This study presents the behavior of using many types of reinforcement with slab foundations to satisfy sustainability. This foundation with soil effect and two types of bar reinforcement (steel bars and geogrid) are taken. Nonlinear analysis is used with the theoretical model by finite element program software ABAQUS to represent the many types of reinforced concrete foundations with both unsaturated and saturated soil with the effect of loading. Effect of load-displacement-relationships with many cases which were taken for this study such as the geogrid and steel bar ratio in reinforcement of foundation with unsaturated and saturated soil. From this study, it is shown that reinforcement by geogrid increased the strength of the member or the foundation when taken with different ratios of reinforcement by steel bars and get the best sustainable way or solution by decreasing the reinforcement by steel. The ratio of geogrid is 40% to 20 % from total reinforcement, while the required member or foundation in the case of soil, which is unsaturated, is more strength than it is in the case of saturated soil.
{"title":"BEHAVIOR OF REINFORCEMENT BARS IN FOUNDATION WITH SOIL TO SATISFY SUSTAINABILITY","authors":"Ali Sabah Al Amli, N. Al-Ansari, J. Laue","doi":"10.31272/jeasd.27.5.1","DOIUrl":"https://doi.org/10.31272/jeasd.27.5.1","url":null,"abstract":"This study presents the behavior of using many types of reinforcement with slab foundations to satisfy sustainability. This foundation with soil effect and two types of bar reinforcement (steel bars and geogrid) are taken. Nonlinear analysis is used with the theoretical model by finite element program software ABAQUS to represent the many types of reinforced concrete foundations with both unsaturated and saturated soil with the effect of loading. Effect of load-displacement-relationships with many cases which were taken for this study such as the geogrid and steel bar ratio in reinforcement of foundation with unsaturated and saturated soil. From this study, it is shown that reinforcement by geogrid increased the strength of the member or the foundation when taken with different ratios of reinforcement by steel bars and get the best sustainable way or solution by decreasing the reinforcement by steel. The ratio of geogrid is 40% to 20 % from total reinforcement, while the required member or foundation in the case of soil, which is unsaturated, is more strength than it is in the case of saturated soil.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45784946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiba A. Mohammed, D. E. Sachit, Mustafa Al-Furaiji
Reverse osmosis is one of the most prevalent methods of generating potable water owing to its low power usage, excellent rates of contaminant removal, simple design, large output capacity, and much cheaper initial and maintenance costs than comparable alternatives. In this review, the most important published research related to the reverse osmosis process was reviewed. It was found that the majority of reported studies were related to using the reverse osmosis process for water desalination and wastewater treatment. Research has proven that the reverse osmosis process is a very effective method for desalinating water and treating industrial effluent containing heavy metals, organics, and other pollutants. Fouling was found to be one of the greatest obstacles encountered by the reverse osmosis method in water treatment, which raises operating costs due to the need for frequent cleaning, reduces the membrane's lifespan, and reduces the permeate flux. In general, microfiltration/ultrafiltration pretreatment and backwashing were among the most effective strategies suggested by researchers to reduce fouling and ensure the longevity and proper operation of the system.
{"title":"APPLICATIONS AND CHALLENGES OF THE REVERSE OSMOSIS MEMBRANE PROCESS: A REVIEW","authors":"Hiba A. Mohammed, D. E. Sachit, Mustafa Al-Furaiji","doi":"10.31272/jeasd.27.5.6","DOIUrl":"https://doi.org/10.31272/jeasd.27.5.6","url":null,"abstract":"Reverse osmosis is one of the most prevalent methods of generating potable water owing to its low power usage, excellent rates of contaminant removal, simple design, large output capacity, and much cheaper initial and maintenance costs than comparable alternatives. In this review, the most important published research related to the reverse osmosis process was reviewed. It was found that the majority of reported studies were related to using the reverse osmosis process for water desalination and wastewater treatment. Research has proven that the reverse osmosis process is a very effective method for desalinating water and treating industrial effluent containing heavy metals, organics, and other pollutants. Fouling was found to be one of the greatest obstacles encountered by the reverse osmosis method in water treatment, which raises operating costs due to the need for frequent cleaning, reduces the membrane's lifespan, and reduces the permeate flux. In general, microfiltration/ultrafiltration pretreatment and backwashing were among the most effective strategies suggested by researchers to reduce fouling and ensure the longevity and proper operation of the system.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49242386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dairy industry is a vital food industry in the world. The dairy industry discharges large quantities of wastewater. In this article, it has been used jar test model JLT 6 Leaching test VELP Scientific, with all apparatuses and tools that can complete work. Alum, as well as Porcelanite Rocks from the North Territory area in Australia, were used as a treatment material for the removal of phosphorus. Results showed the effectiveness of phosphorous removal using alum improves when using these rocks because they contain different concentrations of positive ions in general and aluminium ions in particular. The optimum value of Al3+ is 0.5 mg/L. The percent of removal of phosphorus will reach 95.7% ̴ 96% by 1.45 mg/L of the aluminium ion. The use of Porcelanite Rocks alone. cannot lead to clear removal of phosphorous or pollutants, rather it is used as an aid. The results also showed that Porcelanite rocks play a prominent role in preparing the therapeutic conditions for alum in terms of regulating the pH for better treatment, as they raise the pH at a time when the sulphates are reduced. With 20 mg/L of Porcelanite rocks, it has been completed the best removal of phosphorus at 20 ºC. Using alum with Porcelanite rocks as assistance in treatment will improve treatment by 30-40%. This process will drop residual aluminium concentration by about 10% from the total and then exclude health effects due to aluminium ions.
{"title":"THE ALUM WITH AUSTRALIAN PORCELANITE ROCKS EFFECT ON TREATING AND REMOVAL OF PHOSPHORUS FROM DAIRY WASTEWATER","authors":"Ali A. Hasan","doi":"10.31272/jeasd.27.5.7","DOIUrl":"https://doi.org/10.31272/jeasd.27.5.7","url":null,"abstract":"The dairy industry is a vital food industry in the world. The dairy industry discharges large quantities of wastewater. In this article, it has been used jar test model JLT 6 Leaching test VELP Scientific, with all apparatuses and tools that can complete work. Alum, as well as Porcelanite Rocks from the North Territory area in Australia, were used as a treatment material for the removal of phosphorus. Results showed the effectiveness of phosphorous removal using alum improves when using these rocks because they contain different concentrations of positive ions in general and aluminium ions in particular. The optimum value of Al3+ is 0.5 mg/L. The percent of removal of phosphorus will reach 95.7% ̴ 96% by 1.45 mg/L of the aluminium ion. The use of Porcelanite Rocks alone. cannot lead to clear removal of phosphorous or pollutants, rather it is used as an aid. The results also showed that Porcelanite rocks play a prominent role in preparing the therapeutic conditions for alum in terms of regulating the pH for better treatment, as they raise the pH at a time when the sulphates are reduced. With 20 mg/L of Porcelanite rocks, it has been completed the best removal of phosphorus at 20 ºC. Using alum with Porcelanite rocks as assistance in treatment will improve treatment by 30-40%. This process will drop residual aluminium concentration by about 10% from the total and then exclude health effects due to aluminium ions.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42881478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, forced convection heat transfer on eight inline cylinders immersed in a 10 × 10 × 30 cm packed bed of porous medium is numerically explored with a range of Reynolds numbers from 1100 to 2250. The airflow passes through eight cylinders with an inline arrangement, each having a diameter of 15 mm and a length of 10 cm, immersed in a horizontal porous channel at a constant heat flux of 2000W/m2. The commercial program ANSYS Fluent R.19 simulates the changes in pressure drop and temperature distribution by changing the Reynolds number and porosity. The dimensions of each porous pack are 10x10 cm in cross-section, 5 cm in length, and 5 cm in spacing from the next porous pack. The porosity values are (0.4001, 0.39112, and 0.3822). The general shape of all temperature contours shows that the high porosity near the cylinder wall enhances heat transfer from the heated cylinder surface. After that, the air temperature gradually decreases when going away from the cylinder surface. It can also be seen that the pressure drop decreases as particle diameter increases.
{"title":"NUMERICAL INVESTIGATION OF FORCED CONVECTION HEAT TRANSFER ON INLINE CYLINDERS IMMERSED IN A POROUS MEDIA","authors":"Enas Khudhair, Dhamyaa S. Khudhur","doi":"10.31272/jeasd.27.5.2","DOIUrl":"https://doi.org/10.31272/jeasd.27.5.2","url":null,"abstract":"In the present study, forced convection heat transfer on eight inline cylinders immersed in a 10 × 10 × 30 cm packed bed of porous medium is numerically explored with a range of Reynolds numbers from 1100 to 2250. The airflow passes through eight cylinders with an inline arrangement, each having a diameter of 15 mm and a length of 10 cm, immersed in a horizontal porous channel at a constant heat flux of 2000W/m2. The commercial program ANSYS Fluent R.19 simulates the changes in pressure drop and temperature distribution by changing the Reynolds number and porosity. The dimensions of each porous pack are 10x10 cm in cross-section, 5 cm in length, and 5 cm in spacing from the next porous pack. The porosity values are (0.4001, 0.39112, and 0.3822). The general shape of all temperature contours shows that the high porosity near the cylinder wall enhances heat transfer from the heated cylinder surface. After that, the air temperature gradually decreases when going away from the cylinder surface. It can also be seen that the pressure drop decreases as particle diameter increases.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48391723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The automatic modulation classification of signals is of great importance in modern communications, especially on cognitive radio. Several methods have been used in this field, the most important of which is the classification of modulation automatically using Deep Learning, where the methods depend on the convolution neural network, which is one of the Deep Learning networks, achieved high accuracy in classifying the modulation, so the proposed network depends on the type of deep learning CNN consisting of four blocks, each block contains a set of symmetric and asymmetric filters. The network also contains Max Pool. In this paper, the features extracted in phase-squaring and polar have been combined for the input, which helps in extending the input, that is, an increase in the features inside the network. It also contributes to improving the accuracy of classifying the higher-order modulation through the Polar plane. The dataset RadioML 2018.01A was adopted, which is used in the most recent research, where 11 types of modulation normal-class: (FM, GMSK, QPSK, BPSK, 0QPSK, AM-SSB-SC, 4ASK, AM-DSB-SC, 16QAM, 8PSK,00K) were taken. A simulation of which can be found in Matlab 2021. The proposed network achieved 100% classification accuracy when the signal-to-noise ratio is greater or equal to 2 dB for 11 types of modulation. The results of the paper were compared with modern networks Baseline network, Visual Geometry Group network, and Residual Neural network. The comparison showed the superiority of the proposed network over these networks, as the proposed network achieved an accuracy equal to 100% at SNR 2 dB while BL achieved an accuracy equal to 72% at SNR 2 dB, RN, and VGG almost reach 93% at SNR 2 dB.
{"title":"AUTOMATIC MODULATION CLASSIFICATION USING DEEP LEARNING POLAR FEATURE","authors":"Ali H. Shah, Abbas H. Miry, Tariq M. Salman","doi":"10.31272/jeasd.27.4.5","DOIUrl":"https://doi.org/10.31272/jeasd.27.4.5","url":null,"abstract":"The automatic modulation classification of signals is of great importance in modern communications, especially on cognitive radio. Several methods have been used in this field, the most important of which is the classification of modulation automatically using Deep Learning, where the methods depend on the convolution neural network, which is one of the Deep Learning networks, achieved high accuracy in classifying the modulation, so the proposed network depends on the type of deep learning CNN consisting of four blocks, each block contains a set of symmetric and asymmetric filters. The network also contains Max Pool. In this paper, the features extracted in phase-squaring and polar have been combined for the input, which helps in extending the input, that is, an increase in the features inside the network. It also contributes to improving the accuracy of classifying the higher-order modulation through the Polar plane. The dataset RadioML 2018.01A was adopted, which is used in the most recent research, where 11 types of modulation normal-class: (FM, GMSK, QPSK, BPSK, 0QPSK, AM-SSB-SC, 4ASK, AM-DSB-SC, 16QAM, 8PSK,00K) were taken. A simulation of which can be found in Matlab 2021. The proposed network achieved 100% classification accuracy when the signal-to-noise ratio is greater or equal to 2 dB for 11 types of modulation. The results of the paper were compared with modern networks Baseline network, Visual Geometry Group network, and Residual Neural network. The comparison showed the superiority of the proposed network over these networks, as the proposed network achieved an accuracy equal to 100% at SNR 2 dB while BL achieved an accuracy equal to 72% at SNR 2 dB, RN, and VGG almost reach 93% at SNR 2 dB.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46279282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a systematic control scheme for a wind energy conversion system with variable speed and describes a permanent magnet synchronous generator PMSG with five phases. The machine employs back-to-back converters, while the grid-side converters are used. Stator current and mechanical rotation speed control are employed to accomplish maximum power point tracking operation on the machine side converter at wind speed below the rated speed. The pitch of the angle is used to limit the extracted wind energy when the wind surpasses the specified wind. The grid current control loop regulates both active and reactive power injection at the unity power factor for the grid side converter. The five-phase PMSG rotor speed is controlled by the twisting sliding mode controller in order to maintain the reference speed in various wind speeds. Performance comparisons between the twisting sliding mode controller, conventional proportional integral controller, and integral sliding mode controller show that the twisting sliding mode controller is superior to the other controllers in steady state error. According to this study, the overall efficiency is increased to 94% when using the TSMC controller rather than the ISMC and PI controllers, which are currently at 92.45% and 88.12% respectively. MATLAB/Simulink simulation results are used to verify the effectiveness of the suggested control technique.
{"title":"MAXIMUM POWER EXTRACTION USING TWISTING SLIDING MODE CONTROLLER FOR WIND ENERGY SYSTEMS","authors":"Asaad Abed Faisal, Turki Kahawish Hassan","doi":"10.31272/jeasd.27.4.9","DOIUrl":"https://doi.org/10.31272/jeasd.27.4.9","url":null,"abstract":"This paper presents a systematic control scheme for a wind energy conversion system with variable speed and describes a permanent magnet synchronous generator PMSG with five phases. The machine employs back-to-back converters, while the grid-side converters are used. Stator current and mechanical rotation speed control are employed to accomplish maximum power point tracking operation on the machine side converter at wind speed below the rated speed. The pitch of the angle is used to limit the extracted wind energy when the wind surpasses the specified wind. The grid current control loop regulates both active and reactive power injection at the unity power factor for the grid side converter. The five-phase PMSG rotor speed is controlled by the twisting sliding mode controller in order to maintain the reference speed in various wind speeds. Performance comparisons between the twisting sliding mode controller, conventional proportional integral controller, and integral sliding mode controller show that the twisting sliding mode controller is superior to the other controllers in steady state error. According to this study, the overall efficiency is increased to 94% when using the TSMC controller rather than the ISMC and PI controllers, which are currently at 92.45% and 88.12% respectively. MATLAB/Simulink simulation results are used to verify the effectiveness of the suggested control technique.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48050902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil contamination with heavy metals significantly threatens human health and the ecosystem. Due to the complexity of heavy metal interactions in soils, the mobility, bioavailability, and toxicity of metals in the soil fractions are impacted by several parameters. These parameters include the qualities of both the metal and the soil. However, several remedial methods have been used in immobilization techniques. One of the best techniques is the Stabilization/Solidification(S/S) approach, which is often used to remediate contaminated sites and combines contaminants with binders to reduce the quantity of contaminant leachability through soil matrix and groundwater pollution. As well as to minimize the risks to human health and the environment, alter the metals in the soil to make them less soluble, toxic, or bioavailability. Stabilization aims to change the contaminated material's physical and chemical characteristics to decrease its chemical reactivity or solubility. In contrast, solidification aims to turn contaminants into solids that can be handled easily and contain a few dangerous materials. This review's primary goal is to examine the pozzolanic materials used in the Stabilization/Solidification process and their potential for remediating soil contamination, mainly where heavy metals are present.
{"title":"POZZOLANIC MATERIALS FOR STABILIZATION /SOLIDIFICATION OF SOIL CONTAMINATED BY HEAVY METALS - A REVIEW","authors":"Nidhal S. Jama, K. A. saeed","doi":"10.31272/jeasd.27.4.6","DOIUrl":"https://doi.org/10.31272/jeasd.27.4.6","url":null,"abstract":"Soil contamination with heavy metals significantly threatens human health and the ecosystem. Due to the complexity of heavy metal interactions in soils, the mobility, bioavailability, and toxicity of metals in the soil fractions are impacted by several parameters. These parameters include the qualities of both the metal and the soil. However, several remedial methods have been used in immobilization techniques. One of the best techniques is the Stabilization/Solidification(S/S) approach, which is often used to remediate contaminated sites and combines contaminants with binders to reduce the quantity of contaminant leachability through soil matrix and groundwater pollution. As well as to minimize the risks to human health and the environment, alter the metals in the soil to make them less soluble, toxic, or bioavailability. Stabilization aims to change the contaminated material's physical and chemical characteristics to decrease its chemical reactivity or solubility. In contrast, solidification aims to turn contaminants into solids that can be handled easily and contain a few dangerous materials. This review's primary goal is to examine the pozzolanic materials used in the Stabilization/Solidification process and their potential for remediating soil contamination, mainly where heavy metals are present.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44726243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat transfer enhancement is the process of increasing the heat-transfer coefficient, which enhances the system's performance. Enhancing heat transfer is a major problem for saving energy and is also beneficial economically. Many passive devices are used inside tubes to improve heat transfer such as twisted tape inserts, rough parts, extended surfaces, additives for liquids wire plugs, etc. This research reviewed one of the most effective passive devices which are twisted tape inserts. Since it has many advantages such as simple fabrication, simple operation, and ease of maintenance. The twisted tape inserts generated swirl flow and vortex inside the tube. Therefore, the internal convective heat transfer process is significantly improved. The current research article provides an overview of different twisting tape inserts that can improve heat transfer rates. By reducing boundary layer thickness near tube walls. Which lead to reduce the size and cost of many industrial applications, including heat exchangers, refrigeration systems, air conditioners, reactors, thermal power plants, spacecraft, and automobiles. A summary of previous experimental and numerical studies is presented as well. The primary results indicated that the twisted tape inserts are demonstrated to be efficient in enhancing heat transfer inside the tube for laminar and turbulent flow. But during a turbulent flow, twisted tapes increased pressure loss more than laminar flow because of flow obstruction.
{"title":"AUGMENTATION HEAT TRANSFER IN A CIRCULAR TUBE USING TWISTED - TAPE INSERTS: A REVIEW","authors":"Sahira Hasan, Zianab H. Naji","doi":"10.31272/jeasd.27.4.8","DOIUrl":"https://doi.org/10.31272/jeasd.27.4.8","url":null,"abstract":"Heat transfer enhancement is the process of increasing the heat-transfer coefficient, which enhances the system's performance. Enhancing heat transfer is a major problem for saving energy and is also beneficial economically. Many passive devices are used inside tubes to improve heat transfer such as twisted tape inserts, rough parts, extended surfaces, additives for liquids wire plugs, etc. This research reviewed one of the most effective passive devices which are twisted tape inserts. Since it has many advantages such as simple fabrication, simple operation, and ease of maintenance. The twisted tape inserts generated swirl flow and vortex inside the tube. Therefore, the internal convective heat transfer process is significantly improved. The current research article provides an overview of different twisting tape inserts that can improve heat transfer rates. By reducing boundary layer thickness near tube walls. Which lead to reduce the size and cost of many industrial applications, including heat exchangers, refrigeration systems, air conditioners, reactors, thermal power plants, spacecraft, and automobiles. A summary of previous experimental and numerical studies is presented as well. The primary results indicated that the twisted tape inserts are demonstrated to be efficient in enhancing heat transfer inside the tube for laminar and turbulent flow. But during a turbulent flow, twisted tapes increased pressure loss more than laminar flow because of flow obstruction.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46760733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Origami antenna technology is initiated recently to resolve different relative issue with visual pollution and antenna embedding inside buildings sights. This technology inspired us to invoke historical sites to shape a novel antenna design-based MIMO (Multi-Input and Multi-Output) technology for 5G systems at sub-6GHz frequency bands. In such a matter, the antenna array is designed to be shaped as Muhammad Al-Fatih Mosque. The proposed antenna array is constructed from 2-elements of a 2D array configuration with a separation distance of λ/10 at 2.45GHz. After conducting several parametric studies using CST Microwave studio, the authors reached to the optimal performance of the proposed design. The proposed antenna array is found to show three frequency bands, of matching S11≤-6dB, 1.7GHz-2.7GHz, 3.1GHz-3.8GHz, and 4.5GHz-5.1GHz with a gain of 5.2dBi, 6.8dBi, and 8.1dBi, respectively. Nevertheless, it is found that the proposed antenna array mutual coupling, S12, is about -20dB over the entire frequency band of interest. Later, the proposed antenna performance is validated using a commercial HFSS software package. Finally, the results from the conducted design methodology are found to agree very well with each other.
{"title":"ORIGAMI ANTENNA ARRAY SHAPED MOSQUE OF MUHAMMED AL-FATIH FOR VISUAL SIGHT ENHANCEMENT IN MODREN 5G MIMO NETWORKS","authors":"Humam Hussein, Ferhat Atasoy, T. Elwi","doi":"10.31272/jeasd.27.4.1","DOIUrl":"https://doi.org/10.31272/jeasd.27.4.1","url":null,"abstract":"Origami antenna technology is initiated recently to resolve different relative issue with visual pollution and antenna embedding inside buildings sights. This technology inspired us to invoke historical sites to shape a novel antenna design-based MIMO (Multi-Input and Multi-Output) technology for 5G systems at sub-6GHz frequency bands. In such a matter, the antenna array is designed to be shaped as Muhammad Al-Fatih Mosque. The proposed antenna array is constructed from 2-elements of a 2D array configuration with a separation distance of λ/10 at 2.45GHz. After conducting several parametric studies using CST Microwave studio, the authors reached to the optimal performance of the proposed design. The proposed antenna array is found to show three frequency bands, of matching S11≤-6dB, 1.7GHz-2.7GHz, 3.1GHz-3.8GHz, and 4.5GHz-5.1GHz with a gain of 5.2dBi, 6.8dBi, and 8.1dBi, respectively. Nevertheless, it is found that the proposed antenna array mutual coupling, S12, is about -20dB over the entire frequency band of interest. Later, the proposed antenna performance is validated using a commercial HFSS software package. Finally, the results from the conducted design methodology are found to agree very well with each other.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44335603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When rubberized, concrete beams lose some of their flexural strength. Conversely, flexural strengthening accounts for a sizeable portion of the structural applications for external carbon fiber reinforced polymers (CFRP) sheets that strengthen reinforced concrete beams. In this study, externally bonded sheets of (CFRP) were used to compensate for the flexural strength loss brought on by using rubberized concrete in constructing the beams. The study's reinforced concrete beams were split into two groups, each with three beams. In the first group, waste tire rubber (WTR) replaced (5 and 10) % of the fine and coarse aggregate, respectively. The reference group is the second group of typical concrete-mixture beams without used tire rubber. Each beam measured (2.1 m ×0.3m × 0.2m) has the same tensile, compression, and shear reinforcement. Every group of concrete beams contained a beam without any external reinforcement, a beam with a single layer, and a beam with double layers of (CFRP) sheet, where the beam soffit was externally strengthened. ABAQUS' finite element analysis software was used to represent the third external strengthening layer numerically. The mechanical properties of the two groups have been tested; additionally, the flexural response of the beams was examined using a monotonic two-point loading. The outcomes denote that strengthening with one and two layers of (CFRP) sheet increases the first crack load (FCL) and failure load (FL) by (8.57 and 17.64) with (17.14 and 34.27) %, respectively. The first crack deflection (FCD) also increased by (58.64) and (78.19) %, while the failure deflection (FD) decreased by (13.25) and (5.42) %, respectively.
{"title":"FLEXURAL BEHAVIOR OF RC BEAMS CONTAINS RUBBERIZED PIECES AND STRENGTHENED WITH CFRP SHEETS","authors":"Adnan Abdullah Adday, Ahmed Sultan Ali","doi":"10.31272/jeasd.27.4.4","DOIUrl":"https://doi.org/10.31272/jeasd.27.4.4","url":null,"abstract":"When rubberized, concrete beams lose some of their flexural strength. Conversely, flexural strengthening accounts for a sizeable portion of the structural applications for external carbon fiber reinforced polymers (CFRP) sheets that strengthen reinforced concrete beams. In this study, externally bonded sheets of (CFRP) were used to compensate for the flexural strength loss brought on by using rubberized concrete in constructing the beams. The study's reinforced concrete beams were split into two groups, each with three beams. In the first group, waste tire rubber (WTR) replaced (5 and 10) % of the fine and coarse aggregate, respectively. The reference group is the second group of typical concrete-mixture beams without used tire rubber. Each beam measured (2.1 m ×0.3m × 0.2m) has the same tensile, compression, and shear reinforcement. Every group of concrete beams contained a beam without any external reinforcement, a beam with a single layer, and a beam with double layers of (CFRP) sheet, where the beam soffit was externally strengthened. ABAQUS' finite element analysis software was used to represent the third external strengthening layer numerically. The mechanical properties of the two groups have been tested; additionally, the flexural response of the beams was examined using a monotonic two-point loading. The outcomes denote that strengthening with one and two layers of (CFRP) sheet increases the first crack load (FCL) and failure load (FL) by (8.57 and 17.64) with (17.14 and 34.27) %, respectively. The first crack deflection (FCD) also increased by (58.64) and (78.19) %, while the failure deflection (FD) decreased by (13.25) and (5.42) %, respectively.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41921606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}