Pub Date : 2024-07-26DOI: 10.1016/j.oceram.2024.100647
Marc Bohner, Fabrizio Bigolin, Isabelle Bohner, Thomas Imwinkelried, Yassine Maazouz, Pascal Michel, Christoph Stähli, Yves Viecelli, Nicola Döbelin
α-tricalcium phosphate (α-TCP) is the most widespread raw material for hydraulic calcium phosphate cements (CPCs). CPCs are widely used in bone repair due to their injectability, setting ability, and osteoconductivity. This study investigated the reactivity of α-TCP powders, focusing on the impact of minor phase impurities, β-calcium pyrophosphate and hydroxyapatite, and the synthesis temperature. The α-TCP powders were synthesized via a solid-state reaction of calcium carbonate and anhydrous dicalcium phosphate, with varying Ca/P molar ratios (1.4850–1.5075) and synthesis temperatures (1175°C–1350 °C). Powders produced with a Ca/P molar ratio below 1.50 and synthesized at a temperature above the melting point of β-CPP (1296 °C) had a broader size distribution and a two to fourfold lower hydraulic reactivity. Conversely, a higher Ca/P molar ratio improved reactivity. The study underscores the importance of precise control over synthesis parameters to enhance the performance of α-TCP-based CPCs, offering insights for optimizing material design in biomedical applications.
{"title":"The reactivity of α-tricalcium phosphate powders is affected by minute amounts of β-calcium pyrophosphate and by the synthesis temperature","authors":"Marc Bohner, Fabrizio Bigolin, Isabelle Bohner, Thomas Imwinkelried, Yassine Maazouz, Pascal Michel, Christoph Stähli, Yves Viecelli, Nicola Döbelin","doi":"10.1016/j.oceram.2024.100647","DOIUrl":"10.1016/j.oceram.2024.100647","url":null,"abstract":"<div><p>α-tricalcium phosphate (α-TCP) is the most widespread raw material for hydraulic calcium phosphate cements (CPCs). CPCs are widely used in bone repair due to their injectability, setting ability, and osteoconductivity. This study investigated the reactivity of α-TCP powders, focusing on the impact of minor phase impurities, β-calcium pyrophosphate and hydroxyapatite, and the synthesis temperature. The α-TCP powders were synthesized via a solid-state reaction of calcium carbonate and anhydrous dicalcium phosphate, with varying Ca/P molar ratios (1.4850–1.5075) and synthesis temperatures (1175°C–1350 °C). Powders produced with a Ca/P molar ratio below 1.50 and synthesized at a temperature above the melting point of β-CPP (1296 °C) had a broader size distribution and a two to fourfold lower hydraulic reactivity. Conversely, a higher Ca/P molar ratio improved reactivity. The study underscores the importance of precise control over synthesis parameters to enhance the performance of α-TCP-based CPCs, offering insights for optimizing material design in biomedical applications.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001111/pdfft?md5=c03a5b413d5c285272ed88e4e61510d9&pid=1-s2.0-S2666539524001111-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.oceram.2024.100645
MA Zaed , Jayesh Cherusseri , R. Saidur , K.H. Tan , A.K. Pandey
In this study, advanced solar steam technologies are explored for their potential applications in seawater desalination and wastewater purification. We have developed a three-dimensional photothermal evaporator using MXene, luffa sponge (LS), graphitic-carbon nitride (GCN) and activated carbon (AC). The hierarchical Ti3C2Tx MXene/GCN/AC@LS composite photothermal evaporator exhibits superior thermostability, pH stability, and mechanical durability. The Ti3C2Tx MXene/GCN/AC@LS composite evaporator having a dimension of 1.25 cm displays excellent performance, leading to a high evaporation rate of 2.6 kg m−2h−1 and a high solar-thermal conversion efficiency of 96 % under 1 sun illumination. This high efficiency is attributed to the good light absorption by the Ti3C2Tx MXene/GCN/AC@LS composite coupled with a better wetting through the internal microchannels of the LS, which envisages a faster water delivery and evaporation of water. The Ti3C2Tx MXene/GCN/AC@LS composite captures the residual heat from the sidewall surface as an additional source of energy.
{"title":"Synthesis and characterization of hierarchical Ti3C2Tx MXene/graphitic-carbon nitride/activated carbon@luffa sponge composite for enhanced water desalination","authors":"MA Zaed , Jayesh Cherusseri , R. Saidur , K.H. Tan , A.K. Pandey","doi":"10.1016/j.oceram.2024.100645","DOIUrl":"10.1016/j.oceram.2024.100645","url":null,"abstract":"<div><p>In this study, advanced solar steam technologies are explored for their potential applications in seawater desalination and wastewater purification. We have developed a three-dimensional photothermal evaporator using MXene, luffa sponge (LS), graphitic-carbon nitride (GCN) and activated carbon (AC). The hierarchical Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite photothermal evaporator exhibits superior thermostability, pH stability, and mechanical durability. The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite evaporator having a dimension of 1.25 cm displays excellent performance, leading to a high evaporation rate of 2.6 kg m<sup>−2</sup>h<sup>−1</sup> and a high solar-thermal conversion efficiency of 96 % under 1 sun illumination. This high efficiency is attributed to the good light absorption by the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite coupled with a better wetting through the internal microchannels of the LS, which envisages a faster water delivery and evaporation of water. The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite captures the residual heat from the sidewall surface as an additional source of energy.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001093/pdfft?md5=a26a03f564d0b3c4dc485cbb6fd263c8&pid=1-s2.0-S2666539524001093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.oceram.2024.100646
Alexandra C. Austin , Amy J. Knorpp , Jon G. Bell , Huw Shiel , Luca Artiglia , Katharina Marquardt , Michael Stuer
A barium-based perovskite structured ceramic with five different B-site cations was prepared by a solid-state synthesis method. The phase and chemical homogeneity of the synthesised material was verified using x-ray diffraction and energy dispersive x-ray spectroscopy, showing the successful synthesis of a single-phase perovskite structure with Ba A-site and Ti, Hf, Zr, Y, Nb, B-site cations. Ultra-high vacuum x-ray photoelectron spectroscopy was used to reveal the valence states of the constituent elements. Conventional, two-step and spark plasma sintering were used to form dense pellets with limited grain growth. The room temperature electrical characteristics of the sintered pellets were investigated by electrochemical impedance spectroscopy where a conductivity increase of two orders of magnitude was observed in a water-bearing atmosphere. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy performed under water-bearing and dry conditions suggest that the conductivity increase is related to the incorporation of hydroxyl groups into the perovskite structure.
通过固态合成法制备了含有五种不同 B 位阳离子的钡基包晶结构陶瓷。利用 X 射线衍射和能量色散 X 射线光谱验证了合成材料的相位和化学均匀性,结果表明成功合成了具有 Ba A 位和 Ti、Hf、Zr、Y、Nb、B 位阳离子的单相透辉石结构。利用超高真空 X 射线光电子能谱揭示了组成元素的价态。采用传统烧结、两步烧结和火花等离子烧结法形成了晶粒生长有限的致密颗粒。烧结颗粒的室温电特性通过电化学阻抗光谱进行了研究,在含水环境中,电导率提高了两个数量级。在含水和干燥条件下进行的同步辐射环境压力 X 射线光电子能谱分析表明,电导率的提高与羟基加入到包晶结构中有关。
{"title":"Synthesis of B-site high-entropy BaTi0.2Hf0.2Zr0.2Y0.2Nb0.2O3 with water sensing properties","authors":"Alexandra C. Austin , Amy J. Knorpp , Jon G. Bell , Huw Shiel , Luca Artiglia , Katharina Marquardt , Michael Stuer","doi":"10.1016/j.oceram.2024.100646","DOIUrl":"10.1016/j.oceram.2024.100646","url":null,"abstract":"<div><p>A barium-based perovskite structured ceramic with five different B-site cations was prepared by a solid-state synthesis method. The phase and chemical homogeneity of the synthesised material was verified using x-ray diffraction and energy dispersive x-ray spectroscopy, showing the successful synthesis of a single-phase perovskite structure with Ba A-site and Ti, Hf, Zr, Y, Nb, B-site cations. Ultra-high vacuum x-ray photoelectron spectroscopy was used to reveal the valence states of the constituent elements. Conventional, two-step and spark plasma sintering were used to form dense pellets with limited grain growth. The room temperature electrical characteristics of the sintered pellets were investigated by electrochemical impedance spectroscopy where a conductivity increase of two orders of magnitude was observed in a water-bearing atmosphere. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy performed under water-bearing and dry conditions suggest that the conductivity increase is related to the incorporation of hydroxyl groups into the perovskite structure.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653952400110X/pdfft?md5=e7ce818e7f6e9335419cc56276e9911f&pid=1-s2.0-S266653952400110X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Managing the vast quantities of waste constantly generated by mining activities is one of the major environmental and economic problems facing mankind today. Fluorapatite is separated from the associated gangue minerals by a series of crushing and screening, washing, and flotation processes. These processes produce a significant amount of phosphate sludge, which is stored on the mine site in drift rock and large surface ponds. One possible environmental option is to reuse it as an alternative raw material in ceramics and building materials. Consequently, two phosphate sludges from two different Moroccan towns, Youssoufia and Khouribga, were studied. Due to the complexity of these raw materials resulting from long geological processes, in-depth physical, chemical, mineralogical, and thermal characterization is required. Dry compressed powder pellets were sintered at 900 °C, 1000 °C, and 1100 °C for 2 h. The study focuses on the effect of sintering temperature on mineralogical transformations and ceramic properties such as apparent porosity, water absorption, and mechanical strength. At 1100 °C, a slight increase in density was observed for both phosphate sludges. Water absorption was reduced by 2.51 % in both sludges for pellets sintered at 1100 °C compared to those sintered at 900 °C. Mechanical strength improved significantly, with an increase of about 60 % for samples sintered at 1100 °C, recording 227 N for Youssoufia sludge and 247 N for Khouribga sludge. This work has provided new data on the physical, chemical, mineralogical, and thermal changes in ceramics as the sintering temperature increases. These data will be useful for the manufacture of high-value ceramics.
管理采矿活动不断产生的大量废物是当今人类面临的主要环境和经济问题之一。萤石是通过一系列的破碎、筛选、洗涤和浮选过程从相关的矸石矿物中分离出来的。这些过程会产生大量磷酸盐污泥,这些污泥被储存在矿区的漂流岩和大型地表池塘中。一个可行的环保方案是将其作为陶瓷和建筑材料的替代原料进行再利用。因此,我们对来自摩洛哥两个不同城镇(尤苏菲亚和胡里卜加)的两种磷酸盐污泥进行了研究。由于这些原材料的复杂性来自于漫长的地质过程,因此需要对其进行深入的物理、化学、矿物学和热学表征。研究重点是烧结温度对矿物学转变和陶瓷特性(如表观孔隙率、吸水性和机械强度)的影响。在 1100 °C 下,两种磷酸盐淤泥的密度都略有增加。与在 900 °C 下烧结的颗粒相比,在 1100 °C 下烧结的颗粒的吸水率降低了 2.51%。机械强度明显提高,在 1100 °C 下烧结的样品机械强度提高了约 60%,Youssoufia 淤泥的机械强度为 227 N,Khouribga 淤泥的机械强度为 247 N。这项工作提供了有关陶瓷在烧结温度升高时的物理、化学、矿物学和热变化的新数据。这些数据将有助于制造高价值陶瓷。
{"title":"Sustainable valorization of mining waste: Phosphate sludge repurposing for advanced ceramic production","authors":"Mohamed Amine Harech , Imane Anasser , Tariq Labbilta , Younes Abouliatim , Youssef El Hafiane , Lahbib Nibou , Agnès Smith , Mohamed Mesnaoui","doi":"10.1016/j.oceram.2024.100640","DOIUrl":"10.1016/j.oceram.2024.100640","url":null,"abstract":"<div><p>Managing the vast quantities of waste constantly generated by mining activities is one of the major environmental and economic problems facing mankind today. Fluorapatite is separated from the associated gangue minerals by a series of crushing and screening, washing, and flotation processes. These processes produce a significant amount of phosphate sludge, which is stored on the mine site in drift rock and large surface ponds. One possible environmental option is to reuse it as an alternative raw material in ceramics and building materials. Consequently, two phosphate sludges from two different Moroccan towns, Youssoufia and Khouribga, were studied. Due to the complexity of these raw materials resulting from long geological processes, in-depth physical, chemical, mineralogical, and thermal characterization is required. Dry compressed powder pellets were sintered at 900 °C, 1000 °C, and 1100 °C for 2 h. The study focuses on the effect of sintering temperature on mineralogical transformations and ceramic properties such as apparent porosity, water absorption, and mechanical strength. At 1100 °C, a slight increase in density was observed for both phosphate sludges. Water absorption was reduced by 2.51 % in both sludges for pellets sintered at 1100 °C compared to those sintered at 900 °C. Mechanical strength improved significantly, with an increase of about 60 % for samples sintered at 1100 °C, recording 227 N for Youssoufia sludge and 247 N for Khouribga sludge. This work has provided new data on the physical, chemical, mineralogical, and thermal changes in ceramics as the sintering temperature increases. These data will be useful for the manufacture of high-value ceramics.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001044/pdfft?md5=188f9c9ff352ee90b4788bcf7a6cd79e&pid=1-s2.0-S2666539524001044-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.oceram.2024.100644
Mickael Coëffe Desvaux , Andréas Flaureau , Nicolas Pradeilles , Olivier Rapaud , Sophie Beaudet Savignat , Alexandre Maître
Silicon nitride and boron nitride (Si3N4/h-BN) based ceramic composites were prepared by Spark Plasma Sintering (SPS) using aluminium oxide (Al2O3) and/or yttrium oxide (Y2O3) as sintering additives. The amount of h-BN introduced varied from 0 vol.% to 20 vol.% in order to study its influence on ceramic properties. In the same way, the amount of oxide additives has been controlled and the influence of the additive's nature on the final properties has been underlined. The sintering temperature has been selected in order to obtain equivalent relative densities. The formation of β-SiAlON has been underlined by XRD and TEM analysis. Moreover, due to the fast-sintering process, amorphous secondary phase has been formed. Mechanical properties (hardness, fracture toughness, Young modulus) and thermal diffusivity have been evaluated. It appears that the nature of the oxide additive used plays an important role on the mechanical and thermal behaviour of Si3N4/h-BN composites.
{"title":"Spark plasma sintering of silicon(oxy-)nitride/boron nitride composites and their subsequent thermo-physical properties","authors":"Mickael Coëffe Desvaux , Andréas Flaureau , Nicolas Pradeilles , Olivier Rapaud , Sophie Beaudet Savignat , Alexandre Maître","doi":"10.1016/j.oceram.2024.100644","DOIUrl":"10.1016/j.oceram.2024.100644","url":null,"abstract":"<div><p>Silicon nitride and boron nitride (Si<sub>3</sub>N<sub>4</sub>/h-BN) based ceramic composites were prepared by Spark Plasma Sintering (SPS) using aluminium oxide (Al<sub>2</sub>O<sub>3</sub>) and/or yttrium oxide (Y<sub>2</sub>O<sub>3</sub>) as sintering additives. The amount of h-BN introduced varied from 0 vol.% to 20 vol.% in order to study its influence on ceramic properties. In the same way, the amount of oxide additives has been controlled and the influence of the additive's nature on the final properties has been underlined. The sintering temperature has been selected in order to obtain equivalent relative densities. The formation of β-SiAlON has been underlined by XRD and TEM analysis. Moreover, due to the fast-sintering process, amorphous secondary phase has been formed. Mechanical properties (hardness, fracture toughness, Young modulus) and thermal diffusivity have been evaluated. It appears that the nature of the oxide additive used plays an important role on the mechanical and thermal behaviour of Si<sub>3</sub>N<sub>4</sub>/h-BN composites.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001081/pdfft?md5=cf640340a5c66d1beb4cd353ce694e7f&pid=1-s2.0-S2666539524001081-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141690508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.oceram.2024.100641
Kazuyuki Kohama
This study proposes the use of Al-added Si–Mg composite fillers for low-temperature joining of SiC while maintaining high-temperature reliability of the joints. SiC was brazed at 1100 °C using the fillers with various compositions, based on Mg-evaporation-induced isothermal solidification of Si. The interfacial microstructure and mechanical properties of the joint were determined for different Al and Mg compositions in the filler. The added Al promoted Mg evaporation during joining, which increased the joint strength by mitigating the brittleness of the Si-based bonding layers. However, metallic Al remained in the bonding layers, which deteriorated the high-temperature joint strength. Higher Mg and Al concentrations in the filler promoted MgAl2O4 formation in the bonding layers that correlated with Al particle refinement. This contributed to an improvement of the joint properties, with the flexural strength at 1200 °C in air exceeding 60 MPa.
本研究提出使用添加了铝的硅镁复合填料来实现碳化硅的低温连接,同时保持接头的高温可靠性。在镁蒸发诱导硅等温凝固的基础上,使用不同成分的填料在 1100 °C 下对碳化硅进行钎焊。针对填料中不同的铝和镁成分,测定了接头的界面微观结构和机械性能。添加的铝促进了接合过程中的镁蒸发,从而减轻了基于硅的接合层的脆性,提高了接合强度。然而,金属铝残留在接合层中,降低了高温接合强度。填料中较高的镁和铝浓度促进了结合层中 MgAl2O4 的形成,这与铝颗粒的细化有关。这有助于改善接头性能,在 1200 °C 空气中的抗弯强度超过 60 兆帕。
{"title":"Compositional effects of Si–Mg–Al composite fillers on the interfacial microstructure and high-temperature strength of SiC/SiC brazed joints","authors":"Kazuyuki Kohama","doi":"10.1016/j.oceram.2024.100641","DOIUrl":"10.1016/j.oceram.2024.100641","url":null,"abstract":"<div><p>This study proposes the use of Al-added Si–Mg composite fillers for low-temperature joining of SiC while maintaining high-temperature reliability of the joints. SiC was brazed at 1100 °C using the fillers with various compositions, based on Mg-evaporation-induced isothermal solidification of Si. The interfacial microstructure and mechanical properties of the joint were determined for different Al and Mg compositions in the filler. The added Al promoted Mg evaporation during joining, which increased the joint strength by mitigating the brittleness of the Si-based bonding layers. However, metallic Al remained in the bonding layers, which deteriorated the high-temperature joint strength. Higher Mg and Al concentrations in the filler promoted MgAl<sub>2</sub>O<sub>4</sub> formation in the bonding layers that correlated with Al particle refinement. This contributed to an improvement of the joint properties, with the flexural strength at 1200 °C in air exceeding 60 MPa.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001056/pdfft?md5=616f4e40cccd88b127dbccf8301a6ead&pid=1-s2.0-S2666539524001056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This in vitro study examines the electrochemical responses and surface degradation of alumina and feldspar dental ceramic materials in acidic environments using cyclic polarization and electrochemical impedance spectroscopy (EIS). Alumina and feldspar demonstrate balanced responses in both Fusayama Artificial Saliva and acidic solutions, indicating effective passivation. SEM/EDX analyses after 168-h immersion reveal significant elemental variations, suggesting complex surface phenomena and chemical reactions leading to oxide layer formation. Alumina exhibits increased Si, O, Al, Na, K, and C counts, while feldspar shows increased Si, O, Al, Na with reduced C and Ca levels, indicating complex reactions. Immersion induces notable elemental composition modifications, with alumina showing remarkable corrosion resistance and feldspar undergoing selective dissolution. This study provides insights into the electrochemical and surface degradation of these materials, emphasizing long-term stability and the need for continuous monitoring of protective layer dynamics in future research on corrosion-resistant dental biomaterials.
这项体外研究采用循环极化和电化学阻抗谱(EIS)技术,考察了氧化铝和长石牙科陶瓷材料在酸性环境中的电化学反应和表面降解情况。氧化铝和长石在 Fusayama 人工唾液和酸性溶液中都表现出平衡的反应,表明它们得到了有效的钝化。浸泡 168 小时后进行的 SEM/EDX 分析显示出显著的元素变化,表明氧化层形成的表面现象和化学反应十分复杂。氧化铝的 Si、O、Al、Na、K 和 C 含量增加,而长石的 Si、O、Al、Na 含量增加,C 和 Ca 含量减少,表明发生了复杂的反应。浸泡会引起明显的元素组成变化,氧化铝表现出显著的耐腐蚀性,而长石则会发生选择性溶解。这项研究深入揭示了这些材料的电化学和表面降解过程,强调了其长期稳定性以及在未来耐腐蚀牙科生物材料研究中持续监测保护层动态的必要性。
{"title":"Electrochemical responses and surface degradation analyses alumina and feldspar dental materials in acidic environments: A comprehensive in vitro study","authors":"Soraya Lakhloufi , Najoua Labjar , Houda Labjar , Abdelouahed Dahrouch , Souad El Hajjaji","doi":"10.1016/j.oceram.2024.100643","DOIUrl":"10.1016/j.oceram.2024.100643","url":null,"abstract":"<div><p>This in vitro study examines the electrochemical responses and surface degradation of alumina and feldspar dental ceramic materials in acidic environments using cyclic polarization and electrochemical impedance spectroscopy (EIS). Alumina and feldspar demonstrate balanced responses in both Fusayama Artificial Saliva and acidic solutions, indicating effective passivation. SEM/EDX analyses after 168-h immersion reveal significant elemental variations, suggesting complex surface phenomena and chemical reactions leading to oxide layer formation. Alumina exhibits increased Si, O, Al, Na, K, and C counts, while feldspar shows increased Si, O, Al, Na with reduced C and Ca levels, indicating complex reactions. Immersion induces notable elemental composition modifications, with alumina showing remarkable corrosion resistance and feldspar undergoing selective dissolution. This study provides insights into the electrochemical and surface degradation of these materials, emphasizing long-term stability and the need for continuous monitoring of protective layer dynamics in future research on corrosion-resistant dental biomaterials.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653952400107X/pdfft?md5=ae48e2c25ed8da97e0a6032b3135ecba&pid=1-s2.0-S266653952400107X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.oceram.2024.100642
Xinjian He , Shengjuan Li , Mingxue Deng , Yangmin Tang , Machao Wang , Cheng Wang , Zhenzhen Zhou , Jiang Li , Jiacheng Wang
Filling the cyan gap is the key element in achieving full-spectrum illumination using violet chip to excite red, green and blue phosphors. However, designing cyan phosphors suitable for violet light excitation with excellent performance remains challenging. Herein, a novel cyan phosphor Ba9Lu2-x-nSi6O24:xCe (n-BLS:Ce) with multiple crystal sites of Ba2+ and Lu3+ for Ce3+ ions was designed and prepared via crystal-site engineering. The Ce3+ ions at Ba2+ sites emit ultraviolet light at 385 nm under 325 nm ultraviolet light excitation, and the Ce3+ ions at Lu3+ sites emit cyan light at 485 nm under 395 nm violet light excitation. The favorable occupation of Ce3+ ions at Lu3+ sites could be realized by introducing Lu vacancies. Significantly, the cyan light emission intensity of Ba9Lu1.4Si6O24:0.3Ce (n0.3-BLS:Ce) with Lu vacancies is effectively improved by 47 % compared to Ba9Lu1.7Si6O24:0.3Ce (n0-BLS:Ce) without Lu vacancies. And the emission intensity at 150 °C retains 96 % of that at room temperature. The color rendering index increases from 87.9 to 94.5 after supplementing Ba9Lu2-x-nSi6O24:xCe cyan phosphor in w-LEDs devices combining commercial red, green, and blue phosphors with a violet chip, indicating its potential practical application in full-spectrum lighting. This work also provides new ideas for the design and development of new and efficient high-quality light-emitting materials.
{"title":"Enhancing the cyan light emission of Ba9Lu2Si6O24:Ce phosphors by crystal-site engineering for full spectrum lighting","authors":"Xinjian He , Shengjuan Li , Mingxue Deng , Yangmin Tang , Machao Wang , Cheng Wang , Zhenzhen Zhou , Jiang Li , Jiacheng Wang","doi":"10.1016/j.oceram.2024.100642","DOIUrl":"10.1016/j.oceram.2024.100642","url":null,"abstract":"<div><p>Filling the cyan gap is the key element in achieving full-spectrum illumination using violet chip to excite red, green and blue phosphors. However, designing cyan phosphors suitable for violet light excitation with excellent performance remains challenging. Herein, a novel cyan phosphor Ba<sub>9</sub>Lu<sub>2-x-n</sub>Si<sub>6</sub>O<sub>24</sub>:xCe (n-BLS:Ce) with multiple crystal sites of Ba<sup>2+</sup> and Lu<sup>3+</sup> for Ce<sup>3+</sup> ions was designed and prepared via crystal-site engineering. The Ce<sup>3+</sup> ions at Ba<sup>2+</sup> sites emit ultraviolet light at 385 nm under 325 nm ultraviolet light excitation, and the Ce<sup>3+</sup> ions at Lu<sup>3+</sup> sites emit cyan light at 485 nm under 395 nm violet light excitation. The favorable occupation of Ce<sup>3+</sup> ions at Lu<sup>3+</sup> sites could be realized by introducing Lu vacancies. Significantly, the cyan light emission intensity of Ba<sub>9</sub>Lu<sub>1.4</sub>Si<sub>6</sub>O<sub>24</sub>:0.3Ce (n<sub>0.3</sub>-BLS:Ce) with Lu vacancies is effectively improved by 47 % compared to Ba<sub>9</sub>Lu<sub>1.7</sub>Si<sub>6</sub>O<sub>24</sub>:0.3Ce (n<sub>0</sub>-BLS:Ce) without Lu vacancies. And the emission intensity at 150 °C retains 96 % of that at room temperature. The color rendering index increases from 87.9 to 94.5 after supplementing Ba<sub>9</sub>Lu<sub>2-x-n</sub>Si<sub>6</sub>O<sub>24</sub>:xCe cyan phosphor in w-LEDs devices combining commercial red, green, and blue phosphors with a violet chip, indicating its potential practical application in full-spectrum lighting. This work also provides new ideas for the design and development of new and efficient high-quality light-emitting materials.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001068/pdfft?md5=ffcbac94ff86010631ff54ae1f64e0b9&pid=1-s2.0-S2666539524001068-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.oceram.2024.100639
Y.C. Lan , Z.M. Grady , S. Dursun , E.D. Gomez , C.A. Randall
Cold sintering is a recently introduced densification method that is of interest due to the lower energy used in the process, the ability to densify metastable materials, the ability to integrate materials to develop unique composites, and the ability to synthesis materials that can be more easily recycled. Collectively, these advantages make cold sintering a promising approach for processing of battery components, and co-sintering into all solid-state batteries. To obtain high electrochemical performance with cold sintering, detailed control of the surface chemistry of powders is needed, to avoid or minimize the impact of carbonate formation in grain boundaries, and to limit concentrations of secondary phases that are a result of incongruent dissolution processes. In this paper, we outline the importance of surface chemical reactions of powders in cold sintering, and the mitigating processes that can be adopted to control these reactions and obtain high performance and unique opportunities for Li and Na-oxide secondary batteries. We focus on a series of examples that demonstrate how the control of low temperature densification (cold sintering) can address the environmental sensitivity of many battery materials, and highlight the issues faced and open questions. These examples include cold sintering of air-sensitive solid electrolytes, re-processing of crushed solid electrolytes, surface passivation of air-sensitive active materials for processing in air, and fabrication of solid-solid macroscopic interfaces for solid-state batteries.
{"title":"Controlling surface chemistry in cold sintering to advance battery materials","authors":"Y.C. Lan , Z.M. Grady , S. Dursun , E.D. Gomez , C.A. Randall","doi":"10.1016/j.oceram.2024.100639","DOIUrl":"10.1016/j.oceram.2024.100639","url":null,"abstract":"<div><p>Cold sintering is a recently introduced densification method that is of interest due to the lower energy used in the process, the ability to densify metastable materials, the ability to integrate materials to develop unique composites, and the ability to synthesis materials that can be more easily recycled. Collectively, these advantages make cold sintering a promising approach for processing of battery components, and co-sintering into all solid-state batteries. To obtain high electrochemical performance with cold sintering, detailed control of the surface chemistry of powders is needed, to avoid or minimize the impact of carbonate formation in grain boundaries, and to limit concentrations of secondary phases that are a result of incongruent dissolution processes. In this paper, we outline the importance of surface chemical reactions of powders in cold sintering, and the mitigating processes that can be adopted to control these reactions and obtain high performance and unique opportunities for Li and Na-oxide secondary batteries. We focus on a series of examples that demonstrate how the control of low temperature densification (cold sintering) can address the environmental sensitivity of many battery materials, and highlight the issues faced and open questions. These examples include cold sintering of air-sensitive solid electrolytes, re-processing of crushed solid electrolytes, surface passivation of air-sensitive active materials for processing in air, and fabrication of solid-solid macroscopic interfaces for solid-state batteries.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001032/pdfft?md5=6e4a525be2724c4e45b56f579d0c7846&pid=1-s2.0-S2666539524001032-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1016/j.oceram.2024.100638
Marta Rodrigo, María Fernanda Gazulla, Eulalia Zumaquero, Jorge González
The booming of the electric mobility together with the need of storing renewable energies have increased the demand of lithium-ion batteries which will bring about increasing amounts of electronic waste. Besides, the need for alternative sources of certain raw materials considered critical has changed the perception of determined wastes, which are no longer considered residues but sources of raw materials. In this work, the active cathode material present in end-of-life lithium-ion batteries (Ni, Co, and Mn) was used as secondary raw material, after being properly separated, in the synthesis of a cobalt iron nickel manganese chromium black spinel ((Co, Fe, Ni, Mn) (Fe,Cr)2O4). The pigment was used in the formulation of a ceramic inkjet ink which was deposited over a single-fired porous tile and porcelain tile. Texture and brightness of the ink were not affected by the use of this waste, thus presenting excellent prospects for the industrial ceramic application.
{"title":"Innovative ceramic pigments from recycled lithium-ion battery cathodes for inkjet applications","authors":"Marta Rodrigo, María Fernanda Gazulla, Eulalia Zumaquero, Jorge González","doi":"10.1016/j.oceram.2024.100638","DOIUrl":"https://doi.org/10.1016/j.oceram.2024.100638","url":null,"abstract":"<div><p>The booming of the electric mobility together with the need of storing renewable energies have increased the demand of lithium-ion batteries which will bring about increasing amounts of electronic waste. Besides, the need for alternative sources of certain raw materials considered critical has changed the perception of determined wastes, which are no longer considered residues but sources of raw materials. In this work, the active cathode material present in end-of-life lithium-ion batteries (Ni, Co, and Mn) was used as secondary raw material, after being properly separated, in the synthesis of a cobalt iron nickel manganese chromium black spinel ((Co, Fe, Ni, Mn) (Fe,Cr)<sub>2</sub>O<sub>4</sub>). The pigment was used in the formulation of a ceramic inkjet ink which was deposited over a single-fired porous tile and porcelain tile. Texture and brightness of the ink were not affected by the use of this waste, thus presenting excellent prospects for the industrial ceramic application.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001020/pdfft?md5=ef6e512beb49e27aeb9298db98b07e89&pid=1-s2.0-S2666539524001020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}