首页 > 最新文献

Open Ceramics最新文献

英文 中文
Yttria-stabilised zirconia and lanthanum cerate granules with YSZ whiskers prepared by spray drying for thermal barrier coatings 通过喷雾干燥法制备用于热障涂层的含有 YSZ 晶须的钇稳定氧化锆和硫酸镧颗粒
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-09 DOI: 10.1016/j.oceram.2024.100694
Milan Parchovianský , Monika Michálková , Ivana Parchovianská , Beáta Pecušová , Dušan Galusek , Amirhossein Pakseresht
The aim of this study was to explore the effect of different solid phases and varied amounts of polyvinyl alcohol (PVA) on granule size of plasma-sprayable yttria-stabilised zirconia (YSZ) with YSZ whiskers (YSZ/W) and lanthanum cerate (La2Ce2O7, LC) with YSZ whiskers (LC/W) as composite powders. The initial phase of this study involved the preparation and optimization of a YSZ suspension using varying solid loadings of YSZ powder (ranging from 30 to 75 wt%) and PVA serving as both a binder and dispersant. The suspension was subjected to rigorous optimization procedures to meet the required standards. The suspensions were spray dried, and the resulting granulates were examined using SEM to determine their shape and size. The particle size of YSZ granules increased with increasing solid loading of YSZ in the suspension. The optimum amount of dispersant was found to be 1 wt% related to the weight of solid, while the solid loading was 75 wt% of YSZ. In some cases, excessive YSZ solid loading and dispersant impaired the formation of spherical granules. Composite YSZ/W and LC/W granules were also prepared with spherical, lemon, or irregular shapes, with the whiskers embedded in the YSZ or LC powder.
本研究的目的是探索不同固相和不同量的聚乙烯醇(PVA)对等离子体可喷涂钇稳定氧化锆(YSZ)与 YSZ 晶须(YSZ/W)和氰化镧(La2Ce2O7,LC)与 YSZ 晶须(LC/W)复合粉末粒度的影响。本研究的初始阶段包括制备和优化 YSZ 悬浮液,使用不同固含量的 YSZ 粉末(从 30% 到 75%)和 PVA 作为粘合剂和分散剂。悬浮液经过了严格的优化程序,以达到要求的标准。对悬浮液进行喷雾干燥,并使用 SEM 扫描仪对所得颗粒进行检查,以确定其形状和大小。随着悬浮液中 YSZ 固含量的增加,YSZ 颗粒的粒度也随之增大。研究发现,分散剂的最佳用量为固体重量的 1 wt%,而固体负载为 75 wt%的 YSZ。在某些情况下,过量的 YSZ 固体负载和分散剂会影响球形颗粒的形成。还制备出了球形、柠檬形或不规则形的 YSZ/W 和 LC/W 复合颗粒,晶须嵌入了 YSZ 或 LC 粉末中。
{"title":"Yttria-stabilised zirconia and lanthanum cerate granules with YSZ whiskers prepared by spray drying for thermal barrier coatings","authors":"Milan Parchovianský ,&nbsp;Monika Michálková ,&nbsp;Ivana Parchovianská ,&nbsp;Beáta Pecušová ,&nbsp;Dušan Galusek ,&nbsp;Amirhossein Pakseresht","doi":"10.1016/j.oceram.2024.100694","DOIUrl":"10.1016/j.oceram.2024.100694","url":null,"abstract":"<div><div>The aim of this study was to explore the effect of different solid phases and varied amounts of polyvinyl alcohol (PVA) on granule size of plasma-sprayable yttria-stabilised zirconia (YSZ) with YSZ whiskers (YSZ/W) and lanthanum cerate (La<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub>, LC) with YSZ whiskers (LC/W) as composite powders. The initial phase of this study involved the preparation and optimization of a YSZ suspension using varying solid loadings of YSZ powder (ranging from 30 to 75 wt%) and PVA serving as both a binder and dispersant. The suspension was subjected to rigorous optimization procedures to meet the required standards. The suspensions were spray dried, and the resulting granulates were examined using SEM to determine their shape and size. The particle size of YSZ granules increased with increasing solid loading of YSZ in the suspension. The optimum amount of dispersant was found to be 1 wt% related to the weight of solid, while the solid loading was 75 wt% of YSZ. In some cases, excessive YSZ solid loading and dispersant impaired the formation of spherical granules. Composite YSZ/W and LC/W granules were also prepared with spherical, lemon, or irregular shapes, with the whiskers embedded in the YSZ or LC powder.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100694"},"PeriodicalIF":2.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved mechanical and tribological properties of (TiZrHfNbTa)C with the addition of silicon carbide whiskers 添加碳化硅晶须后 (TiZrHfNbTa)C 的机械和摩擦学特性得到改善
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-05 DOI: 10.1016/j.oceram.2024.100693
Lenka Ďaková , Alexandra Kovalčíková , Monika Hrubovčáková , Jana Andrejovská , František Kromka , Ján Dusza
Dense (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with up to 10 wt % SiC whisker were prepared by spark plasma sintering. The influence of SiCw on the microstructure development, mechanical and tribological properties has been investigated. Nanohardness of HEC and SiCw phases varied between 38 GPa and 40 GPa, and indentation modulus of elasticity was ∼605 GPa. The hardness of the composites increased from 22 GPa to 27 GPa and indentation fracture resistance from 3.55 MPa m1/2 to 4.59 MPa m1/2 with increasing SiCw content. The main toughening mechanisms were crack deflection, crack branching, and crack bridging. The system HEC +5 wt% of SiCw was found to possess the highest bending strength of 623 ± 25 MPa. The composites exhibited similar coefficients of frictions with around 0.3 and wear rates approximately 1.50 × 10−6 mm3/N⋅m at 5 N and 2.66 × 10−6 mm3/N⋅m at 25 N with positive influence of SiC phase on the wear mechanisms.
通过火花等离子烧结法制备了含有高达 10 wt % SiC 晶须的致密(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C。研究了 SiCw 对微结构发展、力学和摩擦学性能的影响。HEC 和 SiCw 相的纳米硬度介于 38 GPa 和 40 GPa 之间,压痕弹性模量为 605 GPa。随着 SiCw 含量的增加,复合材料的硬度从 22 GPa 增加到 27 GPa,抗压痕断裂性能从 3.55 MPa m1/2 增加到 4.59 MPa m1/2。主要的增韧机制是裂纹偏转、裂纹分支和裂纹桥接。研究发现,HEC +5 wt% SiCw 体系的弯曲强度最高,达到 623 ± 25 MPa。复合材料表现出相似的摩擦系数,约为 0.3,磨损率在 5 N 时约为 1.50 × 10-6 mm3/N-m,25 N 时约为 2.66 × 10-6 mm3/N-m,SiC 相对磨损机制有积极影响。
{"title":"Improved mechanical and tribological properties of (TiZrHfNbTa)C with the addition of silicon carbide whiskers","authors":"Lenka Ďaková ,&nbsp;Alexandra Kovalčíková ,&nbsp;Monika Hrubovčáková ,&nbsp;Jana Andrejovská ,&nbsp;František Kromka ,&nbsp;Ján Dusza","doi":"10.1016/j.oceram.2024.100693","DOIUrl":"10.1016/j.oceram.2024.100693","url":null,"abstract":"<div><div>Dense (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)C with up to 10 wt % SiC whisker were prepared by spark plasma sintering. The influence of SiC<sub>w</sub> on the microstructure development, mechanical and tribological properties has been investigated. Nanohardness of HEC and SiC<sub>w</sub> phases varied between 38 GPa and 40 GPa, and indentation modulus of elasticity was ∼605 GPa. The hardness of the composites increased from 22 GPa to 27 GPa and indentation fracture resistance from 3.55 MPa m<sup>1/2</sup> to 4.59 MPa m<sup>1/2</sup> with increasing SiC<sub>w</sub> content. The main toughening mechanisms were crack deflection, crack branching, and crack bridging. The system HEC +5 wt% of SiC<sub>w</sub> was found to possess the highest bending strength of 623 ± 25 MPa. The composites exhibited similar coefficients of frictions with around 0.3 and wear rates approximately 1.50 × 10<sup>−6</sup> mm<sup>3</sup>/N⋅m at 5 N and 2.66 × 10<sup>−6</sup> mm<sup>3</sup>/N⋅m at 25 N with positive influence of SiC phase on the wear mechanisms.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100693"},"PeriodicalIF":2.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting the circularity of ceramic materials through cold sintering of aggregates from construction and demolition waste 通过冷烧结建筑和拆迁废物骨料促进陶瓷材料的循环利用
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-02 DOI: 10.1016/j.oceram.2024.100692
Sonia Marín-Cortés , Mattia Biesuz , Aida Serrano , Emanuele De Bona , Esther Enríquez , José F. Fernández , Vincenzo M. Sglavo
A ceramic composition containing 95 wt% of construction and demolition waste-like material was consolidated by cold sintering process at 200 °C using KOH water solutions as the liquid medium. The relative density of the samples reaches ∼90 % of the theoretical one for process conditions of 600 MPa and 60 min. A post-annealing process at 1100 °C of the as-cold sintered samples causes a slight increase in the relative density and of their mechanical strength compared with conventionally sintered samples at 1100 °C and increases the shape factor of the Weibull distribution, thus increasing the reliability of the component. It is shown that cold sintering of the material avoids its high pyroplasticity, providing low shrinkage and reducing internal defects in the ceramic. This work represents the first exploration of the viability of manufacturing ceramic tiles with high recycled content contributing to the transition to a greener world.
以 KOH 水溶液为液体介质,在 200 °C 下通过冷烧结工艺固结了含有 95% 建筑和拆除废料类材料的陶瓷组合物。在 600 兆帕和 60 分钟的工艺条件下,样品的相对密度达到理论值的 90%。与传统的 1100 °C 烧结样品相比,在 1100 °C 下对冷烧结样品进行后退火处理可使相对密度和机械强度略有增加,并提高威布尔分布的形状系数,从而提高部件的可靠性。研究表明,材料的冷烧结可避免其较高的热塑性,提供较低的收缩率并减少陶瓷的内部缺陷。这项研究首次探索了制造高回收利用率瓷砖的可行性,有助于向绿色世界过渡。
{"title":"Promoting the circularity of ceramic materials through cold sintering of aggregates from construction and demolition waste","authors":"Sonia Marín-Cortés ,&nbsp;Mattia Biesuz ,&nbsp;Aida Serrano ,&nbsp;Emanuele De Bona ,&nbsp;Esther Enríquez ,&nbsp;José F. Fernández ,&nbsp;Vincenzo M. Sglavo","doi":"10.1016/j.oceram.2024.100692","DOIUrl":"10.1016/j.oceram.2024.100692","url":null,"abstract":"<div><div>A ceramic composition containing 95 wt% of construction and demolition waste-like material was consolidated by cold sintering process at 200 °C using KOH water solutions as the liquid medium. The relative density of the samples reaches ∼90 % of the theoretical one for process conditions of 600 MPa and 60 min. A post-annealing process at 1100 °C of the as-cold sintered samples causes a slight increase in the relative density and of their mechanical strength compared with conventionally sintered samples at 1100 °C and increases the shape factor of the Weibull distribution, thus increasing the reliability of the component. It is shown that cold sintering of the material avoids its high pyroplasticity, providing low shrinkage and reducing internal defects in the ceramic. This work represents the first exploration of the viability of manufacturing ceramic tiles with high recycled content contributing to the transition to a greener world.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100692"},"PeriodicalIF":2.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-friendly fabrication of ZnO-TiO2-rGO nanocomposite for efficient adsorption-assisted organic dyes elimination 以环保方式制备 ZnO-TiO2-rGO 纳米复合材料,用于高效吸附辅助去除有机染料
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-02 DOI: 10.1016/j.oceram.2024.100691
Md Elias , Ehsanur Rahman , Sonia Akter , Mohammad Awlad Hossain , Rumana A. Jahan , Md Nizam Uddin , Shakhawat H. Firoz
The growing interest in combining the photocatalytic properties of semiconductors like ZnO and TiO2 with the superior electron conduction capabilities of graphene has resulted in the successful synthesis of in-situ reduced graphene oxide (rGO) supported ZnO-TiO2 nanostructures through a simple microwave-assisted synthesis method. X-ray Diffraction Spectroscopy (XRD), Field Emission Scanning Electron Microscope (FESEM), UV–visible spectroscopy (UV–vis), and Fourier Transform Infrared Spectroscopy (FTIR) were employed to characterize structural, morphological and optical properties as well as surface functional groups of the synthesized products. The XRD measurements of our synthesized samples confirm both structural crystallinity and phase purity, while the FTIR analysis verifies the complete reduction of graphene oxide (GO) to reduced graphene oxide (rGO). The synthesized ternary nanocomposite ZnO-TiO2-rGO exhibited a remarkable 100 % adsorption-assisted removal efficiency for 20 mg/L methylene blue (MB) dye under ultraviolet light illumination within 120 min, along with a 56 % dye adsorption removal efficiency in the same time interval. In comparison, pure ZnO showed 0 % adsorption and only 31 % photocatalytic efficiency at the similar condition. Remarkably, the ZnO-TiO2-rGO nanocomposite exhibited exceptional photocatalytic activity mediated by adsorption, achieving complete degradation of MB dye within 5 min under sunlight irradiation. The photocatalytic efficiency and dye adsorption capacity were found to be significantly lower for the anionic dye methyl orange (MO) compared to the cationic MB dye. The study thoroughly investigated the influence of catalyst dose and initial dye concentration on photodegradation. The proposed mechanism indicates that the extensive surface area and numerous active sites on the rGO promote adsorption, which is then followed by degradation through the metal oxides. Overall, the results unveil that the microwave-assisted synthesis of ZnO-TiO2-rGO nanocomposite is a promising and environmentally friendly approach for efficiently degrading dyes from contaminated wastewater using both UV light and natural sunlight irradiation.
人们对将氧化锌和二氧化钛等半导体的光催化特性与石墨烯的卓越电子传导能力相结合的兴趣与日俱增,因此通过一种简单的微波辅助合成方法,成功合成了原位还原氧化石墨烯(rGO)支撑的氧化锌-二氧化钛纳米结构。我们采用了 X 射线衍射光谱(XRD)、场发射扫描电子显微镜(FESEM)、紫外可见光谱(UV-vis)和傅立叶变换红外光谱(FTIR)来表征合成产物的结构、形态和光学性质以及表面官能团。对合成样品的 XRD 测量证实了其结构结晶性和相纯度,而傅立叶变换红外光谱分析则验证了氧化石墨烯(GO)完全还原为还原型氧化石墨烯(rGO)。合成的三元纳米复合材料 ZnO-TiO2-rGO 在紫外光照射下,120 分钟内对 20 mg/L 亚甲基蓝(MB)染料的吸附去除率达到 100%,在相同时间间隔内对染料的吸附去除率达到 56%。相比之下,纯氧化锌在类似条件下的吸附率为 0%,光催化效率仅为 31%。值得注意的是,ZnO-TiO2-rGO 纳米复合材料在吸附作用的介导下表现出优异的光催化活性,在阳光照射下 5 分钟内就能完全降解 MB 染料。研究发现,与阳离子甲基橙(MO)相比,阴离子甲基橙(MO)的光催化效率和染料吸附能力明显较低。研究深入探讨了催化剂剂量和初始染料浓度对光降解的影响。提出的机理表明,rGO 上广泛的表面积和众多的活性位点促进了吸附,然后通过金属氧化物进行降解。总之,研究结果表明,微波辅助合成 ZnO-TiO2-rGO 纳米复合材料是一种利用紫外线和自然光照射高效降解受污染废水中染料的有前途的环保方法。
{"title":"Eco-friendly fabrication of ZnO-TiO2-rGO nanocomposite for efficient adsorption-assisted organic dyes elimination","authors":"Md Elias ,&nbsp;Ehsanur Rahman ,&nbsp;Sonia Akter ,&nbsp;Mohammad Awlad Hossain ,&nbsp;Rumana A. Jahan ,&nbsp;Md Nizam Uddin ,&nbsp;Shakhawat H. Firoz","doi":"10.1016/j.oceram.2024.100691","DOIUrl":"10.1016/j.oceram.2024.100691","url":null,"abstract":"<div><div>The growing interest in combining the photocatalytic properties of semiconductors like ZnO and TiO<sub>2</sub> with the superior electron conduction capabilities of graphene has resulted in the successful synthesis of in-situ reduced graphene oxide (rGO) supported ZnO-TiO<sub>2</sub> nanostructures through a simple microwave-assisted synthesis method. X-ray Diffraction Spectroscopy (XRD), Field Emission Scanning Electron Microscope (FESEM), UV–visible spectroscopy (UV–vis), and Fourier Transform Infrared Spectroscopy (FTIR) were employed to characterize structural, morphological and optical properties as well as surface functional groups of the synthesized products. The XRD measurements of our synthesized samples confirm both structural crystallinity and phase purity, while the FTIR analysis verifies the complete reduction of graphene oxide (GO) to reduced graphene oxide (rGO). The synthesized ternary nanocomposite ZnO-TiO<sub>2</sub>-rGO exhibited a remarkable 100 % adsorption-assisted removal efficiency for 20 mg/L methylene blue (MB) dye under ultraviolet light illumination within 120 min, along with a 56 % dye adsorption removal efficiency in the same time interval. In comparison, pure ZnO showed 0 % adsorption and only 31 % photocatalytic efficiency at the similar condition. Remarkably, the ZnO-TiO<sub>2</sub>-rGO nanocomposite exhibited exceptional photocatalytic activity mediated by adsorption, achieving complete degradation of MB dye within 5 min under sunlight irradiation. The photocatalytic efficiency and dye adsorption capacity were found to be significantly lower for the anionic dye methyl orange (MO) compared to the cationic MB dye. The study thoroughly investigated the influence of catalyst dose and initial dye concentration on photodegradation. The proposed mechanism indicates that the extensive surface area and numerous active sites on the rGO promote adsorption, which is then followed by degradation through the metal oxides. Overall, the results unveil that the microwave-assisted synthesis of ZnO-TiO<sub>2</sub>-rGO nanocomposite is a promising and environmentally friendly approach for efficiently degrading dyes from contaminated wastewater using both UV light and natural sunlight irradiation.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100691"},"PeriodicalIF":2.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vat photopolymerization of ultra-porous bioactive glass foams 超多孔生物活性玻璃泡沫的釜式光聚合反应
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-30 DOI: 10.1016/j.oceram.2024.100690
Francesco Baino , Federico Gaido , Roberta Gabrieli , Dario Alidoost , Alessandro Schiavi , Mehdi Mohammadi , Martin Schwentenwein , Dilshat Tulyaganov , Enrica Verné
The introduction of additive manufacturing technologies in the field of biomaterials science has opened new horizons for regenerative medicine. In this work, we pushed the potential of vat polymerization to the limit for fabricating ultra-porous bioactive SiO2-CaO-MgO-P2O5-CaF2-Na2O glass scaffolds with bone-like architectural characteristics. The tomographic reconstruction of an open-cell foam was used as input file to the printing system and reliably reproduced in all its exquisite details, as assessed by morphological analyses of sintered scaffolds (thickness of single struts 35 μm, exceptionally high porosity around 94 vol%, most pores with size from 500 to 900 μm). Immersion studies in simulated body fluid (SBF) revealed the apatite-forming ability (i.e., in vitro bioactivity) of the scaffolds, the surface of which started being coated by calcium phosphate after just 3 days from the beginning of the experiments. Taken together, these results show great promise for application of such scaffolds in bone defect repair.
在生物材料科学领域引入增材制造技术为再生医学开辟了新天地。在这项工作中,我们将大桶聚合的潜力发挥到了极致,制造出了具有类骨结构特征的超多孔生物活性 SiO2-CaO-MgO-P2O5-CaF2-Na2O 玻璃支架。开孔泡沫的层析重建被用作打印系统的输入文件,并通过烧结支架的形态分析(单个支柱的厚度为 35 μm,孔隙率极高,约为 94%,大多数孔的大小为 500 至 900 μm)可靠地再现了其所有精致的细节。在模拟体液(SBF)中进行的浸泡研究显示了支架的磷灰石形成能力(即体外生物活性),从实验开始到现在,仅用了 3 天时间,支架表面就开始被磷酸钙包覆。综上所述,这些结果表明这种支架在骨缺损修复中的应用前景广阔。
{"title":"Vat photopolymerization of ultra-porous bioactive glass foams","authors":"Francesco Baino ,&nbsp;Federico Gaido ,&nbsp;Roberta Gabrieli ,&nbsp;Dario Alidoost ,&nbsp;Alessandro Schiavi ,&nbsp;Mehdi Mohammadi ,&nbsp;Martin Schwentenwein ,&nbsp;Dilshat Tulyaganov ,&nbsp;Enrica Verné","doi":"10.1016/j.oceram.2024.100690","DOIUrl":"10.1016/j.oceram.2024.100690","url":null,"abstract":"<div><div>The introduction of additive manufacturing technologies in the field of biomaterials science has opened new horizons for regenerative medicine. In this work, we pushed the potential of vat polymerization to the limit for fabricating ultra-porous bioactive SiO<sub>2</sub>-CaO-MgO-P<sub>2</sub>O<sub>5</sub>-CaF<sub>2</sub>-Na<sub>2</sub>O glass scaffolds with bone-like architectural characteristics. The tomographic reconstruction of an open-cell foam was used as input file to the printing system and reliably reproduced in all its exquisite details, as assessed by morphological analyses of sintered scaffolds (thickness of single struts 35 μm, exceptionally high porosity around 94 vol%, most pores with size from 500 to 900 μm). Immersion studies in simulated body fluid (SBF) revealed the apatite-forming ability (i.e., in vitro bioactivity) of the scaffolds, the surface of which started being coated by calcium phosphate after just 3 days from the beginning of the experiments. Taken together, these results show great promise for application of such scaffolds in bone defect repair.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100690"},"PeriodicalIF":2.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion-exchange enhancement of borosilicate glass vials for pharmaceutical packaging 增强药品包装用硼硅玻璃瓶的离子交换性能
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-30 DOI: 10.1016/j.oceram.2024.100689
Ahmed Gamal Abd-Elsatar , Hamada Elsayed , Hana Kanková , Branislav Hruška , Jozef Kraxner , Enrico Bernardo , Dušan Galusek
Pharmaceutical containers for parenteral use, including vials, ampoules, prefilled syringes, and cartridges, are traditionally made of glass. However, the most commonly used type, borosilicate glass, is susceptible to issues such as breakage, corrosion, and delamination, which can jeopardize the safety and efficacy of the enclosed drugs. To address these concerns without compromising the visual or qualitative aspects of borosilicate medical glass vials, this study aimed at the enhancement of their mechanical, chemical, and corrosion resistance. A single ion exchange treatment (IET) in a salt bath of molten KNO3 at temperatures of 400, 450, and 500 °C for 2, 12, and 24 h was applied. The effects of the ion exchange process performed under different conditions were assessed by measuring Vickers hardness, crushing load, and chemical durability. The mechanical load required to crush full-body vials after the ion exchange process at 500 °C for 2, 12, and 24 h showed an increase in the applied force values (1650 ± 80, 2340 ± 80, and 2325 ± 40 N) compared to untreated vials (1157 ± 20 N).
No radial cracks were observed on the surface of treated glass vials after indentation, indicating the presence of compressive stresses that prevented the initiation and propagation of cracks. The EDS analysis confirmed an increase in potassium concentration and a decrease in sodium content near the surface of samples modified by ion exchange treatment. The treated samples showed appropriate chemical stability in different acidic, basic, and neutral solutions. Conspicuous changes are noticed in the Raman spectra after IET, specifically in the Qn species region. The results indicate the potential of the ion exchange treatment in enhancing the properties of borosilicate glass vials by relatively simple and easily scalable techniques.
肠外用药容器,包括小瓶、安瓿瓶、预灌装注射器和药筒,传统上都是由玻璃制成的。然而,最常用的硼硅酸盐玻璃容易出现破损、腐蚀和分层等问题,从而危及所装药物的安全性和有效性。为了在不影响硼硅医用玻璃瓶的外观和质量的前提下解决这些问题,本研究旨在增强其机械、化学和耐腐蚀性能。在 400、450 和 500 °C 的熔融 KNO3 盐浴中分别进行了 2、12 和 24 小时的离子交换处理(IET)。通过测量维氏硬度、压碎负荷和化学耐久性,评估了在不同条件下进行离子交换处理的效果。与未处理的玻璃瓶(1157 ± 20 N)相比,在 500 °C、2、12 和 24 小时的离子交换过程后,压碎全身玻璃瓶所需的机械载荷显示作用力值有所增加(1650 ± 80、2340 ± 80 和 2325 ± 40 N)。EDS 分析证实,经过离子交换处理的改性样品表面附近的钾浓度增加,钠含量减少。经过处理的样品在不同的酸性、碱性和中性溶液中表现出适当的化学稳定性。经离子交换处理后,拉曼光谱发生了明显变化,特别是在 Qn 物种区域。这些结果表明,离子交换处理在通过相对简单和易于扩展的技术提高硼硅玻璃瓶的性能方面具有潜力。
{"title":"Ion-exchange enhancement of borosilicate glass vials for pharmaceutical packaging","authors":"Ahmed Gamal Abd-Elsatar ,&nbsp;Hamada Elsayed ,&nbsp;Hana Kanková ,&nbsp;Branislav Hruška ,&nbsp;Jozef Kraxner ,&nbsp;Enrico Bernardo ,&nbsp;Dušan Galusek","doi":"10.1016/j.oceram.2024.100689","DOIUrl":"10.1016/j.oceram.2024.100689","url":null,"abstract":"<div><div>Pharmaceutical containers for parenteral use, including vials, ampoules, prefilled syringes, and cartridges, are traditionally made of glass. However, the most commonly used type, borosilicate glass, is susceptible to issues such as breakage, corrosion, and delamination, which can jeopardize the safety and efficacy of the enclosed drugs. To address these concerns without compromising the visual or qualitative aspects of borosilicate medical glass vials, this study aimed at the enhancement of their mechanical, chemical, and corrosion resistance. A single ion exchange treatment (IET) in a salt bath of molten KNO<sub>3</sub> at temperatures of 400, 450, and 500 °C for 2, 12, and 24 h was applied. The effects of the ion exchange process performed under different conditions were assessed by measuring Vickers hardness, crushing load, and chemical durability. The mechanical load required to crush full-body vials after the ion exchange process at 500 °C for 2, 12, and 24 h showed an increase in the applied force values (1650 ± 80, 2340 ± 80, and 2325 ± 40 N) compared to untreated vials (1157 ± 20 N).</div><div>No radial cracks were observed on the surface of treated glass vials after indentation, indicating the presence of compressive stresses that prevented the initiation and propagation of cracks. The EDS analysis confirmed an increase in potassium concentration and a decrease in sodium content near the surface of samples modified by ion exchange treatment. The treated samples showed appropriate chemical stability in different acidic, basic, and neutral solutions. Conspicuous changes are noticed in the Raman spectra after IET, specifically in the Q<sub>n</sub> species region. The results indicate the potential of the ion exchange treatment in enhancing the properties of borosilicate glass vials by relatively simple and easily scalable techniques.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100689"},"PeriodicalIF":2.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of polycrystalline Ta₂O₅ inverse opal photonic crystal powders and their optical characterization 多晶 Ta₂O₅ 逆乳白光子晶体粉末的合成及其光学表征
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-30 DOI: 10.1016/j.oceram.2024.100688
Taiki Maekawa , Hiroyuki Maekawa , Yuto Ikeda , Tomoya Onoe , Geoffrey I.N. Waterhouse , Kei-ichiro Murai , Toshihiro Moriga
Polycrystalline Ta2O5 inverse opal (IO) photonic crystal powders were synthesized using PMMA colloidal crystals as sacrificial templates. We prepared Ta2O5 IO powders with vibrant structural colors at UV–vis wavelengths. The photonic bandgaps (PBGs) in the Ta2O5 IO powders red-shifted as a function of both the macropore diameter and the refractive index of the medium filling the macropores. Owing to their polycrystalline structure, the Ta2O5 IO powders exposed PBGs for various FCC facets, making investigation of their optical properties significantly more complex than Ta2O5 IO thin films that preferentially expose only (111) planes as studied previously. Due to the overlap of the PBGs from different FCC facets and the defects that cause light scattering, much of the typical angle-dependent structural color observed in IO thin films was lost in the Ta2O5 IO powders. This study offers new insights into the optical properties of IO powders.
以 PMMA 胶体晶体为牺牲模板合成了多晶 Ta2O5 反蛋白石(IO)光子晶体粉末。我们制备的 Ta2O5 IO 粉末在紫外可见光波长下具有鲜艳的结构颜色。Ta2O5 IO 粉末中的光子带隙 (PBG) 随大孔直径和填充大孔的介质折射率的变化而发生红移。由于其多晶结构,Ta2O5 IO 粉末暴露出各种 FCC 面的 PBG,这使得对其光学特性的研究要比之前研究的只优先暴露出 (111) 面的 Ta2O5 IO 薄膜复杂得多。由于不同 FCC 面的 PBG 重叠以及导致光散射的缺陷,在 IO 薄膜中观察到的典型的随角度变化的结构颜色在 Ta2O5 IO 粉末中大部分都消失了。这项研究为了解 IO 粉末的光学特性提供了新的视角。
{"title":"Synthesis of polycrystalline Ta₂O₅ inverse opal photonic crystal powders and their optical characterization","authors":"Taiki Maekawa ,&nbsp;Hiroyuki Maekawa ,&nbsp;Yuto Ikeda ,&nbsp;Tomoya Onoe ,&nbsp;Geoffrey I.N. Waterhouse ,&nbsp;Kei-ichiro Murai ,&nbsp;Toshihiro Moriga","doi":"10.1016/j.oceram.2024.100688","DOIUrl":"10.1016/j.oceram.2024.100688","url":null,"abstract":"<div><div>Polycrystalline Ta<sub>2</sub>O<sub>5</sub> inverse opal (IO) photonic crystal powders were synthesized using PMMA colloidal crystals as sacrificial templates. We prepared Ta<sub>2</sub>O<sub>5</sub> IO powders with vibrant structural colors at UV–vis wavelengths. The photonic bandgaps (PBGs) in the Ta<sub>2</sub>O<sub>5</sub> IO powders red-shifted as a function of both the macropore diameter and the refractive index of the medium filling the macropores. Owing to their polycrystalline structure, the Ta<sub>2</sub>O<sub>5</sub> IO powders exposed PBGs for various FCC facets, making investigation of their optical properties significantly more complex than Ta<sub>2</sub>O<sub>5</sub> IO thin films that preferentially expose only (111) planes as studied previously. Due to the overlap of the PBGs from different FCC facets and the defects that cause light scattering, much of the typical angle-dependent structural color observed in IO thin films was lost in the Ta<sub>2</sub>O<sub>5</sub> IO powders. This study offers new insights into the optical properties of IO powders.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100688"},"PeriodicalIF":2.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the durability performance of geopolymer concrete utilizing fly ash and sugarcane bagasse ash as sustainable binders 评估利用粉煤灰和甘蔗渣灰作为可持续粘合剂的土工聚合物混凝土的耐久性能
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-26 DOI: 10.1016/j.oceram.2024.100687
Mohammed Ali M. Rihan , Richard Ocharo Onchiri , Naftary Gathimba , Bernadette Sabuni
Geopolymer or alkali-activated binders are being recognized as an eco-friendly, sustainable substitute for ordinary Portland cement (OPC). The development of high-performance concrete with improved durability and mechanical properties and the addition of environmentally friendly components is a continuous effort. Therefore, the current work examines the durability of fly ash-sugarcane bagasse ash mechanical characteristics in terms of water absorption, exposure to elevated temperatures, and acid resistance. The mechanical properties of the geopolymer concrete (GPC) and OPC concrete specimens were evaluated after being subjected to elevated temperatures of 200 °C, 400 °C, 600 °C, and 800 °C. The acid resistance was determined by submerging the concrete specimens in 3 % sulfuric acid (H2SO4). The acid resistance of the specimens was evaluated through visual inspection, weight variation, and the percentage loss in compressive strength (CR). According to the study, CR typically drops as temperature increases from ambient temperature to 800 °C. However, the rate of decline reduced as temperature increased from ambient temperature to 200 °C. Moreover, the GPC specimens showed a strength loss between 13 % and 21 % following 28 days of sulfuric acid immersion. In contrast, exposure to sulfuric acid caused a 51 % drop in strength for the OPC concrete samples.
土工聚合物或碱活性粘结剂被认为是一种环保、可持续的普通硅酸盐水泥(OPC)替代品。开发具有更好耐久性和机械性能的高性能混凝土并添加环保成分是一项持续的工作。因此,目前的工作从吸水性、暴露于高温和耐酸性等方面研究了粉煤灰-甘蔗渣灰的耐久性机械特性。在 200 ℃、400 ℃、600 ℃ 和 800 ℃ 的高温条件下,对土工聚合物混凝土(GPC)和 OPC 混凝土试样的力学性能进行了评估。将混凝土试样浸没在 3% 的硫酸(H2SO4)中测定其耐酸性。通过目测、重量变化和抗压强度(CR)损失百分比来评估试样的耐酸性。研究表明,抗压强度通常会随着温度从环境温度升高到 800 °C 而下降。然而,随着温度从环境温度升高到 200 °C,下降率有所降低。此外,GPC 试样在硫酸浸泡 28 天后,强度下降了 13% 到 21%。相比之下,暴露在硫酸中会导致 OPC 混凝土试样强度下降 51%。
{"title":"Assessing the durability performance of geopolymer concrete utilizing fly ash and sugarcane bagasse ash as sustainable binders","authors":"Mohammed Ali M. Rihan ,&nbsp;Richard Ocharo Onchiri ,&nbsp;Naftary Gathimba ,&nbsp;Bernadette Sabuni","doi":"10.1016/j.oceram.2024.100687","DOIUrl":"10.1016/j.oceram.2024.100687","url":null,"abstract":"<div><div>Geopolymer or alkali-activated binders are being recognized as an eco-friendly, sustainable substitute for ordinary Portland cement (OPC). The development of high-performance concrete with improved durability and mechanical properties and the addition of environmentally friendly components is a continuous effort. Therefore, the current work examines the durability of fly ash-sugarcane bagasse ash mechanical characteristics in terms of water absorption, exposure to elevated temperatures, and acid resistance. The mechanical properties of the geopolymer concrete (GPC) and OPC concrete specimens were evaluated after being subjected to elevated temperatures of 200 °C, 400 °C, 600 °C, and 800 °C. The acid resistance was determined by submerging the concrete specimens in 3 % sulfuric acid (H<sub>2</sub>SO<sub>4</sub>). The acid resistance of the specimens was evaluated through visual inspection, weight variation, and the percentage loss in compressive strength (C<sub>R</sub>). According to the study, C<sub>R</sub> typically drops as temperature increases from ambient temperature to 800 °C. However, the rate of decline reduced as temperature increased from ambient temperature to 200 °C. Moreover, the GPC specimens showed a strength loss between 13 % and 21 % following 28 days of sulfuric acid immersion. In contrast, exposure to sulfuric acid caused a 51 % drop in strength for the OPC concrete samples.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100687"},"PeriodicalIF":2.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influences of additives on the properties of geopolymer matrix composites (GMCS) for high-temperature applications (1150 °C) 添加剂对高温应用(1150 ℃)土工聚合物基复合材料(GMCS)性能的影响
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-21 DOI: 10.1016/j.oceram.2024.100685
Quentin Cligny , Ameni Gharzouni , Patrice Duport , Damien Brandt , Sylvie Rossignol
In this study, the influence of different additives on a geopolymer matrix composite (GMC) was explored as an alternative to a ceramic matrix composite (CMC) for thermostructural applications. Different GMCs using an N610 textile (10 × 10 cm2) and various additives (SrCO3, BaCO3, BaSO4, MgO and Al2O3 and mullite-rich powder) were cured under 6 MPa at 120 °C for 2 h. The mechanical, microstructural and structural data of the composites were compared with those of the geopolymer matrix after thermal treatment at 1150 °C. The results showed that the addition of alkali-earth barium carbonate or sulfate to the geopolymer matrix facilitated the formation of alkali-earth aluminosilicate crystalline phases and a higher viscous flow apparition temperature (990 °C), which did not enhance its mechanical properties (50 MPa) due to poor impregnation of the textile. Refractory additives such as MgO and Al2O3 in the geopolymer matrix support fiber impregnation with a low-viscous-flow apparition temperature (865 °C) and the formation of crystalline phases such as forsterite, spinel and sapphirine, which act as reinforcements, allowing a flexural strength up to 80 MPa. The addition of a refractory compound, such as mullite, leads to better embedding of fibers and a flexural strength reaching 100 MPa. To conclude, mixing the geopolymer matrix with refractory compounds results in a successful thermo-structural geopolymer composite.
本研究探讨了不同添加剂对土工聚合物基复合材料(GMC)的影响,以替代热结构应用中的陶瓷基复合材料(CMC)。使用 N610 纺织品(10 × 10 cm2)和各种添加剂(SrCO3、BaCO3、BaSO4、MgO 和 Al2O3 以及富莫来石粉末)制成的不同 GMC 在 6 MPa 下于 120 °C 固化 2 小时。结果表明,在土工聚合物基体中添加碱土碳酸钡或硫酸钡可促进碱土铝硅酸盐结晶相的形成和更高的粘流显现温度(990 ℃),但由于纺织品浸渍效果不佳,并未提高其机械性能(50 兆帕)。土工聚合物基体中的氧化镁和氧化铝等耐火添加剂可支持纤维浸渍,使其具有较低的粘流显影温度(865 °C),并形成可作为增强材料的晶相,如方解石、尖晶石和蓝晶石,从而使抗弯强度达到 80 兆帕。添加莫来石等耐火化合物可更好地嵌入纤维,使抗弯强度达到 100 兆帕。总之,将土工聚合物基体与耐火化合物混合可成功制成热结构土工聚合物复合材料。
{"title":"Influences of additives on the properties of geopolymer matrix composites (GMCS) for high-temperature applications (1150 °C)","authors":"Quentin Cligny ,&nbsp;Ameni Gharzouni ,&nbsp;Patrice Duport ,&nbsp;Damien Brandt ,&nbsp;Sylvie Rossignol","doi":"10.1016/j.oceram.2024.100685","DOIUrl":"10.1016/j.oceram.2024.100685","url":null,"abstract":"<div><div>In this study, the influence of different additives on a geopolymer matrix composite (GMC) was explored as an alternative to a ceramic matrix composite (CMC) for thermostructural applications. Different GMCs using an N610 textile (10 × 10 cm<sup>2</sup>) and various additives (SrCO<sub>3</sub>, BaCO<sub>3</sub>, BaSO<sub>4</sub>, MgO and Al<sub>2</sub>O<sub>3</sub> and mullite-rich powder) were cured under 6 MPa at 120 °C for 2 h. The mechanical, microstructural and structural data of the composites were compared with those of the geopolymer matrix after thermal treatment at 1150 °C. The results showed that the addition of alkali-earth barium carbonate or sulfate to the geopolymer matrix facilitated the formation of alkali-earth aluminosilicate crystalline phases and a higher viscous flow apparition temperature (990 °C), which did not enhance its mechanical properties (50 MPa) due to poor impregnation of the textile. Refractory additives such as MgO and Al<sub>2</sub>O<sub>3</sub> in the geopolymer matrix support fiber impregnation with a low-viscous-flow apparition temperature (865 °C) and the formation of crystalline phases such as forsterite, spinel and sapphirine, which act as reinforcements, allowing a flexural strength up to 80 MPa. The addition of a refractory compound, such as mullite, leads to better embedding of fibers and a flexural strength reaching 100 MPa. To conclude, mixing the geopolymer matrix with refractory compounds results in a successful thermo-structural geopolymer composite.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100685"},"PeriodicalIF":2.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sound of porosity: Suitability of the impulse excitation technique (IET) to determine the Young's modulus of 2D macroporous ceramics 多孔性的声音:脉冲激励技术(IET)测定二维大孔陶瓷杨氏模量的适用性
IF 2.9 Q1 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-21 DOI: 10.1016/j.oceram.2024.100686
Tim Stötzel , Swantje Funk , Tobias Fey
The presence of pores in a ceramic leads to a lower Young's modulus compared to dense material. For the development of porous ceramics with tailored elastic properties, an exact determination of the Young's modulus is required, especially for industrial applications. Therefore, we investigated the suitability of the non-destructive impulse excitation technique for measuring the dynamic Young's modulus of two-dimensional ceramics with low porosity (P < 19 %). For rectangular samples it was shown that the measurement results depend on the geometric pore position, as added pores outside the nodal lines of the fundamental flexural vibration had no influence on the result. Pores in the inner part of the sample led to a decrease of the Young's modulus that is in good agreement with empirical and analytical models. For the investigated interval of porosity range, the influence of pore size and geometric position on the reduction of the Young's modulus was determined.
与致密材料相比,陶瓷中孔隙的存在会导致较低的杨氏模量。为了开发具有定制弹性特性的多孔陶瓷,需要精确测定杨氏模量,尤其是在工业应用中。因此,我们研究了非破坏性脉冲激励技术是否适用于测量低孔隙率(P < 19 %)二维陶瓷的动态杨氏模量。对于矩形样品,测量结果取决于孔隙的几何位置,因为在基本挠曲振动节点线外增加的孔隙对测量结果没有影响。样品内部的孔隙会导致杨氏模量下降,这与经验模型和分析模型十分吻合。在所研究的孔隙率范围内,确定了孔隙大小和几何位置对杨氏模量降低的影响。
{"title":"The sound of porosity: Suitability of the impulse excitation technique (IET) to determine the Young's modulus of 2D macroporous ceramics","authors":"Tim Stötzel ,&nbsp;Swantje Funk ,&nbsp;Tobias Fey","doi":"10.1016/j.oceram.2024.100686","DOIUrl":"10.1016/j.oceram.2024.100686","url":null,"abstract":"<div><div>The presence of pores in a ceramic leads to a lower Young's modulus compared to dense material. For the development of porous ceramics with tailored elastic properties, an exact determination of the Young's modulus is required, especially for industrial applications. Therefore, we investigated the suitability of the non-destructive impulse excitation technique for measuring the dynamic Young's modulus of two-dimensional ceramics with low porosity (P &lt; 19 %). For rectangular samples it was shown that the measurement results depend on the geometric pore position, as added pores outside the nodal lines of the fundamental flexural vibration had no influence on the result. Pores in the inner part of the sample led to a decrease of the Young's modulus that is in good agreement with empirical and analytical models. For the investigated interval of porosity range, the influence of pore size and geometric position on the reduction of the Young's modulus was determined.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100686"},"PeriodicalIF":2.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001500/pdfft?md5=949bfb5f0a3940870461e6621efc0076&pid=1-s2.0-S2666539524001500-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Open Ceramics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1