Single-phase CoCrNi-based multi-principal element alloys (MPEAs) are recognized for their excellent fatigue damage tolerance. To further enhance their performance, a small amount of Mo was introduced into the CoCrNi system, resulting in the Co35.4Cr22.9Ni35.5Mo6.2 (commercially known as MP35N). This study investigates its tensile and low-cycle fatigue behavior at room temperature. The alloy, with an average grain size of ∼67 µm, exhibits a yield strength of 303 ± 8 MPa, an ultimate tensile strength of 800 ± 7 MPa, and a total-elongation-to-failure of 75 ± 3%. Its pronounced work-hardening and high ductility arise from its low stacking fault energy (SFE), which enables the concurrent activation of planar slip and deformation twinning. Under cyclic loading, the alloy shows pronounced initial cyclic hardening, followed by strain amplitude-dependent responses. Away from fatigue cracks, deformation is governed by planar slip of extended dislocations, whose multiplication and interactions generate sessile stacking-fault nodes and Lomer–Cottrell locks, driving cyclic hardening. At low strain amplitudes (±0.3% and ±0.5%), dislocations remain homogeneously distributed within the grains, with no twinning away from the fatigue cracks. In contrast, at higher strain amplitude (±0.7%), dislocation density increases, accompanied by a growing tendency to rearrange into low-energy structures and localized deformation twinning, as the cyclic peak stresses exceed the critical twinning stress. Surface relief-assisted fatigue cracks predominantly initiate parallel to coherent annealing twin boundaries (ATBs), with fewer occurrences across ATBs, or along/across grain boundaries. This behaviour is governed by slip compatibility and transfer metrics, evaluated through the Taylor factor, elastic stiffness contrast, ATB–loading-axis orientation, Schmid factor, and the Luster–Morris parameter. Near fatigue cracks, high local stresses activate deformation twinning at all strain amplitudes, which is intersected and sheared by shear bands. Twinning contributes to strengthening, while shear bands nucleate within pre-twinned regions, leading to twin bending, necking, detwinning, and the formation of nano-subgrains, which facilitate localized softening. Compared to other CoCrNi-based MPEAs, this Mo-alloyed variant achieves higher peak stresses and comparable or improved fatigue life. These enhancements stem from Mo-induced strengthening and the alloy’s low SFE, which promotes reversible planar slip, suppresses dislocation rearrangement into low-energy structures such as walls, veins, and cells, and amplifies twinning and shear banding near cracks. Collectively, these mechanisms define the overall cyclic stress response, accommodate localised plastic strain, generate tortuous crack paths, and slow crack growth, thereby conferring fatigue resistance that approaches that of dual-phase MPEAs.
扫码关注我们
求助内容:
应助结果提醒方式:
