首页 > 最新文献

Advanced Photonics最新文献

英文 中文
Quantum dots for optoelectronics 用于光电子学的量子点
IF 17.3 1区 物理与天体物理 Q1 Engineering Pub Date : 2023-12-06 DOI: 10.1117/1.ap.5.6.060503
Hancong Li, Qiming Peng, Xiulai Xu, Jianpu Wang
{"title":"Quantum dots for optoelectronics","authors":"Hancong Li, Qiming Peng, Xiulai Xu, Jianpu Wang","doi":"10.1117/1.ap.5.6.060503","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.060503","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surfing the metasurface: a conversation with Din Ping Tsai 冲浪元面:与 Din Ping Tsai 的对话
IF 17.3 1区 物理与天体物理 Q1 Engineering Pub Date : 2023-11-21 DOI: 10.1117/1.ap.5.6.060502
Guoqing Chang
{"title":"Surfing the metasurface: a conversation with Din Ping Tsai","authors":"Guoqing Chang","doi":"10.1117/1.ap.5.6.060502","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.060502","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139251116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear chiral metaphotonics: a perspective 非线性手性变形学:一个视角
1区 物理与天体物理 Q1 Engineering Pub Date : 2023-11-08 DOI: 10.1117/1.ap.5.6.064001
Kirill Koshelev, Pavel Tonkaev, Yuri Kivshar
We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response. We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces, including surface plasmon resonances, Mie resonances, lattice-guided modes, and bound states in the continuum. We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.
本文综述了为实现强非线性热响应而设计的光子结构的物理特性及其应用。我们非常关注最近在金属和介电亚波长结构和超表面中利用不同类型的光学共振的策略,包括表面等离子体共振、Mie共振、晶格引导模式和连续体中的束缚态。我们总结了早期的结果,并讨论了实现大圆二色性与高效率非线性谐波产生相结合的最新进展。
{"title":"Nonlinear chiral metaphotonics: a perspective","authors":"Kirill Koshelev, Pavel Tonkaev, Yuri Kivshar","doi":"10.1117/1.ap.5.6.064001","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.064001","url":null,"abstract":"We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response. We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces, including surface plasmon resonances, Mie resonances, lattice-guided modes, and bound states in the continuum. We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shining the shortest flashes of light on the secret life of electrons 用最短的闪光照射电子的秘密生命
1区 物理与天体物理 Q1 Engineering Pub Date : 2023-11-06 DOI: 10.1117/1.ap.5.6.060501
Margarita Khokhlova, Emilio Pisanty, Amelle Zaïr
The Nobel Prize in Physics 2023 was awarded to Pierre Agostini, Ferenc Krausz and Anne L’Huillier for “experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter.” We review the history of attosecond physics, recount the laureates’ achievements and their place within the field, discuss the breakthroughs made possible by the creation of attosecond pulses, and look to the future advances in attoscience.
2023年诺贝尔物理学奖授予皮埃尔·阿戈斯蒂尼、费伦茨·克劳斯和安妮·惠里耶,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”。我们回顾了阿秒物理学的历史,叙述了获奖者的成就及其在该领域的地位,讨论了创造阿秒脉冲所带来的突破,并展望了阿秒物理学的未来发展。
{"title":"Shining the shortest flashes of light on the secret life of electrons","authors":"Margarita Khokhlova, Emilio Pisanty, Amelle Zaïr","doi":"10.1117/1.ap.5.6.060501","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.060501","url":null,"abstract":"The Nobel Prize in Physics 2023 was awarded to Pierre Agostini, Ferenc Krausz and Anne L’Huillier for “experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter.” We review the history of attosecond physics, recount the laureates’ achievements and their place within the field, discuss the breakthroughs made possible by the creation of attosecond pulses, and look to the future advances in attoscience.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135637377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Compact multi-mode silicon-nitride micro-ring resonator with low loss 紧凑的低损耗多模氮化硅微环谐振器
1区 物理与天体物理 Q1 Engineering Pub Date : 2023-11-01 DOI: 10.1117/1.ap.5.5.050503
Kaixuan Ye, David Marpaung
Advanced Photonics, co-published by SPIE and Chinese Laser Press, is a highly selective, Gold Open Access, international journal publishing innovative research in all areas of optics and photonics, including fundamental and applied research.
由SPIE和中国激光出版社联合出版的《先进光子学》是一本高选择性、黄金开放获取的国际期刊,发表光学和光子学各个领域的创新研究,包括基础研究和应用研究。
{"title":"Compact multi-mode silicon-nitride micro-ring resonator with low loss","authors":"Kaixuan Ye, David Marpaung","doi":"10.1117/1.ap.5.5.050503","DOIUrl":"https://doi.org/10.1117/1.ap.5.5.050503","url":null,"abstract":"<i>Advanced Photonics</i>, co-published by SPIE and Chinese Laser Press, is a highly selective, Gold Open Access, international journal publishing innovative research in all areas of optics and photonics, including fundamental and applied research.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135321461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-chip digitally tunable positive/negative dispersion controller using bidirectional chirped multimode waveguide gratings 使用双向啁啾多模波导光栅的片上数字可调正/负色散控制器
IF 17.3 1区 物理与天体物理 Q1 Engineering Pub Date : 2023-11-01 DOI: 10.1117/1.AP.5.6.066005
Shujun Liu, Ruitao Ma, Zejie Yu, Yaocheng Shi, Daoxin Dai
Abstract. A silicon-based digitally tunable positive/negative dispersion controller (DC) is proposed and realized for the first time using the cascaded bidirectional chirped multimode waveguide gratings (CMWGs), achieving positive and negative dispersion by switching the light propagation direction. A 1  ×  2 Mach–Zehnder switch (MZS) and a 2  ×  1 MZS are placed before and after to route the light path for realizing positive/negative switching. The device has Q stages of identical bidirectional CMWGs with a binary sequence. Thus the digital tuning is convenient and scalable, and the total dispersion accumulated by all the stages can be tuned digitally from −  (  2Q  −  1  )  D0 to   (  2Q  −  1  )  D0 with a step of D0 by controlling the switching states of all 2  ×  2 MZSs, where D0 is the dispersion provided by a single bidirectional CMWG unit. Finally, a digitally tunable positive/negative DC with Q  =  4 is designed and fabricated. These CMWGs are designed with a 4-mm-long grating section, enabling the dispersion D0 of about 4.16  ps  /  nm in a 20-nm-wide bandwidth. The dispersion is tuned from −61.53 to 63.77  ps  /  nm by switching all MZSs appropriately, and the corresponding group delay is varied from −1021 to 1037 ps.
摘要。利用级联双向啁啾多模波导光栅(CMWG),首次提出并实现了硅基数字可调正/负色散控制器(DC),通过切换光传播方向实现正/负色散。在实现正/负色散切换的光路路径上,前后放置了一个 1 × 2 马赫-泽恩德开关(MZS)和一个 2 × 1 MZS。该装置有 Q 级相同的双向 CMWG,具有二进制序列。通过控制所有 2 × 2 MZS 的开关状态,所有级累积的总色散可以从 - ( 2Q - 1 ) D0 到 ( 2Q - 1 ) D0 以 D0 为步长进行数字调整,其中 D0 是单个双向 CMWG 单元提供的色散。最后,设计并制造出了 Q = 4 的数字可调正/负直流。这些 CMWG 具有 4 毫米长的光栅部分,可在 20 纳米宽的带宽内实现约 4.16 ps / nm 的色散 D0。通过适当切换所有 MZS,色散可在 -61.53 至 63.77 ps / nm 之间调整,相应的群延迟可在 -1021 至 1037 ps 之间变化。
{"title":"On-chip digitally tunable positive/negative dispersion controller using bidirectional chirped multimode waveguide gratings","authors":"Shujun Liu, Ruitao Ma, Zejie Yu, Yaocheng Shi, Daoxin Dai","doi":"10.1117/1.AP.5.6.066005","DOIUrl":"https://doi.org/10.1117/1.AP.5.6.066005","url":null,"abstract":"Abstract. A silicon-based digitally tunable positive/negative dispersion controller (DC) is proposed and realized for the first time using the cascaded bidirectional chirped multimode waveguide gratings (CMWGs), achieving positive and negative dispersion by switching the light propagation direction. A 1  ×  2 Mach–Zehnder switch (MZS) and a 2  ×  1 MZS are placed before and after to route the light path for realizing positive/negative switching. The device has Q stages of identical bidirectional CMWGs with a binary sequence. Thus the digital tuning is convenient and scalable, and the total dispersion accumulated by all the stages can be tuned digitally from −  (  2Q  −  1  )  D0 to   (  2Q  −  1  )  D0 with a step of D0 by controlling the switching states of all 2  ×  2 MZSs, where D0 is the dispersion provided by a single bidirectional CMWG unit. Finally, a digitally tunable positive/negative DC with Q  =  4 is designed and fabricated. These CMWGs are designed with a 4-mm-long grating section, enabling the dispersion D0 of about 4.16  ps  /  nm in a 20-nm-wide bandwidth. The dispersion is tuned from −61.53 to 63.77  ps  /  nm by switching all MZSs appropriately, and the corresponding group delay is varied from −1021 to 1037 ps.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139293781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
About the cover: Advanced Photonics Volume 5, Issue 5 关于封面:先进光子学卷5,第5期
1区 物理与天体物理 Q1 Engineering Pub Date : 2023-10-28 DOI: 10.1117/1.ap.5.5.059901
{"title":"About the cover: Advanced Photonics Volume 5, Issue 5","authors":"","doi":"10.1117/1.ap.5.5.059901","DOIUrl":"https://doi.org/10.1117/1.ap.5.5.059901","url":null,"abstract":"","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136161041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolution enhancement with deblurring by pixel reassignment 通过像素重新分配来消除模糊的分辨率增强
1区 物理与天体物理 Q1 Engineering Pub Date : 2023-10-27 DOI: 10.1117/1.ap.5.6.066004
Bingying Zhao, Jerome Mertz
Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores, even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.
提高荧光显微镜的空间分辨率一直是成像界面临的挑战。为了应对这一挑战,已经采取了各种方法,从仪器开发到图像后处理。后者的一个例子是反褶积,其中图像是基于显微镜点扩散函数的知识进行数字去模糊。然而,反褶积很容易导致噪声放大伪影。通过后处理去模糊也可能导致负或未能保持样本和图像之间的局部线性。我们在这里描述了一个简单的图像去模糊算法,基于像素重新分配,固有地避免了这样的工件,可以应用于一般的显微镜模式和荧光团类型。我们的算法有助于区分附近的荧光团,即使这些荧光团之间的距离小于传统的分辨率限制,有助于促进,例如,在密集样品中应用单分子定位显微镜。我们证明了该算法在各种成像条件下的通用性和性能。
{"title":"Resolution enhancement with deblurring by pixel reassignment","authors":"Bingying Zhao, Jerome Mertz","doi":"10.1117/1.ap.5.6.066004","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.066004","url":null,"abstract":"Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function. However, deconvolution can easily lead to noise-amplification artifacts. Deblurring by postprocessing can also lead to negativities or fail to conserve local linearity between sample and image. We describe here a simple image deblurring algorithm based on pixel reassignment that inherently avoids such artifacts and can be applied to general microscope modalities and fluorophore types. Our algorithm helps distinguish nearby fluorophores, even when these are separated by distances smaller than the conventional resolution limit, helping facilitate, for example, the application of single-molecule localization microscopy in dense samples. We demonstrate the versatility and performance of our algorithm under a variety of imaging conditions.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136235000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing the magic of light: spatial coherence instructed swin transformer for universal holographic imaging 利用光的魔力:用于通用全息成像的空间相干指示旋转变压器
1区 物理与天体物理 Q1 Engineering Pub Date : 2023-10-25 DOI: 10.1117/1.ap.5.6.066003
Xin Tong, Renjun Xu, Pengfei Xu, Zishuai Zeng, Shuxi Liu, Daomu Zhao
Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments. The existing deep-learning methods for holographic imaging often depend solely on the specific condition based on the given data distributions, thus hindering their generalization across multiple scenes. One critical problem is how to guarantee the alignment between any given downstream tasks and pretrained models. We analyze the physical mechanism of image degradation caused by turbulence and innovatively propose a swin transformer-based method, termed train-with-coherence-swin (TWC-Swin) transformer, which uses spatial coherence (SC) as an adaptable physical prior information to precisely align image restoration tasks in the arbitrary turbulent scene. The light-processing system (LPR) we designed enables manipulation of SC and simulation of any turbulence. Qualitative and quantitative evaluations demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and realizes image restoration under various turbulences, which suggests its robustness, powerful generalization capabilities, and adaptability to unknown environments. Our research reveals the significance of physical prior information in the optical intersection and provides an effective solution for model-to-tasks alignment schemes, which will help to unlock the full potential of deep learning for all-weather optical imaging across terrestrial, marine, and aerial domains.
当面对动态环境引入的实时干扰时,全息成像提出了重大挑战。现有的全息成像深度学习方法往往仅仅依赖于基于给定数据分布的特定条件,从而阻碍了它们在多场景中的泛化。一个关键的问题是如何保证任何给定的下游任务和预训练模型之间的一致性。本文分析了湍流引起图像退化的物理机制,并创新地提出了一种基于swin变压器的方法,即列车-相干-swin (TWC-Swin)变压器,该方法利用空间相干(SC)作为自适应的物理先验信息,在任意湍流场景中精确对齐图像恢复任务。我们设计的光处理系统(LPR)可以操纵SC和模拟任何湍流。定性和定量评价表明,TWC-Swin方法优于传统的卷积框架,能够实现各种湍流下的图像恢复,具有鲁棒性、强大的泛化能力和对未知环境的适应性。我们的研究揭示了物理先验信息在光学交叉中的重要性,并为模型-任务对齐方案提供了有效的解决方案,这将有助于释放深度学习在陆地、海洋和空中领域的全天候光学成像的全部潜力。
{"title":"Harnessing the magic of light: spatial coherence instructed swin transformer for universal holographic imaging","authors":"Xin Tong, Renjun Xu, Pengfei Xu, Zishuai Zeng, Shuxi Liu, Daomu Zhao","doi":"10.1117/1.ap.5.6.066003","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.066003","url":null,"abstract":"Holographic imaging poses significant challenges when facing real-time disturbances introduced by dynamic environments. The existing deep-learning methods for holographic imaging often depend solely on the specific condition based on the given data distributions, thus hindering their generalization across multiple scenes. One critical problem is how to guarantee the alignment between any given downstream tasks and pretrained models. We analyze the physical mechanism of image degradation caused by turbulence and innovatively propose a swin transformer-based method, termed train-with-coherence-swin (TWC-Swin) transformer, which uses spatial coherence (SC) as an adaptable physical prior information to precisely align image restoration tasks in the arbitrary turbulent scene. The light-processing system (LPR) we designed enables manipulation of SC and simulation of any turbulence. Qualitative and quantitative evaluations demonstrate that the TWC-Swin method presents superiority over traditional convolution frameworks and realizes image restoration under various turbulences, which suggests its robustness, powerful generalization capabilities, and adaptability to unknown environments. Our research reveals the significance of physical prior information in the optical intersection and provides an effective solution for model-to-tasks alignment schemes, which will help to unlock the full potential of deep learning for all-weather optical imaging across terrestrial, marine, and aerial domains.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated terahertz vortex beam emitter for rotating target detection 用于旋转目标探测的集成太赫兹涡旋光束发射器
1区 物理与天体物理 Q1 Engineering Pub Date : 2023-10-19 DOI: 10.1117/1.ap.5.6.066002
Jingya Xie, Jun Qian, Tengjiao Wang, Linjie Zhou, Xiaofei Zang, Lin Chen, Yiming Zhu, Songlin Zhuang
We propose a terahertz (THz) vortex emitter that utilizes a high-resistance silicon resonator to generate vortex beams with various topological charges. Addressing the challenge of double circular polarization superposition resulting from the high refractive index contrast, we regulate the transverse spin state through a newly designed second-order grating partially etched on the waveguide’s top side. The reflected wave can be received directly by a linearly polarized antenna, simplifying the process. Benefiting from the tuning feature, a joint detection method involving positive and negative topological charges identifies and detects rotational Doppler effects amid robust micro-Doppler interference signals. This emitter can be used for the rotational velocity measurement of an on-axis spinning object, achieving an impressive maximum speed error rate of ∼2 % . This approach holds promise for the future development of THz vortex beam applications in radar target detection and countermeasure systems, given its low cost and potential for mass production.
我们提出了一种太赫兹(THz)涡旋发射器,它利用高电阻硅谐振器产生具有各种拓扑电荷的涡旋光束。为了解决高折射率对比度导致的双圆偏振叠加问题,我们通过在波导顶部部分刻蚀的二阶光栅来调节横向自旋状态。反射波可以直接被线极化天线接收,简化了过程。利用调谐特性,一种涉及正负拓扑电荷的联合检测方法在鲁棒微多普勒干扰信号中识别和检测旋转多普勒效应。该发射器可用于轴上旋转物体的旋转速度测量,实现令人印象深刻的最大速度错误率为~ 2%。鉴于其低成本和大规模生产的潜力,该方法为太赫兹涡旋光束在雷达目标探测和对抗系统中的应用的未来发展提供了希望。
{"title":"Integrated terahertz vortex beam emitter for rotating target detection","authors":"Jingya Xie, Jun Qian, Tengjiao Wang, Linjie Zhou, Xiaofei Zang, Lin Chen, Yiming Zhu, Songlin Zhuang","doi":"10.1117/1.ap.5.6.066002","DOIUrl":"https://doi.org/10.1117/1.ap.5.6.066002","url":null,"abstract":"We propose a terahertz (THz) vortex emitter that utilizes a high-resistance silicon resonator to generate vortex beams with various topological charges. Addressing the challenge of double circular polarization superposition resulting from the high refractive index contrast, we regulate the transverse spin state through a newly designed second-order grating partially etched on the waveguide’s top side. The reflected wave can be received directly by a linearly polarized antenna, simplifying the process. Benefiting from the tuning feature, a joint detection method involving positive and negative topological charges identifies and detects rotational Doppler effects amid robust micro-Doppler interference signals. This emitter can be used for the rotational velocity measurement of an on-axis spinning object, achieving an impressive maximum speed error rate of ∼2 % . This approach holds promise for the future development of THz vortex beam applications in radar target detection and countermeasure systems, given its low cost and potential for mass production.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135729958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1