首页 > 最新文献

Digital Zone Jurnal Teknologi Informasi dan Komunikasi最新文献

英文 中文
Sistem informasi marketplace produk usaha mikro kecil menengah (umkm)
Pub Date : 2022-09-01 DOI: 10.32502/digital.v5i2.4986
Silfia Ardilla, Novri Hadinata
Universitas bina darma merupakan salah satu perguruan tinggi swasta yang memiliki program untuk mendorong mahasiswa berwirausaha untuk menghasihkan produk baru. Namun dalam memasarkan produk UMKM masi dengan cara konvensional yaitu dengan menawarkan produk hanya sebatas pembeli hanya bisa dijangkau secara offline dan melalui media seperti Instagram atau Whatsapp. Sedangkan untuk menjual produk, biasanya mahasiswa dapat mendirikan stand atau menjual produknya saat diadakan suatu kegiatan/bazzar. Dari permasalaham tersebut, Maka dibangunlah Sistem Informasi Marketplace untuk dapat membantu mahasiswa dalam memasarkan produk UMKM secara online dan cepat. Sistem Informasi Marketplace ini tidak hanya untuk kalangan mahasiswa saja, melainkan untuk semua pelaku usaha yang memiliki bisnis UMKM dapat mendaftarkan diri di website Marketplace, sehingga jangkauan pasar menjadi meningkat dan pengguna menjadi lebih luas. Pada penelitian ini digunakan platform CMS Wordpress untuk membangun sebuah website Marketplace. Penelitian ini menggunakan metode Rapid Application Development (RAD) guna mempermudah serta dapat mempercepat proses pengembangan website Marketplace.
bina darma大学是一所私立大学,该大学计划鼓励有创业精神的学生创造新产品。但在传统的销售中,UMKM masi产品的营销方式是,只有用户才能离线和通过Instagram或Whatsapp等媒体获得。至于销售产品,学生通常可以在举办活动/巴扎时建立摊位或销售产品。从主题,市场信息系统建立起来,以帮助学生在网上快速销售UMKM产品。市场信息系统不仅适用于学生,也适用于所有拥有UMKM业务的企业家,他们可以在市场网站上注册,从而扩大市场范围,更广泛地扩大用户。在这项研究中,CMS Wordpress平台被用来建立一个市场网站。本研究采用快速应用开发(RAD)方法,简化和加速网站市场发展的进程。
{"title":"Sistem informasi marketplace produk usaha mikro kecil menengah (umkm)","authors":"Silfia Ardilla, Novri Hadinata","doi":"10.32502/digital.v5i2.4986","DOIUrl":"https://doi.org/10.32502/digital.v5i2.4986","url":null,"abstract":"Universitas bina darma merupakan salah satu perguruan tinggi swasta yang memiliki program untuk mendorong mahasiswa berwirausaha untuk menghasihkan produk baru. Namun dalam memasarkan produk UMKM masi dengan cara konvensional yaitu dengan menawarkan produk hanya sebatas pembeli hanya bisa dijangkau secara offline dan melalui media seperti Instagram atau Whatsapp. Sedangkan untuk menjual produk, biasanya mahasiswa dapat mendirikan stand atau menjual produknya saat diadakan suatu kegiatan/bazzar. Dari permasalaham tersebut, Maka dibangunlah Sistem Informasi Marketplace untuk dapat membantu mahasiswa dalam memasarkan produk UMKM secara online dan cepat. Sistem Informasi Marketplace ini tidak hanya untuk kalangan mahasiswa saja, melainkan untuk semua pelaku usaha yang memiliki bisnis UMKM dapat mendaftarkan diri di website Marketplace, sehingga jangkauan pasar menjadi meningkat dan pengguna menjadi lebih luas. Pada penelitian ini digunakan platform CMS Wordpress untuk membangun sebuah website Marketplace. Penelitian ini menggunakan metode Rapid Application Development (RAD) guna mempermudah serta dapat mempercepat proses pengembangan website Marketplace.","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"116 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82484904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Perancangan sistem pemantau untuk pengairan waduk dan irigasi berdasarkan tingkat kelembaban berbasis wireless sensor network 基于无线传感器的湿度水平进行灌溉
Pub Date : 2022-09-01 DOI: 10.32502/digital.v5i2.4779
Emilia Hesti, S. a, Siswandi C
Kebanyakkan peduduk Indonesia yang dalam kesehariannya banyak mengkonsumsi satu kebutuhan pokok yaitu nasi. Oleh sebab itu beras  merupakan suatu kebutuhan pokok yang penting untuk menghasilkan beras yang baik untuk diproses menjadi nasi yang enak dan pulen. Sawah yang dapat menghasilkan  beras berkualitas baik adalah berasal dari sawah yang dirawat dengan baik juga. Pengairan Waduk dan Irigasi Sawah akan menjadi lebih efisien jika dilakukan dengan bantuan alat yang dapat bekerja secara otomatis. Alat Pengairan Waduk dan Irigasi ini dilengkapi dengan Humidity Sensor yang mampu mendeteksi keadaan sawah dengan tiga indikator, yaitu kering lembab dan basah, sehingga pengairan sawah lebih efisien. Kedua, alat ini dilengkapi oleh sensor flow sehingga alat ini dapat menghitung berapa banyak air yang melewati sensor tersebut dalam pengairan sawah, sehingga  apabila jumlah air yang diperlukan  untuk pengairan sawah sudah cukup maka otomatis air akan berhenti mengalir. Prinsip Kerja Alat yang dirancang ini merupakan sistem pengairan waduk dan irigasi berbasis wireless sensor network. Tiap sensor sumber pada WSN akan mengumpulkan data dari area yang dipantau, selanjutnya mengirimkan sinyal ke base station. Perancangan alat ini menggunakan mikrokontroler Arduino Mega2560 sebagai prosesor alat. Tegangan yang dikirim ke prosesor tadi memerintahkan mikrokontroler Arduino Mega2560 sebagai kendali dari alat tersebut. Sensor kelembaban (Humidity Sensor) alat ini akan mendeteksi  tiga keadaan sawah apakah sawah dalam keadaan kering, lembab dan basah. Saat nilai kelembaban tanah sawah < 250 Rh (%) maka sawah dalam kondisi kering, saaat sawah > 250-500 Rh (%) sawah dalam keadaan lembab dan pada saat sawah > 500 Rh (%) sawah dalam keadaan basah. Ketiga kondisi tersebut akan tampil pada LCD dan akan akan dikirim data ke internet kemudian akan tampil grafik nilainya. Wireless Sensor Network digunakan untuk mengatur sistem kontrol dari penggunaan water flow sensor, modul SIM900 dari sisi Tx dan Rx.
大多数印尼殖民者每天都吃一种基本的大米。因此,大米是生产优质大米的基本需求。能生产优质大米的稻田也是经过精心照料的稻田。如果使用自动工作的工具,水库和稻田灌溉将更有效。这个水库和灌溉装置配备了一种Humidity传感器,它可以探测稻田的状态,其三个指标是干潮湿潮湿,从而提高稻田灌溉效率。第二,它配备了流动传感器,这样它就可以计算通过传感器的水在稻田水渠中的数量,如果足够的水来灌溉稻田,水就会自动停止流动。这款设计的工具的原理是一个基于无线传感器网络的水渠和灌溉系统。WSN上的每个源传感器将从一个被监控的区域收集数据,然后向基站发送信号。该设备的设计使用微控制器Mega2560 Arduino Arduino作为工具处理器。发送到处理器的电压命令微处理器Arduino Mega2560作为对该设备的控制。这些工具的湿气传感器将检测三个稻田是否干燥、潮湿和潮湿。当稻田土壤的湿度小于250 Rh(%)时,稻田是干燥的,而稻田> 250-500 Rh(%)稻田是潮湿的,稻田> 500 Rh(%)稻田是潮湿的。这三个条件将出现在液晶显示器上,并将数据发送到互联网上,然后显示它们的价值图表。无线传感器网络是用来设置水流动传感器的控制系统的,在Tx和Rx的两侧是SIM900模块。
{"title":"Perancangan sistem pemantau untuk pengairan waduk dan irigasi berdasarkan tingkat kelembaban berbasis wireless sensor network","authors":"Emilia Hesti, S. a, Siswandi C","doi":"10.32502/digital.v5i2.4779","DOIUrl":"https://doi.org/10.32502/digital.v5i2.4779","url":null,"abstract":"Kebanyakkan peduduk Indonesia yang dalam kesehariannya banyak mengkonsumsi satu kebutuhan pokok yaitu nasi. Oleh sebab itu beras  merupakan suatu kebutuhan pokok yang penting untuk menghasilkan beras yang baik untuk diproses menjadi nasi yang enak dan pulen. Sawah yang dapat menghasilkan  beras berkualitas baik adalah berasal dari sawah yang dirawat dengan baik juga. Pengairan Waduk dan Irigasi Sawah akan menjadi lebih efisien jika dilakukan dengan bantuan alat yang dapat bekerja secara otomatis. Alat Pengairan Waduk dan Irigasi ini dilengkapi dengan Humidity Sensor yang mampu mendeteksi keadaan sawah dengan tiga indikator, yaitu kering lembab dan basah, sehingga pengairan sawah lebih efisien. Kedua, alat ini dilengkapi oleh sensor flow sehingga alat ini dapat menghitung berapa banyak air yang melewati sensor tersebut dalam pengairan sawah, sehingga  apabila jumlah air yang diperlukan  untuk pengairan sawah sudah cukup maka otomatis air akan berhenti mengalir. Prinsip Kerja Alat yang dirancang ini merupakan sistem pengairan waduk dan irigasi berbasis wireless sensor network. Tiap sensor sumber pada WSN akan mengumpulkan data dari area yang dipantau, selanjutnya mengirimkan sinyal ke base station. Perancangan alat ini menggunakan mikrokontroler Arduino Mega2560 sebagai prosesor alat. Tegangan yang dikirim ke prosesor tadi memerintahkan mikrokontroler Arduino Mega2560 sebagai kendali dari alat tersebut. Sensor kelembaban (Humidity Sensor) alat ini akan mendeteksi  tiga keadaan sawah apakah sawah dalam keadaan kering, lembab dan basah. Saat nilai kelembaban tanah sawah < 250 Rh (%) maka sawah dalam kondisi kering, saaat sawah > 250-500 Rh (%) sawah dalam keadaan lembab dan pada saat sawah > 500 Rh (%) sawah dalam keadaan basah. Ketiga kondisi tersebut akan tampil pada LCD dan akan akan dikirim data ke internet kemudian akan tampil grafik nilainya. Wireless Sensor Network digunakan untuk mengatur sistem kontrol dari penggunaan water flow sensor, modul SIM900 dari sisi Tx dan Rx.","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81352420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter LSTM(长短期记忆)在推特上的情绪COVID-19疫苗分类
Pub Date : 2022-05-31 DOI: 10.31849/digitalzone.v13i1.9950
M. Ihsan, Benny Sukma Negara, Surya Agustian
           The implementation of the Covid-19 vaccination carried out by Indonesian government was ignited pros and contras among the public. Certainly, there will be pros and cons about the vaccination from the community. This attituded of pros and cons, which is also called sentiment, can influence people to accept or refuse to be vaccinated. Todays, people express their sentiment in social media in comments, post, or status. One of the methods used to detect sentiment on social media, whether positive or negative, is through a categorisation of text approach. This research provides a deep learning technique for sentiment classification on Twitter that uses Long Short Term Memory (LSTM), for positive, neutral and negative classes. The word2vec word embeddings was used as input, using the pretrained Bahasa Indonesia model from Wikipedia corpus. On the other hand, the topic-based word2vec model was also trained from the Covid-19 vaccination sentiment dataset which collected from Twitter. The data used after balanced is 2564 training data, 778 data validation data, and 400 test data with 1802 neutral data, 1066 negative data, and 566 positive data. The best results from various parameter processes give an F1-Score value of 54% on the test data, with an accuracy of 66%. The result of this research is a model that can classify sentiments with new sentences.
印尼政府开展的新冠肺炎疫苗接种工作引发了公众的赞成和反对。当然,社区对疫苗接种会有赞成和反对的意见。这种赞成和反对的态度,也被称为情绪,可以影响人们接受或拒绝接种疫苗。如今,人们在社交媒体上通过评论、帖子或状态来表达自己的情绪。用于检测社交媒体上情绪(无论是积极的还是消极的)的方法之一是通过文本分类方法。本研究提供了一种深度学习技术,用于Twitter上的情绪分类,该技术使用长短期记忆(LSTM),用于积极,中性和消极类。word2vec词嵌入作为输入,使用维基百科语料库中预训练的印尼语模型。另一方面,基于主题的word2vec模型也从Twitter上收集的Covid-19疫苗接种情绪数据集进行了训练。平衡后使用的数据为2564个训练数据,778个数据验证数据,400个测试数据,其中中性数据1802个,阴性数据1066个,阳性数据566个。各种参数处理的最佳结果对测试数据的F1-Score值为54%,准确率为66%。本研究的结果是一个可以用新句子对情感进行分类的模型。
{"title":"LSTM (Long Short Term Memory) for Sentiment COVID-19 Vaccine Classification on Twitter","authors":"M. Ihsan, Benny Sukma Negara, Surya Agustian","doi":"10.31849/digitalzone.v13i1.9950","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.9950","url":null,"abstract":"           The implementation of the Covid-19 vaccination carried out by Indonesian government was ignited pros and contras among the public. Certainly, there will be pros and cons about the vaccination from the community. This attituded of pros and cons, which is also called sentiment, can influence people to accept or refuse to be vaccinated. Todays, people express their sentiment in social media in comments, post, or status. One of the methods used to detect sentiment on social media, whether positive or negative, is through a categorisation of text approach. This research provides a deep learning technique for sentiment classification on Twitter that uses Long Short Term Memory (LSTM), for positive, neutral and negative classes. The word2vec word embeddings was used as input, using the pretrained Bahasa Indonesia model from Wikipedia corpus. On the other hand, the topic-based word2vec model was also trained from the Covid-19 vaccination sentiment dataset which collected from Twitter. The data used after balanced is 2564 training data, 778 data validation data, and 400 test data with 1802 neutral data, 1066 negative data, and 566 positive data. The best results from various parameter processes give an F1-Score value of 54% on the test data, with an accuracy of 66%. The result of this research is a model that can classify sentiments with new sentences.","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82779053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Implementation of Naïve Bayes for Classification of Learning Types 实现Naïve贝叶斯学习类型分类
Pub Date : 2022-05-31 DOI: 10.31849/digitalzone.v13i1.9825
Lisnawita Lisnawita, G. Guntoro, Musfawati Musfawati
Learning is a process that is carried out by each individual from not knowing to knowing, or from bad behavior to being good, so that it has a good change for the individual, Each individual has a learning type in receiving the material presented by the teacher, but not all individuals understand what type of learning they need, The purpose of the research is to determine the type of learning of the students of the Faculty of Computer Science. The method used is nave Bayes for the accuracy of its calculations. The results of this study are the classification of visual learning types as many as 50 people, for audio as many as 24 people, while kinesthetic as many as 25 people, for the Informatics Engineering Study Program as many as 61, consists of 37 visual learning types, Auditory 14 people, Kinesthetic 10 people, While the Information Systems Study Program is 37 people, where is Visual 14 people, Auditory 9 people and Kinesthetic 14 people. With this classification, it can help lecturers apply learning methods that are suitable for their students. The best Naïve Bayes accuracy rate is 88.89%
学习是每个个体从不知道到知道,或从不良行为到良好行为,从而对个体产生良好变化的过程,每个个体在接受教师呈现的材料时都有一种学习类型,但并不是所有个体都明白自己需要哪种学习类型,本研究的目的是确定计算机学院学生的学习类型。由于其计算的准确性,所使用的方法是朴素贝叶斯。本研究的结果是,分类视觉学习类型多达50人,音频学习类型多达24人,而动觉学习类型多达25人,信息工程学习项目多达61人,由37种视觉学习类型组成,听觉学习类型14人,动觉学习类型10人,而信息系统学习项目为37人,其中视觉学习类型14人,听觉学习类型9人,动觉学习类型14人。有了这种分类,它可以帮助讲师应用适合他们学生的学习方法。最佳Naïve贝叶斯准确率为88.89%
{"title":"Implementation of Naïve Bayes for Classification of Learning Types","authors":"Lisnawita Lisnawita, G. Guntoro, Musfawati Musfawati","doi":"10.31849/digitalzone.v13i1.9825","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.9825","url":null,"abstract":"Learning is a process that is carried out by each individual from not knowing to knowing, or from bad behavior to being good, so that it has a good change for the individual, Each individual has a learning type in receiving the material presented by the teacher, but not all individuals understand what type of learning they need, The purpose of the research is to determine the type of learning of the students of the Faculty of Computer Science. The method used is nave Bayes for the accuracy of its calculations. The results of this study are the classification of visual learning types as many as 50 people, for audio as many as 24 people, while kinesthetic as many as 25 people, for the Informatics Engineering Study Program as many as 61, consists of 37 visual learning types, Auditory 14 people, Kinesthetic 10 people, While the Information Systems Study Program is 37 people, where is Visual 14 people, Auditory 9 people and Kinesthetic 14 people. With this classification, it can help lecturers apply learning methods that are suitable for their students. The best Naïve Bayes accuracy rate is 88.89%","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77846111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Web Based Application Wet Cake Snack Product Distribution Using Concept Business To Business To Consumer 基于Web的应用湿饼零食产品分销使用概念企业对企业对消费者
Pub Date : 2022-05-31 DOI: 10.31849/digitalzone.v13i1.9793
M. Mansur, Dinda Nurul Mawardah
Business To Business To Customers is part of E-Commerce which is a process of buying and selling transactions and distribution to consumers. Distribution of wet cakes from producers on Jl. Panglima Minal Senggoro is still manual by recording and monitoring products that run out from partners. Distribution from producers to retailers uses a profit-sharing system that has been agreed upon by both parties. The design of this system is designed using the Waterfall method and the Codeigniter Framework (CI) as well as with the design of the E-commerce Framework, namely B2B2C which produces information about cake manufacturers, knows the available products, and also helps producers in recapitulating sales to partners. The features in this system are Approval in user registration, the input of cake products, selection of payment methods, uploading proof of payment, updating of remaining products on the partner side, and dynamic reviews and ratings. So that producers can compete with other wet cake.
企业对企业对客户是电子商务的一部分,电子商务是一个向消费者进行买卖交易和分销的过程。生产商于七月一日派发湿饼。Panglima Minal sengoro仍然是手工记录和监控合作伙伴的产品。从生产商到零售商的分销使用双方商定的利润分享制度。本系统的设计采用瀑布法(Waterfall method)和Codeigniter Framework (CI),并结合电子商务框架(electronic -commerce Framework,即B2B2C)的设计,生成蛋糕制造商的信息,了解可用产品,并帮助生产商向合作伙伴总结销售情况。该系统的功能包括:用户注册审批、蛋糕产品输入、支付方式选择、支付凭证上传、合作伙伴端剩余产品更新、动态评论和评分。使生产商可以与其他湿饼竞争。
{"title":"Web Based Application Wet Cake Snack Product Distribution Using Concept Business To Business To Consumer","authors":"M. Mansur, Dinda Nurul Mawardah","doi":"10.31849/digitalzone.v13i1.9793","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.9793","url":null,"abstract":"Business To Business To Customers is part of E-Commerce which is a process of buying and selling transactions and distribution to consumers. Distribution of wet cakes from producers on Jl. Panglima Minal Senggoro is still manual by recording and monitoring products that run out from partners. Distribution from producers to retailers uses a profit-sharing system that has been agreed upon by both parties. The design of this system is designed using the Waterfall method and the Codeigniter Framework (CI) as well as with the design of the E-commerce Framework, namely B2B2C which produces information about cake manufacturers, knows the available products, and also helps producers in recapitulating sales to partners. The features in this system are Approval in user registration, the input of cake products, selection of payment methods, uploading proof of payment, updating of remaining products on the partner side, and dynamic reviews and ratings. So that producers can compete with other wet cake.","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"26 12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77262714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Implementation of Simple Additive Weighting Method in deciding Apprentice Assistant 简单加性加权法在徒弟决定中的应用
Pub Date : 2022-05-31 DOI: 10.31849/digitalzone.v13i1.9880
Hamid Muhammad Jumasa, Wahju Tjahjo Saputro
An internship is a mandatory course to be taken by a sixth-grader. Students should finish the course by either apprenticing or making a product in the form of software. The problem often is that students enroll and choose partners. The student files already stored should be matched to the data of the previous semester conventionally. Another problem is that students select partners based not on the field of interest but based on following their friends. Students have difficulty completing an apprenticeship. Therefore, the study examined the identification of an apprentice by using the simple, adapting method, the research object was the student of the semester VI apprentice, the method of storing data using literature, observation, and interviews. Research results from simple standard weighting show K1 criteria at 0.75, K2 at 0.5, structural criteria at 0.25, and requirement criteria of 1. The results of the accuracy test are 80% so that the SAW method can be developed as a decision support system in determining internship lecturers based on the student's field of interest.
实习是六年级学生的必修课。学生应该通过学徒或以软件的形式制作产品来完成课程。问题通常是学生注册和选择伴侣。按照惯例,已存储的学生文件应与上学期的数据相匹配。另一个问题是,学生选择伴侣不是基于兴趣领域,而是基于关注他们的朋友。学生很难完成学徒期。因此,本研究采用简单、自适应的方法对徒弟身份进行检验,研究对象为六学期徒弟学生,采用文献资料法、观察法、访谈法保存资料。简单标准加权的研究结果表明,K1标准为0.75,K2为0.5,结构标准为0.25,需求标准为1。准确度测试的结果为80%,因此SAW方法可以开发为基于学生感兴趣的领域确定实习讲师的决策支持系统。
{"title":"The Implementation of Simple Additive Weighting Method in deciding Apprentice Assistant","authors":"Hamid Muhammad Jumasa, Wahju Tjahjo Saputro","doi":"10.31849/digitalzone.v13i1.9880","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.9880","url":null,"abstract":"An internship is a mandatory course to be taken by a sixth-grader. Students should finish the course by either apprenticing or making a product in the form of software. The problem often is that students enroll and choose partners. The student files already stored should be matched to the data of the previous semester conventionally. Another problem is that students select partners based not on the field of interest but based on following their friends. Students have difficulty completing an apprenticeship. Therefore, the study examined the identification of an apprentice by using the simple, adapting method, the research object was the student of the semester VI apprentice, the method of storing data using literature, observation, and interviews. Research results from simple standard weighting show K1 criteria at 0.75, K2 at 0.5, structural criteria at 0.25, and requirement criteria of 1. The results of the accuracy test are 80% so that the SAW method can be developed as a decision support system in determining internship lecturers based on the student's field of interest.","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"7 4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82260584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quality Classification of Palm Oil Varieties Using Naive Bayes Classifier 基于朴素贝叶斯分类器的棕榈油品种质量分类
Pub Date : 2022-05-27 DOI: 10.31849/digitalzone.v13i1.9773
N. Puspitasari, Rosmasari Rosmasari, Fhanji Wilis Pratama, H. Sulastri
As one of the leading commodities of the Indonesian economy, the ever-increasing production of palm oil has created intense competition among palm oil (CPO) producers. This causes CPO producers to increase their palm oil production without compromising the quality of the palm oil produced. CPO producers are required to be able to objectively determine the quality of superior and precise oil palm varieties in order to produce high economic value palm oil. Therefore, a model is needed to determine the quality of oil palm from several existing varieties. The Naive Bayes Classifier method in this study was used to classify the quality of oil palm based on predetermined variables using a data set of 28 oil palm varieties. Method testing is done by using a confusion matrix and K-fold cross-validation scheme. This study shows a reasonably high accuracy value of 64.25% and a low error rate of 35.7%, indicating that the Naive Bayes Classifier can classify the quality of oil palm varieties quite well. 
作为印尼经济的主要商品之一,棕榈油产量的不断增加导致了棕榈油生产商之间的激烈竞争。这导致CPO生产商在不影响棕榈油质量的情况下增加棕榈油产量。为了生产出高经济价值的棕榈油,要求CPO生产者能够客观地确定优质、精确的油棕品种的质量。因此,需要一个模型来从几个现有品种中确定油棕的质量。本研究利用28个油棕品种的数据集,基于预定变量,采用朴素贝叶斯分类器对油棕品质进行分类。方法测试是通过使用混淆矩阵和K-fold交叉验证方案完成的。本研究的准确率达到了64.25%,错误率为35.7%,表明朴素贝叶斯分类器可以很好地对油棕品种的质量进行分类。
{"title":"Quality Classification of Palm Oil Varieties Using Naive Bayes Classifier","authors":"N. Puspitasari, Rosmasari Rosmasari, Fhanji Wilis Pratama, H. Sulastri","doi":"10.31849/digitalzone.v13i1.9773","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.9773","url":null,"abstract":"As one of the leading commodities of the Indonesian economy, the ever-increasing production of palm oil has created intense competition among palm oil (CPO) producers. This causes CPO producers to increase their palm oil production without compromising the quality of the palm oil produced. CPO producers are required to be able to objectively determine the quality of superior and precise oil palm varieties in order to produce high economic value palm oil. Therefore, a model is needed to determine the quality of oil palm from several existing varieties. The Naive Bayes Classifier method in this study was used to classify the quality of oil palm based on predetermined variables using a data set of 28 oil palm varieties. Method testing is done by using a confusion matrix and K-fold cross-validation scheme. This study shows a reasonably high accuracy value of 64.25% and a low error rate of 35.7%, indicating that the Naive Bayes Classifier can classify the quality of oil palm varieties quite well.  \u0000","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91328681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Gaussian Filter and Histogram Equalization for Repair x-ray Image 高斯滤波和直方图均衡化在x射线图像修复中的应用
Pub Date : 2022-05-27 DOI: 10.31849/digitalzone.v13i1.9770
D. Mulyana, Tedy Rismawan, Cucu Suhery
The X-ray image is a medical examination procedure that uses electromagnetic wave radiation to get a picture of the inside of the body. However, in the process, there is noise that appears due to the exposure factor. This research builds a system to improve the X-ray image with noise by using Gaussian Filter and Histogram Equalization. In this study, in order to see the optimization of image enhancement, the two methods were combined. The data used are 60 x-ray images that have noise and each has an original image without noise as a comparison image to get system accuracy using PSNR and SSIM. Gaussian Filter method is used to reduce noise by determining the size of the kernel matrix and the standard deviation used. Histogram Equalization method is used to even out the value of the gray level of the image. Based on the test results from the combination of the two methods, the larger the size of the kernel matrix used, the faster the duration of time needed to repair the image. The PSNR value and accuracy obtained in the X-ray image repair are 31 dB and 71% on a 3x3 kernel matrix with an average time duration of 9 seconds, 32 dB and 77% on a 5x5 kernel matrix with an average duration of 9 seconds, 32 dB and 78% on a 7x7 kernel matrix with an average time duration of 8 seconds
x射线成像是一种医学检查程序,它使用电磁波辐射来获得身体内部的照片。然而,在这个过程中,由于曝光因素,会出现噪音。本研究利用高斯滤波和直方图均衡化技术,构建了一套对含噪x射线图像进行改进的系统。在本研究中,为了看到图像增强的优化,将两种方法结合起来。使用的数据是60张有噪声的x射线图像,每张图像都有一张没有噪声的原始图像作为对比图像,利用PSNR和SSIM获得系统精度。采用高斯滤波方法,通过确定核矩阵的大小和使用的标准差来降低噪声。直方图均衡化方法用于均匀化图像的灰度值。从两种方法结合的测试结果来看,所使用的核矩阵的大小越大,修复图像所需的时间越快。x射线图像修复得到的PSNR值在3x3核矩阵上为31 dB、71%,平均时间为9秒;在5x5核矩阵上为32 dB、77%,平均时间为9秒;在7x7核矩阵上为32 dB、78%,平均时间为8秒
{"title":"Application of Gaussian Filter and Histogram Equalization for Repair x-ray Image","authors":"D. Mulyana, Tedy Rismawan, Cucu Suhery","doi":"10.31849/digitalzone.v13i1.9770","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.9770","url":null,"abstract":"The X-ray image is a medical examination procedure that uses electromagnetic wave radiation to get a picture of the inside of the body. However, in the process, there is noise that appears due to the exposure factor. This research builds a system to improve the X-ray image with noise by using Gaussian Filter and Histogram Equalization. In this study, in order to see the optimization of image enhancement, the two methods were combined. The data used are 60 x-ray images that have noise and each has an original image without noise as a comparison image to get system accuracy using PSNR and SSIM. Gaussian Filter method is used to reduce noise by determining the size of the kernel matrix and the standard deviation used. Histogram Equalization method is used to even out the value of the gray level of the image. Based on the test results from the combination of the two methods, the larger the size of the kernel matrix used, the faster the duration of time needed to repair the image. The PSNR value and accuracy obtained in the X-ray image repair are 31 dB and 71% on a 3x3 kernel matrix with an average time duration of 9 seconds, 32 dB and 77% on a 5x5 kernel matrix with an average duration of 9 seconds, 32 dB and 78% on a 7x7 kernel matrix with an average time duration of 8 seconds","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88790794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis 基于Davies Bouldin索引检验的文本挖掘K-Means和K-Medoids算法在学生论文分类中的比较
Pub Date : 2022-05-27 DOI: 10.31849/digitalzone.v13i1.9292
Siti Ramadhani, Dini Azzahra, Tomi Z
The thesis is one of the scientific works based on the conclusions of field research or observations compiled and developed by students as well as research carried out according to the topic containing the study program which is carried out as a final project compiled in the last stage of formal study. A large number of theses, of course, will be sought in looking for categories of thesis topics, or the titles raised have different relevance. However, the student thesis can be by topics that are almost relevant to other topics so that it can make it easier to find topics that are relevant to the group. One of the uses of techniques in machine learning is to find text processing (Text Mining). In-text mining, there is a method that can be used, namely the Clustering method. Clustering processing techniques can group objects into the number of clusters formed. In addition, there are several methods used in clustering processing. This study aims to compare 2 cluster algorithms, namely the K-Means and K-Medoids algorithms to obtain an appropriate evaluation in the case of thesis grouping so that the relevant topics in the formed groups have better accuracy. The evaluation stage used is the Davies Bouldin Index (DBI) evaluation which is one of the testing techniques on the cluster. In addition, another indicator for comparison is the computation time of the two algorithms. According to the DBI value test carried out on algorithm 2, the K-Medoids algorithm is superior to K-Means, where the average DBI value produced by K-Medoids is 1,56 while K-Means is 2,79. In addition, the computational time required in classifying documents is also a reference. In testing the computational time required to group 50 documents, K-Means is superior to K-Medoids. K-Means has an average computation time for grouping documents, which is 1 second, while K-Medoids provide a computation time of 26,7778 seconds.
论文是根据学生实地调查或观察的结论,以及在正式学习的最后阶段根据包含学习计划的主题进行的研究,作为期末项目进行的研究工作之一。当然,大量的论文,在寻找论文题目的类别时,或者提出的题目有不同的相关性。然而,学生的论文可以按主题,几乎是相关的其他主题,这样可以更容易地找到相关的主题组。机器学习技术的用途之一是查找文本处理(文本挖掘)。在文本挖掘中,有一种可以使用的方法,即聚类方法。聚类处理技术可以将对象按所形成的簇的数量进行分组。此外,在聚类处理中还使用了几种方法。本研究旨在比较两种聚类算法,即K-Means算法和K-Medoids算法,在论文分组的情况下获得适当的评价,使所形成的分组中的相关主题具有更好的准确性。所采用的评价阶段是Davies Bouldin指数(DBI)评价,DBI是集群的一种测试技术。另外,比较的另一个指标是两种算法的计算时间。通过对算法2的DBI值检验,K-Medoids算法优于K-Means算法,K-Medoids算法产生的平均DBI值为1.56,K-Means算法产生的DBI值为2.79。此外,文档分类所需的计算时间也是一个参考。在测试分组50个文档所需的计算时间时,K-Means优于K-Medoids。K-Means对文档进行分组的平均计算时间为1秒,而K-Medoids提供的计算时间为267778秒。
{"title":"Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis","authors":"Siti Ramadhani, Dini Azzahra, Tomi Z","doi":"10.31849/digitalzone.v13i1.9292","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.9292","url":null,"abstract":"The thesis is one of the scientific works based on the conclusions of field research or observations compiled and developed by students as well as research carried out according to the topic containing the study program which is carried out as a final project compiled in the last stage of formal study. A large number of theses, of course, will be sought in looking for categories of thesis topics, or the titles raised have different relevance. However, the student thesis can be by topics that are almost relevant to other topics so that it can make it easier to find topics that are relevant to the group. One of the uses of techniques in machine learning is to find text processing (Text Mining). In-text mining, there is a method that can be used, namely the Clustering method. Clustering processing techniques can group objects into the number of clusters formed. In addition, there are several methods used in clustering processing. This study aims to compare 2 cluster algorithms, namely the K-Means and K-Medoids algorithms to obtain an appropriate evaluation in the case of thesis grouping so that the relevant topics in the formed groups have better accuracy. The evaluation stage used is the Davies Bouldin Index (DBI) evaluation which is one of the testing techniques on the cluster. In addition, another indicator for comparison is the computation time of the two algorithms. According to the DBI value test carried out on algorithm 2, the K-Medoids algorithm is superior to K-Means, where the average DBI value produced by K-Medoids is 1,56 while K-Means is 2,79. In addition, the computational time required in classifying documents is also a reference. In testing the computational time required to group 50 documents, K-Means is superior to K-Medoids. K-Means has an average computation time for grouping documents, which is 1 second, while K-Medoids provide a computation time of 26,7778 seconds.","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"58 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72468977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Spatial Mapping of Landslide Susceptibility Level in Pacitan District Using Analytical Hierarchy Process and Natural Break 基于层次分析法和自然断裂的太平洋地区滑坡易发等级空间制图
Pub Date : 2022-04-25 DOI: 10.31849/digitalzone.v13i1.8619
A. Fariza, A. Basofi, Silfiana Nur Hamida
Pacitan district has a high potential for landslides. Landslide is a hydrometeorological disaster that causes loss of life, property loss, and environmental damage. Disaster preparedness is very necessary for the wider community in dealing with landslide emergency response situations. Applications to determine the level of vulnerability to landslides are very useful to minimize the impact and losses on the Pacitan community. This study aims to make an application for assessing the level of landslide susceptibility using the analytical hierarchy process and natural break based on the factors that cause landslides in the sub-district or village of Pacitan district. The factors that cause landslides in Pacitan district consist of weather, history of landslides, land slope, and history of earthquakes. The results of the AHP and natural break classifications are visualized in the form of a spatial map into 3 categories, namely high, medium and low vulnerability levels. The results of the AHP classification and natural break in the 2016-2020 data have a good average GVF value of 0.77. This shows that in general, the results of the 2016-2020 data classification are correct. Mobile device-based applications provide convenience for the public in accessing information as an effort to improve landslide disaster preparedness.
太平洋地区发生山体滑坡的可能性很大。滑坡是一种造成生命财产损失和环境破坏的水文气象灾害。备灾对于广大社区处理滑坡应急情况是非常必要的。确定易受滑坡影响程度的应用程序对于尽量减少对太平洋社区的影响和损失非常有用。本研究旨在应用层次分析法和自然断裂法对太平洋地区街道或村庄的滑坡易发程度进行评价。造成太平洋地区滑坡的因素包括天气、滑坡历史、土地坡度和地震历史。AHP和自然断裂分类的结果以空间图的形式可视化,分为高、中、低3类脆弱性等级。在2016-2020年数据中,AHP分类和自然断裂的结果具有较好的平均GVF值0.77。这表明,总体而言,2016-2020年数据分类的结果是正确的。基于移动设备的应用程序为公众获取信息提供了便利,以改善滑坡灾害的准备工作。
{"title":"Spatial Mapping of Landslide Susceptibility Level in Pacitan District Using Analytical Hierarchy Process and Natural Break","authors":"A. Fariza, A. Basofi, Silfiana Nur Hamida","doi":"10.31849/digitalzone.v13i1.8619","DOIUrl":"https://doi.org/10.31849/digitalzone.v13i1.8619","url":null,"abstract":"Pacitan district has a high potential for landslides. Landslide is a hydrometeorological disaster that causes loss of life, property loss, and environmental damage. Disaster preparedness is very necessary for the wider community in dealing with landslide emergency response situations. Applications to determine the level of vulnerability to landslides are very useful to minimize the impact and losses on the Pacitan community. This study aims to make an application for assessing the level of landslide susceptibility using the analytical hierarchy process and natural break based on the factors that cause landslides in the sub-district or village of Pacitan district. The factors that cause landslides in Pacitan district consist of weather, history of landslides, land slope, and history of earthquakes. The results of the AHP and natural break classifications are visualized in the form of a spatial map into 3 categories, namely high, medium and low vulnerability levels. The results of the AHP classification and natural break in the 2016-2020 data have a good average GVF value of 0.77. This shows that in general, the results of the 2016-2020 data classification are correct. Mobile device-based applications provide convenience for the public in accessing information as an effort to improve landslide disaster preparedness.","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"18 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72584622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Digital Zone Jurnal Teknologi Informasi dan Komunikasi
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1