Pub Date : 2024-07-29DOI: 10.1016/j.oceram.2024.100649
Toni Wille , Andreas Hopf , Michel Layher , Jens Bliedtner , Albert Kerber , Lucas Bloß
This paper represents the current status of the investigation into the processing of ceramic components, using Fused Filament Fabrication (“FFF”). The process chain, beginning from the additive manufacturing (“AM”), through the post processing, the debinding and sintering procedure, to the finished part is described. The examined materials are silicon nitride (Si3N4) and silicon carbide (SSiC), prepared by the company SiCeram/Qsil. Furthermore, comprehensive investigations on the materials are done, both in the green and in the sintered state. In addition, sources of occurring problems and defects in the process chain are pointed out and possible solutions are shown. Finally, the current status of investigations, regarding to the transfer into the industry, is discussed.
{"title":"Investigations on the processing of ceramic materials using Fused Filament Fabrication","authors":"Toni Wille , Andreas Hopf , Michel Layher , Jens Bliedtner , Albert Kerber , Lucas Bloß","doi":"10.1016/j.oceram.2024.100649","DOIUrl":"10.1016/j.oceram.2024.100649","url":null,"abstract":"<div><p>This paper represents the current status of the investigation into the processing of ceramic components, using Fused Filament Fabrication (“FFF”). The process chain, beginning from the additive manufacturing (“AM”), through the post processing, the debinding and sintering procedure, to the finished part is described. The examined materials are silicon nitride (Si<sub>3</sub>N<sub>4</sub>) and silicon carbide (SSiC), prepared by the company SiCeram/Qsil. Furthermore, comprehensive investigations on the materials are done, both in the green and in the sintered state. In addition, sources of occurring problems and defects in the process chain are pointed out and possible solutions are shown. Finally, the current status of investigations, regarding to the transfer into the industry, is discussed.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100649"},"PeriodicalIF":2.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001135/pdfft?md5=b41416544276129f8b87c41542693e12&pid=1-s2.0-S2666539524001135-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141954691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.oceram.2024.100629
Erik Kornfellner , Filip Jelínek , Laszlo Jaksa , Anna Lebhard , Daniel Bomze , Martin Schwentenwein , Francesco Moscato
3D printing is developing rapidly and enables the production of parts manufactured using different materials. These includes zirconium dioxide (ZrO2), which can be of particular interest for bone tissue engineering and implantology. However, highly accurate part-dimensions are a must for these applications, which is why this study addresses geometrical deviations which occur during the printing process and thermal post-processing.
Six sets of test geometries with 50 individual features were 3D printed with two different ZrO2 slurries (3 mol% yttria-stabilized ZrO2) and scanned with a profilometer. After debinding and sintering, the profilometer scan was repeated and the deviations and shrinkage factors were determined.
A notable difference is observed when the same ceramic is processed using two different slurries. For instance, one used ceramic slurry, LithaCon 210, exhibits shrinkage factors of and for protruding structures, while the other ceramic slurry, LithaCon 280, shows shrinkage factors of and .
Geometric deviations differed for intruding (like holes and slots) and protruding (like pillars) geometries, being more pronounced in case of intruding geometries, especially where printing overhangs occur.
Although the shrinkage during sintering needs further investigation, these experimental findings are a good starting point to validate and refine simulation models for shrinkage and improve production processes of 3D printed ceramics.
{"title":"Assessment of geometrical variability in 3D printed ZrO2: Effects of printing and thermal post-processing","authors":"Erik Kornfellner , Filip Jelínek , Laszlo Jaksa , Anna Lebhard , Daniel Bomze , Martin Schwentenwein , Francesco Moscato","doi":"10.1016/j.oceram.2024.100629","DOIUrl":"10.1016/j.oceram.2024.100629","url":null,"abstract":"<div><p>3D printing is developing rapidly and enables the production of parts manufactured using different materials. These includes zirconium dioxide (ZrO<sub>2</sub>), which can be of particular interest for bone tissue engineering and implantology. However, highly accurate part-dimensions are a must for these applications, which is why this study addresses geometrical deviations which occur during the printing process and thermal post-processing.</p><p>Six sets of test geometries with 50 individual features were 3D printed with two different ZrO<sub>2</sub> slurries (3 mol% yttria-stabilized ZrO<sub>2</sub>) and scanned with a profilometer. After debinding and sintering, the profilometer scan was repeated and the deviations and shrinkage factors were determined.</p><p>A notable difference is observed when the same ceramic is processed using two different slurries. For instance, one used ceramic slurry, <em>LithaCon 210</em>, exhibits shrinkage factors of <span><math><mi>s</mi><mi>h</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>X</mi><mi>Y</mi></mrow></msub><mo>=</mo><mn>21.2</mn><mo>±</mo><mn>3.4</mn><mi>%</mi></math></span> <span><math><mrow><mo>(</mo><mrow><mi>n</mi><mo>=</mo><mn>78</mn></mrow><mo>)</mo></mrow></math></span> and <span><math><mi>s</mi><mi>h</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>=</mo><mn>23.6</mn><mo>±</mo><mn>0.54</mn><mi>%</mi></math></span> <span><math><mrow><mo>(</mo><mrow><mi>n</mi><mo>=</mo><mn>24</mn></mrow><mo>)</mo></mrow></math></span> for protruding structures, while the other ceramic slurry, <em>LithaCon 280</em>, shows shrinkage factors of <span><math><mi>s</mi><mi>h</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>X</mi><mi>Y</mi></mrow></msub><mo>=</mo><mn>21.7</mn><mo>±</mo><mn>3.3</mn><mi>%</mi></math></span> <span><math><mrow><mo>(</mo><mrow><mi>n</mi><mo>=</mo><mn>78</mn></mrow><mo>)</mo></mrow></math></span> and <span><math><mi>s</mi><mi>h</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>=</mo><mn>24.5</mn><mo>±</mo><mn>0.55</mn><mi>%</mi></math></span> <span><math><mrow><mo>(</mo><mrow><mi>n</mi><mo>=</mo><mn>24</mn></mrow><mo>)</mo></mrow></math></span>.</p><p>Geometric deviations differed for intruding (like holes and slots) and protruding (like pillars) geometries, being more pronounced in case of intruding geometries, especially where printing overhangs occur.</p><p>Although the shrinkage during sintering needs further investigation, these experimental findings are a good starting point to validate and refine simulation models for shrinkage and improve production processes of 3D printed ceramics.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100629"},"PeriodicalIF":2.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524000932/pdfft?md5=f50cfc88450e1d421b8d61bf212e512f&pid=1-s2.0-S2666539524000932-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The encapsulation of phase change materials (PCMs) into additive manufactured porous supports is attracting great interest for developing thermal energy storage (TES) materials with improved energy performance. Here, highly porous (86 %) self-supported 3D activated carbon/alumina supports are fabricated by direct ink writing (DIW) and, then, infiltrated with solar salt, a highly corrosive PCM with a melting temperature around 220 °C commonly employed in concentrated solar power plants. This novel, robust, chemically compatible, and lightweight infiltrated 3DTES exhibits good thermal energy storage efficiency (70 %) and thermal stability, high energy storage density (381 J g−1), and avoids the liquid leakage of the molten salt. Besides, the 3D activated carbon/alumina support promotes a better ability to absorb solar energy (79 %) and enhances the thermal conductivity of the solar salt (up to 64 %). These results validate the use of DIW for manufacturing innovative TES with an enhanced energy storage behaviour.
{"title":"Solar salt encapsulated into 3D printed activated carbon/alumina supports for thermal energy storage applications","authors":"Irene Díaz-Herrezuelo , Quentin Falcoz , Audrey Soum-Glaude , Manuel Belmonte","doi":"10.1016/j.oceram.2024.100648","DOIUrl":"10.1016/j.oceram.2024.100648","url":null,"abstract":"<div><p>The encapsulation of phase change materials (PCMs) into additive manufactured porous supports is attracting great interest for developing thermal energy storage (TES) materials with improved energy performance. Here, highly porous (86 %) self-supported 3D activated carbon/alumina supports are fabricated by direct ink writing (DIW) and, then, infiltrated with solar salt, a highly corrosive PCM with a melting temperature around 220 °C commonly employed in concentrated solar power plants. This novel, robust, chemically compatible, and lightweight infiltrated 3DTES exhibits good thermal energy storage efficiency (70 %) and thermal stability, high energy storage density (381 J g<sup>−1</sup>), and avoids the liquid leakage of the molten salt. Besides, the 3D activated carbon/alumina support promotes a better ability to absorb solar energy (79 %) and enhances the thermal conductivity of the solar salt (up to 64 %). These results validate the use of DIW for manufacturing innovative TES with an enhanced energy storage behaviour.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100648"},"PeriodicalIF":2.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001123/pdfft?md5=8d6504d4a36fcc74dc5d4553eb7a56ff&pid=1-s2.0-S2666539524001123-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.oceram.2024.100647
Marc Bohner, Fabrizio Bigolin, Isabelle Bohner, Thomas Imwinkelried, Yassine Maazouz, Pascal Michel, Christoph Stähli, Yves Viecelli, Nicola Döbelin
α-tricalcium phosphate (α-TCP) is the most widespread raw material for hydraulic calcium phosphate cements (CPCs). CPCs are widely used in bone repair due to their injectability, setting ability, and osteoconductivity. This study investigated the reactivity of α-TCP powders, focusing on the impact of minor phase impurities, β-calcium pyrophosphate and hydroxyapatite, and the synthesis temperature. The α-TCP powders were synthesized via a solid-state reaction of calcium carbonate and anhydrous dicalcium phosphate, with varying Ca/P molar ratios (1.4850–1.5075) and synthesis temperatures (1175°C–1350 °C). Powders produced with a Ca/P molar ratio below 1.50 and synthesized at a temperature above the melting point of β-CPP (1296 °C) had a broader size distribution and a two to fourfold lower hydraulic reactivity. Conversely, a higher Ca/P molar ratio improved reactivity. The study underscores the importance of precise control over synthesis parameters to enhance the performance of α-TCP-based CPCs, offering insights for optimizing material design in biomedical applications.
{"title":"The reactivity of α-tricalcium phosphate powders is affected by minute amounts of β-calcium pyrophosphate and by the synthesis temperature","authors":"Marc Bohner, Fabrizio Bigolin, Isabelle Bohner, Thomas Imwinkelried, Yassine Maazouz, Pascal Michel, Christoph Stähli, Yves Viecelli, Nicola Döbelin","doi":"10.1016/j.oceram.2024.100647","DOIUrl":"10.1016/j.oceram.2024.100647","url":null,"abstract":"<div><p>α-tricalcium phosphate (α-TCP) is the most widespread raw material for hydraulic calcium phosphate cements (CPCs). CPCs are widely used in bone repair due to their injectability, setting ability, and osteoconductivity. This study investigated the reactivity of α-TCP powders, focusing on the impact of minor phase impurities, β-calcium pyrophosphate and hydroxyapatite, and the synthesis temperature. The α-TCP powders were synthesized via a solid-state reaction of calcium carbonate and anhydrous dicalcium phosphate, with varying Ca/P molar ratios (1.4850–1.5075) and synthesis temperatures (1175°C–1350 °C). Powders produced with a Ca/P molar ratio below 1.50 and synthesized at a temperature above the melting point of β-CPP (1296 °C) had a broader size distribution and a two to fourfold lower hydraulic reactivity. Conversely, a higher Ca/P molar ratio improved reactivity. The study underscores the importance of precise control over synthesis parameters to enhance the performance of α-TCP-based CPCs, offering insights for optimizing material design in biomedical applications.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100647"},"PeriodicalIF":2.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001111/pdfft?md5=c03a5b413d5c285272ed88e4e61510d9&pid=1-s2.0-S2666539524001111-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.oceram.2024.100645
MA Zaed , Jayesh Cherusseri , R. Saidur , K.H. Tan , A.K. Pandey
In this study, advanced solar steam technologies are explored for their potential applications in seawater desalination and wastewater purification. We have developed a three-dimensional photothermal evaporator using MXene, luffa sponge (LS), graphitic-carbon nitride (GCN) and activated carbon (AC). The hierarchical Ti3C2Tx MXene/GCN/AC@LS composite photothermal evaporator exhibits superior thermostability, pH stability, and mechanical durability. The Ti3C2Tx MXene/GCN/AC@LS composite evaporator having a dimension of 1.25 cm displays excellent performance, leading to a high evaporation rate of 2.6 kg m−2h−1 and a high solar-thermal conversion efficiency of 96 % under 1 sun illumination. This high efficiency is attributed to the good light absorption by the Ti3C2Tx MXene/GCN/AC@LS composite coupled with a better wetting through the internal microchannels of the LS, which envisages a faster water delivery and evaporation of water. The Ti3C2Tx MXene/GCN/AC@LS composite captures the residual heat from the sidewall surface as an additional source of energy.
{"title":"Synthesis and characterization of hierarchical Ti3C2Tx MXene/graphitic-carbon nitride/activated carbon@luffa sponge composite for enhanced water desalination","authors":"MA Zaed , Jayesh Cherusseri , R. Saidur , K.H. Tan , A.K. Pandey","doi":"10.1016/j.oceram.2024.100645","DOIUrl":"10.1016/j.oceram.2024.100645","url":null,"abstract":"<div><p>In this study, advanced solar steam technologies are explored for their potential applications in seawater desalination and wastewater purification. We have developed a three-dimensional photothermal evaporator using MXene, luffa sponge (LS), graphitic-carbon nitride (GCN) and activated carbon (AC). The hierarchical Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite photothermal evaporator exhibits superior thermostability, pH stability, and mechanical durability. The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite evaporator having a dimension of 1.25 cm displays excellent performance, leading to a high evaporation rate of 2.6 kg m<sup>−2</sup>h<sup>−1</sup> and a high solar-thermal conversion efficiency of 96 % under 1 sun illumination. This high efficiency is attributed to the good light absorption by the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite coupled with a better wetting through the internal microchannels of the LS, which envisages a faster water delivery and evaporation of water. The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/GCN/AC@LS composite captures the residual heat from the sidewall surface as an additional source of energy.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100645"},"PeriodicalIF":2.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001093/pdfft?md5=a26a03f564d0b3c4dc485cbb6fd263c8&pid=1-s2.0-S2666539524001093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.oceram.2024.100646
Alexandra C. Austin , Amy J. Knorpp , Jon G. Bell , Huw Shiel , Luca Artiglia , Katharina Marquardt , Michael Stuer
A barium-based perovskite structured ceramic with five different B-site cations was prepared by a solid-state synthesis method. The phase and chemical homogeneity of the synthesised material was verified using x-ray diffraction and energy dispersive x-ray spectroscopy, showing the successful synthesis of a single-phase perovskite structure with Ba A-site and Ti, Hf, Zr, Y, Nb, B-site cations. Ultra-high vacuum x-ray photoelectron spectroscopy was used to reveal the valence states of the constituent elements. Conventional, two-step and spark plasma sintering were used to form dense pellets with limited grain growth. The room temperature electrical characteristics of the sintered pellets were investigated by electrochemical impedance spectroscopy where a conductivity increase of two orders of magnitude was observed in a water-bearing atmosphere. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy performed under water-bearing and dry conditions suggest that the conductivity increase is related to the incorporation of hydroxyl groups into the perovskite structure.
通过固态合成法制备了含有五种不同 B 位阳离子的钡基包晶结构陶瓷。利用 X 射线衍射和能量色散 X 射线光谱验证了合成材料的相位和化学均匀性,结果表明成功合成了具有 Ba A 位和 Ti、Hf、Zr、Y、Nb、B 位阳离子的单相透辉石结构。利用超高真空 X 射线光电子能谱揭示了组成元素的价态。采用传统烧结、两步烧结和火花等离子烧结法形成了晶粒生长有限的致密颗粒。烧结颗粒的室温电特性通过电化学阻抗光谱进行了研究,在含水环境中,电导率提高了两个数量级。在含水和干燥条件下进行的同步辐射环境压力 X 射线光电子能谱分析表明,电导率的提高与羟基加入到包晶结构中有关。
{"title":"Synthesis of B-site high-entropy BaTi0.2Hf0.2Zr0.2Y0.2Nb0.2O3 with water sensing properties","authors":"Alexandra C. Austin , Amy J. Knorpp , Jon G. Bell , Huw Shiel , Luca Artiglia , Katharina Marquardt , Michael Stuer","doi":"10.1016/j.oceram.2024.100646","DOIUrl":"10.1016/j.oceram.2024.100646","url":null,"abstract":"<div><p>A barium-based perovskite structured ceramic with five different B-site cations was prepared by a solid-state synthesis method. The phase and chemical homogeneity of the synthesised material was verified using x-ray diffraction and energy dispersive x-ray spectroscopy, showing the successful synthesis of a single-phase perovskite structure with Ba A-site and Ti, Hf, Zr, Y, Nb, B-site cations. Ultra-high vacuum x-ray photoelectron spectroscopy was used to reveal the valence states of the constituent elements. Conventional, two-step and spark plasma sintering were used to form dense pellets with limited grain growth. The room temperature electrical characteristics of the sintered pellets were investigated by electrochemical impedance spectroscopy where a conductivity increase of two orders of magnitude was observed in a water-bearing atmosphere. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy performed under water-bearing and dry conditions suggest that the conductivity increase is related to the incorporation of hydroxyl groups into the perovskite structure.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100646"},"PeriodicalIF":2.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653952400110X/pdfft?md5=e7ce818e7f6e9335419cc56276e9911f&pid=1-s2.0-S266653952400110X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Managing the vast quantities of waste constantly generated by mining activities is one of the major environmental and economic problems facing mankind today. Fluorapatite is separated from the associated gangue minerals by a series of crushing and screening, washing, and flotation processes. These processes produce a significant amount of phosphate sludge, which is stored on the mine site in drift rock and large surface ponds. One possible environmental option is to reuse it as an alternative raw material in ceramics and building materials. Consequently, two phosphate sludges from two different Moroccan towns, Youssoufia and Khouribga, were studied. Due to the complexity of these raw materials resulting from long geological processes, in-depth physical, chemical, mineralogical, and thermal characterization is required. Dry compressed powder pellets were sintered at 900 °C, 1000 °C, and 1100 °C for 2 h. The study focuses on the effect of sintering temperature on mineralogical transformations and ceramic properties such as apparent porosity, water absorption, and mechanical strength. At 1100 °C, a slight increase in density was observed for both phosphate sludges. Water absorption was reduced by 2.51 % in both sludges for pellets sintered at 1100 °C compared to those sintered at 900 °C. Mechanical strength improved significantly, with an increase of about 60 % for samples sintered at 1100 °C, recording 227 N for Youssoufia sludge and 247 N for Khouribga sludge. This work has provided new data on the physical, chemical, mineralogical, and thermal changes in ceramics as the sintering temperature increases. These data will be useful for the manufacture of high-value ceramics.
管理采矿活动不断产生的大量废物是当今人类面临的主要环境和经济问题之一。萤石是通过一系列的破碎、筛选、洗涤和浮选过程从相关的矸石矿物中分离出来的。这些过程会产生大量磷酸盐污泥,这些污泥被储存在矿区的漂流岩和大型地表池塘中。一个可行的环保方案是将其作为陶瓷和建筑材料的替代原料进行再利用。因此,我们对来自摩洛哥两个不同城镇(尤苏菲亚和胡里卜加)的两种磷酸盐污泥进行了研究。由于这些原材料的复杂性来自于漫长的地质过程,因此需要对其进行深入的物理、化学、矿物学和热学表征。研究重点是烧结温度对矿物学转变和陶瓷特性(如表观孔隙率、吸水性和机械强度)的影响。在 1100 °C 下,两种磷酸盐淤泥的密度都略有增加。与在 900 °C 下烧结的颗粒相比,在 1100 °C 下烧结的颗粒的吸水率降低了 2.51%。机械强度明显提高,在 1100 °C 下烧结的样品机械强度提高了约 60%,Youssoufia 淤泥的机械强度为 227 N,Khouribga 淤泥的机械强度为 247 N。这项工作提供了有关陶瓷在烧结温度升高时的物理、化学、矿物学和热变化的新数据。这些数据将有助于制造高价值陶瓷。
{"title":"Sustainable valorization of mining waste: Phosphate sludge repurposing for advanced ceramic production","authors":"Mohamed Amine Harech , Imane Anasser , Tariq Labbilta , Younes Abouliatim , Youssef El Hafiane , Lahbib Nibou , Agnès Smith , Mohamed Mesnaoui","doi":"10.1016/j.oceram.2024.100640","DOIUrl":"10.1016/j.oceram.2024.100640","url":null,"abstract":"<div><p>Managing the vast quantities of waste constantly generated by mining activities is one of the major environmental and economic problems facing mankind today. Fluorapatite is separated from the associated gangue minerals by a series of crushing and screening, washing, and flotation processes. These processes produce a significant amount of phosphate sludge, which is stored on the mine site in drift rock and large surface ponds. One possible environmental option is to reuse it as an alternative raw material in ceramics and building materials. Consequently, two phosphate sludges from two different Moroccan towns, Youssoufia and Khouribga, were studied. Due to the complexity of these raw materials resulting from long geological processes, in-depth physical, chemical, mineralogical, and thermal characterization is required. Dry compressed powder pellets were sintered at 900 °C, 1000 °C, and 1100 °C for 2 h. The study focuses on the effect of sintering temperature on mineralogical transformations and ceramic properties such as apparent porosity, water absorption, and mechanical strength. At 1100 °C, a slight increase in density was observed for both phosphate sludges. Water absorption was reduced by 2.51 % in both sludges for pellets sintered at 1100 °C compared to those sintered at 900 °C. Mechanical strength improved significantly, with an increase of about 60 % for samples sintered at 1100 °C, recording 227 N for Youssoufia sludge and 247 N for Khouribga sludge. This work has provided new data on the physical, chemical, mineralogical, and thermal changes in ceramics as the sintering temperature increases. These data will be useful for the manufacture of high-value ceramics.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100640"},"PeriodicalIF":2.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001044/pdfft?md5=188f9c9ff352ee90b4788bcf7a6cd79e&pid=1-s2.0-S2666539524001044-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.oceram.2024.100644
Mickael Coëffe Desvaux , Andréas Flaureau , Nicolas Pradeilles , Olivier Rapaud , Sophie Beaudet Savignat , Alexandre Maître
Silicon nitride and boron nitride (Si3N4/h-BN) based ceramic composites were prepared by Spark Plasma Sintering (SPS) using aluminium oxide (Al2O3) and/or yttrium oxide (Y2O3) as sintering additives. The amount of h-BN introduced varied from 0 vol.% to 20 vol.% in order to study its influence on ceramic properties. In the same way, the amount of oxide additives has been controlled and the influence of the additive's nature on the final properties has been underlined. The sintering temperature has been selected in order to obtain equivalent relative densities. The formation of β-SiAlON has been underlined by XRD and TEM analysis. Moreover, due to the fast-sintering process, amorphous secondary phase has been formed. Mechanical properties (hardness, fracture toughness, Young modulus) and thermal diffusivity have been evaluated. It appears that the nature of the oxide additive used plays an important role on the mechanical and thermal behaviour of Si3N4/h-BN composites.
{"title":"Spark plasma sintering of silicon(oxy-)nitride/boron nitride composites and their subsequent thermo-physical properties","authors":"Mickael Coëffe Desvaux , Andréas Flaureau , Nicolas Pradeilles , Olivier Rapaud , Sophie Beaudet Savignat , Alexandre Maître","doi":"10.1016/j.oceram.2024.100644","DOIUrl":"10.1016/j.oceram.2024.100644","url":null,"abstract":"<div><p>Silicon nitride and boron nitride (Si<sub>3</sub>N<sub>4</sub>/h-BN) based ceramic composites were prepared by Spark Plasma Sintering (SPS) using aluminium oxide (Al<sub>2</sub>O<sub>3</sub>) and/or yttrium oxide (Y<sub>2</sub>O<sub>3</sub>) as sintering additives. The amount of h-BN introduced varied from 0 vol.% to 20 vol.% in order to study its influence on ceramic properties. In the same way, the amount of oxide additives has been controlled and the influence of the additive's nature on the final properties has been underlined. The sintering temperature has been selected in order to obtain equivalent relative densities. The formation of β-SiAlON has been underlined by XRD and TEM analysis. Moreover, due to the fast-sintering process, amorphous secondary phase has been formed. Mechanical properties (hardness, fracture toughness, Young modulus) and thermal diffusivity have been evaluated. It appears that the nature of the oxide additive used plays an important role on the mechanical and thermal behaviour of Si<sub>3</sub>N<sub>4</sub>/h-BN composites.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100644"},"PeriodicalIF":2.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001081/pdfft?md5=cf640340a5c66d1beb4cd353ce694e7f&pid=1-s2.0-S2666539524001081-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141690508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.oceram.2024.100641
Kazuyuki Kohama
This study proposes the use of Al-added Si–Mg composite fillers for low-temperature joining of SiC while maintaining high-temperature reliability of the joints. SiC was brazed at 1100 °C using the fillers with various compositions, based on Mg-evaporation-induced isothermal solidification of Si. The interfacial microstructure and mechanical properties of the joint were determined for different Al and Mg compositions in the filler. The added Al promoted Mg evaporation during joining, which increased the joint strength by mitigating the brittleness of the Si-based bonding layers. However, metallic Al remained in the bonding layers, which deteriorated the high-temperature joint strength. Higher Mg and Al concentrations in the filler promoted MgAl2O4 formation in the bonding layers that correlated with Al particle refinement. This contributed to an improvement of the joint properties, with the flexural strength at 1200 °C in air exceeding 60 MPa.
本研究提出使用添加了铝的硅镁复合填料来实现碳化硅的低温连接,同时保持接头的高温可靠性。在镁蒸发诱导硅等温凝固的基础上,使用不同成分的填料在 1100 °C 下对碳化硅进行钎焊。针对填料中不同的铝和镁成分,测定了接头的界面微观结构和机械性能。添加的铝促进了接合过程中的镁蒸发,从而减轻了基于硅的接合层的脆性,提高了接合强度。然而,金属铝残留在接合层中,降低了高温接合强度。填料中较高的镁和铝浓度促进了结合层中 MgAl2O4 的形成,这与铝颗粒的细化有关。这有助于改善接头性能,在 1200 °C 空气中的抗弯强度超过 60 兆帕。
{"title":"Compositional effects of Si–Mg–Al composite fillers on the interfacial microstructure and high-temperature strength of SiC/SiC brazed joints","authors":"Kazuyuki Kohama","doi":"10.1016/j.oceram.2024.100641","DOIUrl":"10.1016/j.oceram.2024.100641","url":null,"abstract":"<div><p>This study proposes the use of Al-added Si–Mg composite fillers for low-temperature joining of SiC while maintaining high-temperature reliability of the joints. SiC was brazed at 1100 °C using the fillers with various compositions, based on Mg-evaporation-induced isothermal solidification of Si. The interfacial microstructure and mechanical properties of the joint were determined for different Al and Mg compositions in the filler. The added Al promoted Mg evaporation during joining, which increased the joint strength by mitigating the brittleness of the Si-based bonding layers. However, metallic Al remained in the bonding layers, which deteriorated the high-temperature joint strength. Higher Mg and Al concentrations in the filler promoted MgAl<sub>2</sub>O<sub>4</sub> formation in the bonding layers that correlated with Al particle refinement. This contributed to an improvement of the joint properties, with the flexural strength at 1200 °C in air exceeding 60 MPa.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100641"},"PeriodicalIF":2.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001056/pdfft?md5=616f4e40cccd88b127dbccf8301a6ead&pid=1-s2.0-S2666539524001056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This in vitro study examines the electrochemical responses and surface degradation of alumina and feldspar dental ceramic materials in acidic environments using cyclic polarization and electrochemical impedance spectroscopy (EIS). Alumina and feldspar demonstrate balanced responses in both Fusayama Artificial Saliva and acidic solutions, indicating effective passivation. SEM/EDX analyses after 168-h immersion reveal significant elemental variations, suggesting complex surface phenomena and chemical reactions leading to oxide layer formation. Alumina exhibits increased Si, O, Al, Na, K, and C counts, while feldspar shows increased Si, O, Al, Na with reduced C and Ca levels, indicating complex reactions. Immersion induces notable elemental composition modifications, with alumina showing remarkable corrosion resistance and feldspar undergoing selective dissolution. This study provides insights into the electrochemical and surface degradation of these materials, emphasizing long-term stability and the need for continuous monitoring of protective layer dynamics in future research on corrosion-resistant dental biomaterials.
这项体外研究采用循环极化和电化学阻抗谱(EIS)技术,考察了氧化铝和长石牙科陶瓷材料在酸性环境中的电化学反应和表面降解情况。氧化铝和长石在 Fusayama 人工唾液和酸性溶液中都表现出平衡的反应,表明它们得到了有效的钝化。浸泡 168 小时后进行的 SEM/EDX 分析显示出显著的元素变化,表明氧化层形成的表面现象和化学反应十分复杂。氧化铝的 Si、O、Al、Na、K 和 C 含量增加,而长石的 Si、O、Al、Na 含量增加,C 和 Ca 含量减少,表明发生了复杂的反应。浸泡会引起明显的元素组成变化,氧化铝表现出显著的耐腐蚀性,而长石则会发生选择性溶解。这项研究深入揭示了这些材料的电化学和表面降解过程,强调了其长期稳定性以及在未来耐腐蚀牙科生物材料研究中持续监测保护层动态的必要性。
{"title":"Electrochemical responses and surface degradation analyses alumina and feldspar dental materials in acidic environments: A comprehensive in vitro study","authors":"Soraya Lakhloufi , Najoua Labjar , Houda Labjar , Abdelouahed Dahrouch , Souad El Hajjaji","doi":"10.1016/j.oceram.2024.100643","DOIUrl":"10.1016/j.oceram.2024.100643","url":null,"abstract":"<div><p>This in vitro study examines the electrochemical responses and surface degradation of alumina and feldspar dental ceramic materials in acidic environments using cyclic polarization and electrochemical impedance spectroscopy (EIS). Alumina and feldspar demonstrate balanced responses in both Fusayama Artificial Saliva and acidic solutions, indicating effective passivation. SEM/EDX analyses after 168-h immersion reveal significant elemental variations, suggesting complex surface phenomena and chemical reactions leading to oxide layer formation. Alumina exhibits increased Si, O, Al, Na, K, and C counts, while feldspar shows increased Si, O, Al, Na with reduced C and Ca levels, indicating complex reactions. Immersion induces notable elemental composition modifications, with alumina showing remarkable corrosion resistance and feldspar undergoing selective dissolution. This study provides insights into the electrochemical and surface degradation of these materials, emphasizing long-term stability and the need for continuous monitoring of protective layer dynamics in future research on corrosion-resistant dental biomaterials.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"19 ","pages":"Article 100643"},"PeriodicalIF":2.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266653952400107X/pdfft?md5=ae48e2c25ed8da97e0a6032b3135ecba&pid=1-s2.0-S266653952400107X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}