.026006","url":null,"abstract":"Abstract. Quantum state sharing, an important protocol in quantum information, can enable secure state distribution and reconstruction when part of the information is lost. In (k, n) threshold quantum state sharing, the secret state is encoded into n shares and then distributed to n players. The secret state can be reconstructed by any k players (k > n / 2), while the rest of the players get nothing. In the continuous variable regime, the implementation of quantum state sharing needs the feedforward technique, which involves optic-electro and electro-optic conversions. These conversions limit the bandwidth of the quantum state sharing. Here, to avoid the optic-electro and electro-optic conversions, we experimentally demonstrate (2, 3) threshold deterministic all-optical quantum state sharing. A low-noise phase-insensitive amplifier based on the four-wave mixing process is utilized to replace the feedforward technique. We experimentally demonstrate that any two of three players can cooperate to implement the reconstruction of the secret state, while the rest of the players cannot get any information. Our results provide an all-optical platform to implement arbitrary (k, n) threshold deterministic all-optical quantum state sharing and pave the way to construct the all-optical broadband quantum network.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"026006 - 026006"},"PeriodicalIF":17.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47172425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilin He, Yunhua Yao, D. Qi, Yuping He, Zhen-Jian Huang, Pengpeng Ding, C. Jin, Chonglei Zhang, L. Deng, K. Shi, Zhenrong Sun, Xiaocong Yuan, Shian Zhang
Abstract. Various super-resolution microscopy techniques have been presented to explore fine structures of biological specimens. However, the super-resolution capability is often achieved at the expense of reducing imaging speed by either point scanning or multiframe computation. The contradiction between spatial resolution and imaging speed seriously hampers the observation of high-speed dynamics of fine structures. To overcome this contradiction, here we propose and demonstrate a temporal compressive super-resolution microscopy (TCSRM) technique. This technique is to merge an enhanced temporal compressive microscopy and a deep-learning-based super-resolution image reconstruction, where the enhanced temporal compressive microscopy is utilized to improve the imaging speed, and the deep-learning-based super-resolution image reconstruction is used to realize the resolution enhancement. The high-speed super-resolution imaging ability of TCSRM with a frame rate of 1200 frames per second (fps) and spatial resolution of 100 nm is experimentally demonstrated by capturing the flowing fluorescent beads in microfluidic chip. Given the outstanding imaging performance with high-speed super-resolution, TCSRM provides a desired tool for the studies of high-speed dynamical behaviors in fine structures, especially in the biomedical field.
{"title":"Temporal compressive super-resolution microscopy at frame rate of 1200 frames per second and spatial resolution of 100 nm","authors":"Yilin He, Yunhua Yao, D. Qi, Yuping He, Zhen-Jian Huang, Pengpeng Ding, C. Jin, Chonglei Zhang, L. Deng, K. Shi, Zhenrong Sun, Xiaocong Yuan, Shian Zhang","doi":"10.1117/1.AP.5.2.026003","DOIUrl":"https://doi.org/10.1117/1.AP.5.2.026003","url":null,"abstract":"Abstract. Various super-resolution microscopy techniques have been presented to explore fine structures of biological specimens. However, the super-resolution capability is often achieved at the expense of reducing imaging speed by either point scanning or multiframe computation. The contradiction between spatial resolution and imaging speed seriously hampers the observation of high-speed dynamics of fine structures. To overcome this contradiction, here we propose and demonstrate a temporal compressive super-resolution microscopy (TCSRM) technique. This technique is to merge an enhanced temporal compressive microscopy and a deep-learning-based super-resolution image reconstruction, where the enhanced temporal compressive microscopy is utilized to improve the imaging speed, and the deep-learning-based super-resolution image reconstruction is used to realize the resolution enhancement. The high-speed super-resolution imaging ability of TCSRM with a frame rate of 1200 frames per second (fps) and spatial resolution of 100 nm is experimentally demonstrated by capturing the flowing fluorescent beads in microfluidic chip. Given the outstanding imaging performance with high-speed super-resolution, TCSRM provides a desired tool for the studies of high-speed dynamical behaviors in fine structures, especially in the biomedical field.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"026003 - 026003"},"PeriodicalIF":17.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44847988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}