Pub Date : 2024-07-11DOI: 10.1016/j.giant.2024.100325
Mingrui Pu , Chunxian Ke , Yongwen Lang , Heng Li , Xiangyu Shen , Leilei Tian , Feng He
Ternary organic solar cells (OSCs) are the feasible and efficient strategy to achieve the high-performance OSCs. It is of great significance to develop a superior third component candidate for constructing efficient ternary OSCs. In this work, we intelligently designed and synthesized a dimerized small molecule donor by connecting two asymmetric small molecule donors with the vinyl group, which is named DSMD-βV. This innovative oligomeric molecule DSMD-βV not only exhibits the complementary absorption and the cascade energy level arrangement with PM6 and BTP-eC9, but also regulates the phase separation micromorphology based on PM6:BTP-eC9. Consequently, PM6:DSMD-βV:BTP-eC9 based ternary device exhibits the improved exciton dissociation, charge transport and decreased recombination, thus achieving a superior power conversion efficiency (PCE) of 18.26 %, surpassing PM6:BTP-eC9 based binary (17.63 %). This work indicates that the dimerized small molecule donor is able to become a promising third component candidate, which also opens up a unique idea for the construction of efficient ternary organic solar cells.
{"title":"Dimerized small molecule donor enables efficient ternary organic solar cells","authors":"Mingrui Pu , Chunxian Ke , Yongwen Lang , Heng Li , Xiangyu Shen , Leilei Tian , Feng He","doi":"10.1016/j.giant.2024.100325","DOIUrl":"10.1016/j.giant.2024.100325","url":null,"abstract":"<div><p>Ternary organic solar cells (OSCs) are the feasible and efficient strategy to achieve the high-performance OSCs. It is of great significance to develop a superior third component candidate for constructing efficient ternary OSCs. In this work, we intelligently designed and synthesized a dimerized small molecule donor by connecting two asymmetric small molecule donors with the vinyl group, which is named DSMD-<em>β</em>V. This innovative oligomeric molecule DSMD-<em>β</em>V not only exhibits the complementary absorption and the cascade energy level arrangement with PM6 and BTP-eC9, but also regulates the phase separation micromorphology based on PM6:BTP-eC9. Consequently, PM6:DSMD-<em>β</em>V:BTP-eC9 based ternary device exhibits the improved exciton dissociation, charge transport and decreased recombination, thus achieving a superior power conversion efficiency (PCE) of 18.26 %, surpassing PM6:BTP-eC9 based binary (17.63 %). This work indicates that the dimerized small molecule donor is able to become a promising third component candidate, which also opens up a unique idea for the construction of efficient ternary organic solar cells.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100325"},"PeriodicalIF":5.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000894/pdfft?md5=1cedd5d49d60ba8465e1ff0d88e53dbe&pid=1-s2.0-S2666542524000894-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.giant.2024.100321
Xuefan Gu , Ling Wang , Xin Guan , Yilin Wang , Yilong Cheng , Youshen Wu
Biomimetic damping materials have emerged as promising candidates for various applications due to their ability to mimic the exceptional damping properties observed in biological systems. This review provides a comprehensive overview of recent advances in the field of biomimetic damping gel materials. The conceptual framework of biomimetic damping materials is discussed, the synthesis methods inspired by biological principles are elucidated, and key considerations in material selection are highlighted. The latest research findings on the mechanical properties, biocompatibility and practical applications of these materials are synthesized and insights into the future directions of biomimetic damping gel materials are offered.
{"title":"Advances in the design, preparation and application of biomimetic damping materials","authors":"Xuefan Gu , Ling Wang , Xin Guan , Yilin Wang , Yilong Cheng , Youshen Wu","doi":"10.1016/j.giant.2024.100321","DOIUrl":"10.1016/j.giant.2024.100321","url":null,"abstract":"<div><p>Biomimetic damping materials have emerged as promising candidates for various applications due to their ability to mimic the exceptional damping properties observed in biological systems. This review provides a comprehensive overview of recent advances in the field of biomimetic damping gel materials. The conceptual framework of biomimetic damping materials is discussed, the synthesis methods inspired by biological principles are elucidated, and key considerations in material selection are highlighted. The latest research findings on the mechanical properties, biocompatibility and practical applications of these materials are synthesized and insights into the future directions of biomimetic damping gel materials are offered.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100321"},"PeriodicalIF":5.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000857/pdfft?md5=d6e30e6d393c8676e33e6a0b46a7a439&pid=1-s2.0-S2666542524000857-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.giant.2024.100323
Zhuolin Chen , Chengcheng Du , Senrui Liu, Jiacheng Liu, Yaji Yang, Lili Dong, Weikang Zhao, Wei Huang, Yiting Lei
Inspired by the extracellular matrix (ECM), biomaterials have emerged as promising strategies in the biomedical research and engineering domain, offering unique characteristics for tissue regeneration, drug delivery, therapeutic interventions, and cellular investigations. The ECM, a dynamic network structure secreted by various cells, primarily comprises diverse proteins capable of facilitating tissue-ECM signaling and regulatory functions through its rich array of bioactive substances and multi-level structural properties. Drawing inspiration from the intricate structure and biochemical composition of natural ECM, researchers have developed various biomaterials to encapsulate these features and create biomimetic microenvironments, such as electrospinning, hydrogels/hydrogel microspheres, decellularized ECM(dECM), and ECM-mimicking peptides. Furthermore, by mimicking the structural composition of ECM components, ECM-inspired biomaterials exhibit varying degrees of ECM functionalization, including providing structural support, cell adhesion, signal transduction, mitigating immune responses, and tissue remodeling. In summary, the advancements in ECM-inspired biomaterials offer significant promise in addressing key challenges in the fields of tissue engineering, regenerative medicine, and drug delivery.
{"title":"Progress in biomaterials inspired by the extracellular matrix","authors":"Zhuolin Chen , Chengcheng Du , Senrui Liu, Jiacheng Liu, Yaji Yang, Lili Dong, Weikang Zhao, Wei Huang, Yiting Lei","doi":"10.1016/j.giant.2024.100323","DOIUrl":"10.1016/j.giant.2024.100323","url":null,"abstract":"<div><p>Inspired by the extracellular matrix (ECM), biomaterials have emerged as promising strategies in the biomedical research and engineering domain, offering unique characteristics for tissue regeneration, drug delivery, therapeutic interventions, and cellular investigations. The ECM, a dynamic network structure secreted by various cells, primarily comprises diverse proteins capable of facilitating tissue-ECM signaling and regulatory functions through its rich array of bioactive substances and multi-level structural properties. Drawing inspiration from the intricate structure and biochemical composition of natural ECM, researchers have developed various biomaterials to encapsulate these features and create biomimetic microenvironments, such as electrospinning, hydrogels/hydrogel microspheres, decellularized ECM(dECM), and ECM-mimicking peptides. Furthermore, by mimicking the structural composition of ECM components, ECM-inspired biomaterials exhibit varying degrees of ECM functionalization, including providing structural support, cell adhesion, signal transduction, mitigating immune responses, and tissue remodeling. In summary, the advancements in ECM-inspired biomaterials offer significant promise in addressing key challenges in the fields of tissue engineering, regenerative medicine, and drug delivery.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100323"},"PeriodicalIF":5.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000870/pdfft?md5=ade9827ef2395fc5734a2ad74b8b445c&pid=1-s2.0-S2666542524000870-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141698784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1016/j.giant.2024.100322
Zhou Zhang , Qiaomei Chen , Jing Wang , Chengyi Xiao , Zheng Tang , Christopher R. McNeill , Weiwei Li
The thin film morphology of double-cable conjugated polymers is critical to the performance of single-component organic solar cells (SCOSCs). Here, we explore the effect of thin film crystallinity on device performance by varying the thermal annealing temperature used during device fabrication. Our investigations reveal that a moderate annealing temperature of 150 °C optimizes the power conversion efficiency in SCOSCs. Although higher annealing temperatures leads to increased crystalline order, a decrease in device performance is observed, attributed to imbalanced carrier transport and increased charge recombination. Additionally, the progressive decrease in the open-circuit voltage of these cells with increasing annealing temperature is linked to augmented non-radiative voltage losses, stemming from the increase in film crystallinity. This study underscores the critical necessity of achieving a delicate optimization of film microstructure in order to maximize the efficiency of SCOSCs, while also delineating prospective avenues for refining the molecular design and processing of double-cable polymers to bolster solar cell performance.
双电缆共轭聚合物的薄膜形态对于单组分有机太阳能电池 (SCOSC) 的性能至关重要。在此,我们通过改变器件制造过程中使用的热退火温度来探索薄膜结晶度对器件性能的影响。我们的研究发现,150 °C 的适度退火温度可优化 SCOSC 的功率转换效率。虽然较高的退火温度会导致晶体阶数增加,但器件性能却会下降,这归因于载流子传输失衡和电荷重组增加。此外,这些电池的开路电压随着退火温度的升高而逐渐降低,这与薄膜结晶度增加导致的非辐射电压损耗增加有关。这项研究强调了实现薄膜微观结构精细优化的重要性,以便最大限度地提高 SCOSC 的效率,同时也为完善双电缆聚合物的分子设计和加工以提高太阳能电池的性能指明了前景广阔的途径。
{"title":"Correlating crystallinity and performance in single-component organic solar cells based on double-cable conjugated polymers","authors":"Zhou Zhang , Qiaomei Chen , Jing Wang , Chengyi Xiao , Zheng Tang , Christopher R. McNeill , Weiwei Li","doi":"10.1016/j.giant.2024.100322","DOIUrl":"10.1016/j.giant.2024.100322","url":null,"abstract":"<div><p>The thin film morphology of double-cable conjugated polymers is critical to the performance of single-component organic solar cells (SCOSCs). Here, we explore the effect of thin film crystallinity on device performance by varying the thermal annealing temperature used during device fabrication. Our investigations reveal that a moderate annealing temperature of 150 °C optimizes the power conversion efficiency in SCOSCs. Although higher annealing temperatures leads to increased crystalline order, a decrease in device performance is observed, attributed to imbalanced carrier transport and increased charge recombination. Additionally, the progressive decrease in the open-circuit voltage of these cells with increasing annealing temperature is linked to augmented non-radiative voltage losses, stemming from the increase in film crystallinity. This study underscores the critical necessity of achieving a delicate optimization of film microstructure in order to maximize the efficiency of SCOSCs, while also delineating prospective avenues for refining the molecular design and processing of double-cable polymers to bolster solar cell performance.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100322"},"PeriodicalIF":5.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000869/pdfft?md5=a30b245aa83b95f4268f136e9f37e2df&pid=1-s2.0-S2666542524000869-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1016/j.giant.2024.100320
Jin Huang , Hangsheng Zhou , Li Zhang , Hao Zha , Wei Shi , Tianyi Zhao , Mingjie Liu
Traditional impact-resistance materials relying on the combination of supporting materials and energy-dissipation elastomers can effectively reduce shock load, yet the sharp interface between two types of materials causes discontinuous stress transfer and cracking. Here, inspired by the squid beak, we report a type of high impact-resistance gradient elastomers with large-scale modulus gradient with about three orders of magnitude (modulus range of 7 × 103 ∼ 7 × 106 Pa) and high energy dissipation (loss factor > 0.6) over a wide temperature range by diffusively introducing stiff polymers in a highly damping elastomer with controlled mechanical properties. Under the action of an external force, our gradient elastomers exhibit soft-while-stiff attributes, combining cushioning and support. In drop hammer impact tests, our gradient materials can reduce impact strength by 80 %, significantly better than commercial protective gear. It is worth mentioning that the modulus of the bottom layer matches that of the tissues for better protection.
{"title":"Bioinspired stiff–soft gradient network structure for high-performance impact-resistant elastomers","authors":"Jin Huang , Hangsheng Zhou , Li Zhang , Hao Zha , Wei Shi , Tianyi Zhao , Mingjie Liu","doi":"10.1016/j.giant.2024.100320","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100320","url":null,"abstract":"<div><p>Traditional impact-resistance materials relying on the combination of supporting materials and energy-dissipation elastomers can effectively reduce shock load, yet the sharp interface between two types of materials causes discontinuous stress transfer and cracking. Here, inspired by the squid beak, we report a type of high impact-resistance gradient elastomers with large-scale modulus gradient with about three orders of magnitude (modulus range of 7 × 10<sup>3</sup> ∼ 7 × 10<sup>6</sup> Pa) and high energy dissipation (loss factor > 0.6) over a wide temperature range by diffusively introducing stiff polymers in a highly damping elastomer with controlled mechanical properties. Under the action of an external force, our gradient elastomers exhibit soft-while-stiff attributes, combining cushioning and support. In drop hammer impact tests, our gradient materials can reduce impact strength by 80 %, significantly better than commercial protective gear. It is worth mentioning that the modulus of the bottom layer matches that of the tissues for better protection.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100320"},"PeriodicalIF":5.4,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000845/pdfft?md5=30df6ca8cd56320c4816db761a8e5035&pid=1-s2.0-S2666542524000845-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1016/j.giant.2024.100319
Yi-Tong Zhang , Jin-Xin Xue , Rui Wang , Si-Xin Jia , Jian-Jun Zhou , Lin Li
Silicon (Si) is a promising substitute for graphite anode due to the high theoretical specific capacity (4200 mAh g−1). However, too large volume change exists during the lithiation/delithiation process. Composite anode, prepared by mixing Si with graphite, can realize higher specific capacity than graphite and much better cycle performance than Si anode. However, the capacity decay caused by pulverization of Si particles is still a great challenge. Here, a cross-linkable binder rich in nitrile, carboxyl and hydroxyl groups is designed for composite silicon-graphite (Si-C) anode. The nitrile and hydroxyl groups can be in situ cross-linked in the batteries through Ritter reaction. The cross-linked binder has excellent resilience and good adhesion to the active materials and current collector. The cycle performance of the cell with cross-linked binder is much better than the counterpart. Scanning electron microscopy results of the cycled Si-C anode show that the cross-linked binder can suppress the volume expansion and pulverization. Moreover, the investigation with X-ray photoelectronic spectrum and density function theory calculation demonstrate that the decomposition of ester solvent and LiPF6 on Si anode has been mitigated and more stable SEI film is formed on the Si-C anode. Our strategy of in situ cross-linking binder in the batteries has provided a feasible way for designing the next generation of silicon-based anodes with higher specific capacity and longer cycling life.
硅(Si)具有很高的理论比容量(4200 mAh g-1),因此很有希望成为石墨负极的替代品。然而,在石化/脱硅过程中体积变化太大。通过将硅与石墨混合制备的复合负极可以实现比石墨更高的比容量,循环性能也比硅负极好得多。然而,硅颗粒粉化导致的容量衰减仍然是一个巨大的挑战。在此,我们设计了一种富含腈基、羧基和羟基的可交联粘合剂,用于硅-石墨(Si-C)复合负极。腈基和羟基可通过里特反应在电池中原位交联。交联后的粘合剂具有优异的回弹性,与活性材料和集流器的粘附性良好。交联粘合剂电池的循环性能远远优于同类电池。循环硅-碳阳极的扫描电子显微镜结果表明,交联粘结剂可抑制体积膨胀和粉化。此外,X 射线光电子能谱研究和密度函数理论计算表明,酯溶剂和 LiPF6 在硅阳极上的分解得到了缓解,Si-C 阳极上形成了更稳定的 SEI 膜。我们在电池中原位交联粘合剂的策略为设计比容量更大、循环寿命更长的下一代硅基阳极提供了一种可行的方法。
{"title":"Cross-linkable binder for composite silicon-graphite anodes in lithium-ion batteries","authors":"Yi-Tong Zhang , Jin-Xin Xue , Rui Wang , Si-Xin Jia , Jian-Jun Zhou , Lin Li","doi":"10.1016/j.giant.2024.100319","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100319","url":null,"abstract":"<div><p>Silicon (Si) is a promising substitute for graphite anode due to the high theoretical specific capacity (4200 mAh <em>g</em><sup>−1</sup>). However, too large volume change exists during the lithiation/delithiation process. Composite anode, prepared by mixing Si with graphite, can realize higher specific capacity than graphite and much better cycle performance than Si anode. However, the capacity decay caused by pulverization of Si particles is still a great challenge. Here, a cross-linkable binder rich in nitrile, carboxyl and hydroxyl groups is designed for composite silicon-graphite (Si-C) anode. The nitrile and hydroxyl groups can be in situ cross-linked in the batteries through Ritter reaction. The cross-linked binder has excellent resilience and good adhesion to the active materials and current collector. The cycle performance of the cell with cross-linked binder is much better than the counterpart. Scanning electron microscopy results of the cycled Si-C anode show that the cross-linked binder can suppress the volume expansion and pulverization. Moreover, the investigation with X-ray photoelectronic spectrum and density function theory calculation demonstrate that the decomposition of ester solvent and LiPF<sub>6</sub> on Si anode has been mitigated and more stable SEI film is formed on the Si-C anode. Our strategy of in situ cross-linking binder in the batteries has provided a feasible way for designing the next generation of silicon-based anodes with higher specific capacity and longer cycling life.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100319"},"PeriodicalIF":5.4,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000833/pdfft?md5=c4442d9af935bafe898c6a39f67f368e&pid=1-s2.0-S2666542524000833-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1016/j.giant.2024.100318
Yaohao Song , Satoshi Aya , Mingjun Huang
The recent discovery of liquid-matter ferroelectrics not only opens a door to explore novel polar matter states and properties in the term of condensed matter physics but also provides unprecedented opportunities for developing new liquid crystal materials and technologies. The progression from the ferroelectric nematic phase to many other liquid-matter ferroelectrics represents a remarkable journey in emerging polar soft matter. In this perspective, we briefly introduce the latest quick rise and advancements of liquid-matter ferroelectrics that display the nematic and smectic characteristics. We summarize the recently-discovered new polar phases, their new physics, and potential technological innovations, and then give some hints that we consider critical for further exploration. More importantly, we seek to delve into broader discussions on chemical structure design, the underlying physical interactions driving various polar states, and their connections to a range of intriguing phenomena.
{"title":"Updated view of new liquid-matter ferroelectrics with nematic and smectic orders","authors":"Yaohao Song , Satoshi Aya , Mingjun Huang","doi":"10.1016/j.giant.2024.100318","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100318","url":null,"abstract":"<div><p>The recent discovery of liquid-matter ferroelectrics not only opens a door to explore novel polar matter states and properties in the term of condensed matter physics but also provides unprecedented opportunities for developing new liquid crystal materials and technologies. The progression from the ferroelectric nematic phase to many other liquid-matter ferroelectrics represents a remarkable journey in emerging polar soft matter. In this perspective, we briefly introduce the latest quick rise and advancements of liquid-matter ferroelectrics that display the nematic and smectic characteristics. We summarize the recently-discovered new polar phases, their new physics, and potential technological innovations, and then give some hints that we consider critical for further exploration. More importantly, we seek to delve into broader discussions on chemical structure design, the underlying physical interactions driving various polar states, and their connections to a range of intriguing phenomena.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100318"},"PeriodicalIF":5.4,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000821/pdfft?md5=b097fef086d5540d11f9e0a484ee86a9&pid=1-s2.0-S2666542524000821-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/j.giant.2024.100317
Kexin Qin , Zitong Zheng , Jie Wang , Haihua Pan , Ruikang Tang
Biomineralization plays an important role in various physiological activities in both nature and living organisms. Organisms regulate the crystal nucleation, crystal phase, and crystal growth kinetics of inorganic phases through organic regulation, forming minerals with multi-level order, thereby playing a role in biological support, protection, and metabolic regulation. Unlike general inorganic minerals, biominerals are subtly regulated by organic organisms (such as small organic molecules, peptides, proteins, nucleic acids) and complex environments, possessing biological characteristics and becoming a part of living organisms. It can be seen that the process of biomineralization is not only the process of manufacturing biomaterials, but also the process of using materials to regulate organisms themselves. The biomimetic strategy based on biomineralization can achieve a huge transformation from the biomimetic preparation of functional materials to the biomimetic composite of organisms and materials. In this review, we briefly introduce biomimetic structures inspired by nature itself, and emphasize the important role of the relationship between organisms and materials in the process of biomineralization. We also briefly explore biominerals and their mechanisms. At the same time, a series of functional materials (such as self-cleaning hydrophobic materials, artificial spider silk fibers, mother of pearl like composite materials, humidity responsive materials, and bioprinting materials) synthesized through biomimetic strategies inspired by biomanufacturing materials were systematically elucidated. And a brief discussion was given on the synthesis of new functional organisms using biomimetic strategies to regulate organisms, such as using functional materials to regulate biomimetic repair of hard tissues, using biomineralization strategies to coat vaccines to improve their thermal stability during transportation and drug delivery efficiency in vivo, and constructing functional biomimetic artificial organelles on demand. Finally, this article summarizes the current opportunities and challenges based on biomineralization, providing further feasible guidance for future material regulation of life.
{"title":"Biomineralization strategy: from material manufacturing to biological regulation","authors":"Kexin Qin , Zitong Zheng , Jie Wang , Haihua Pan , Ruikang Tang","doi":"10.1016/j.giant.2024.100317","DOIUrl":"10.1016/j.giant.2024.100317","url":null,"abstract":"<div><p>Biomineralization plays an important role in various physiological activities in both nature and living organisms. Organisms regulate the crystal nucleation, crystal phase, and crystal growth kinetics of inorganic phases through organic regulation, forming minerals with multi-level order, thereby playing a role in biological support, protection, and metabolic regulation. Unlike general inorganic minerals, biominerals are subtly regulated by organic organisms (such as small organic molecules, peptides, proteins, nucleic acids) and complex environments, possessing biological characteristics and becoming a part of living organisms. It can be seen that the process of biomineralization is not only the process of manufacturing biomaterials, but also the process of using materials to regulate organisms themselves. The biomimetic strategy based on biomineralization can achieve a huge transformation from the biomimetic preparation of functional materials to the biomimetic composite of organisms and materials. In this review, we briefly introduce biomimetic structures inspired by nature itself, and emphasize the important role of the relationship between organisms and materials in the process of biomineralization. We also briefly explore biominerals and their mechanisms. At the same time, a series of functional materials (such as self-cleaning hydrophobic materials, artificial spider silk fibers, mother of pearl like composite materials, humidity responsive materials, and bioprinting materials) synthesized through biomimetic strategies inspired by biomanufacturing materials were systematically elucidated. And a brief discussion was given on the synthesis of new functional organisms using biomimetic strategies to regulate organisms, such as using functional materials to regulate biomimetic repair of hard tissues, using biomineralization strategies to coat vaccines to improve their thermal stability during transportation and drug delivery efficiency in vivo, and constructing functional biomimetic artificial organelles on demand. Finally, this article summarizes the current opportunities and challenges based on biomineralization, providing further feasible guidance for future material regulation of life.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100317"},"PeriodicalIF":5.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654252400081X/pdfft?md5=be16807870446c0b10969cba5c150d7c&pid=1-s2.0-S266654252400081X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.giant.2024.100311
Liana Lucchetti , Giovanni Nava
Cholesteric liquid crystals, also known as chiral nematics, possess a right-angle helicoidal structure with pitch in the submicrometer and micrometer range. Although the possibility of getting optical reorientation in this kind of materials has been considered since the discovery of giant optical nonlinearity in nematic liquid crystals, a significant light-induced modulation of the helical structure has shown to be a challenging task. The recent experimental realization of a chiral phase with an oblique helicoidal structure, identified as the heliconical phase predicted by Meyer and DeGennes in 1968, offers the opportunity to observe such an optical reorientation of the optic axis. This paper is a brief review of the nonlinear optical properties of these unconventional chiral nematic liquid crystals and is aimed at showing that the world of liquid crystalline phases can still amaze with new material properties and new physics.
{"title":"Nonlinear optical director reorientation in heliconical cholesteric liquid crystals: a brief review","authors":"Liana Lucchetti , Giovanni Nava","doi":"10.1016/j.giant.2024.100311","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100311","url":null,"abstract":"<div><p>Cholesteric liquid crystals, also known as chiral nematics, possess a right-angle helicoidal structure with pitch in the submicrometer and micrometer range. Although the possibility of getting optical reorientation in this kind of materials has been considered since the discovery of giant optical nonlinearity in nematic liquid crystals, a significant light-induced modulation of the helical structure has shown to be a challenging task. The recent experimental realization of a chiral phase with an oblique helicoidal structure, identified as the heliconical phase predicted by Meyer and DeGennes in 1968, offers the opportunity to observe such an optical reorientation of the optic axis. This paper is a brief review of the nonlinear optical properties of these unconventional chiral nematic liquid crystals and is aimed at showing that the world of liquid crystalline phases can still amaze with new material properties and new physics.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100311"},"PeriodicalIF":5.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000754/pdfft?md5=2bdaadaa05305d18eef80e3791a0c054&pid=1-s2.0-S2666542524000754-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1016/j.giant.2024.100316
César L. Folcia , Josu Ortega , Teresa Sierra , Alejandro Martínez-Bueno , Jesús Etxebarria
We present a liquid-crystal laser device based on the chiral ferroelectric nematic phase (NF*). The laser medium is obtained by mixing a ferroelectric nematic material with a chiral agent and a small proportion of a fluorescent dye. Notably, in the NF* phase very low electric fields perpendicular to the helical axis are able to reorient the molecules, giving rise to a periodic structure whose director profile is not single harmonic but contains the contribution of various Fourier components. This feature induces the appearance of several photonic bandgaps whose spectral ranges depend on the field, which can be exploited to build tunable laser devices. Here we report the characterization of home-made NF* lasers that can be tunable under low electric fields and present laser action in two of the photonic bands of the material. The obtained results open a promising route for the design of new and more versatile liquid-crystal based lasers.
{"title":"Chiral ferroelectric nematic liquid crystals as materials for versatile laser devices","authors":"César L. Folcia , Josu Ortega , Teresa Sierra , Alejandro Martínez-Bueno , Jesús Etxebarria","doi":"10.1016/j.giant.2024.100316","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100316","url":null,"abstract":"<div><p>We present a liquid-crystal laser device based on the chiral ferroelectric nematic phase (N<sub>F</sub>*). The laser medium is obtained by mixing a ferroelectric nematic material with a chiral agent and a small proportion of a fluorescent dye. Notably, in the N<sub>F</sub>* phase very low electric fields perpendicular to the helical axis are able to reorient the molecules, giving rise to a periodic structure whose director profile is not single harmonic but contains the contribution of various Fourier components. This feature induces the appearance of several photonic bandgaps whose spectral ranges depend on the field, which can be exploited to build tunable laser devices. Here we report the characterization of home-made N<sub>F</sub>* lasers that can be tunable under low electric fields and present laser action in two of the photonic bands of the material. The obtained results open a promising route for the design of new and more versatile liquid-crystal based lasers.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100316"},"PeriodicalIF":5.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000808/pdfft?md5=b7406937c4dfe7cd08d6a120356145eb&pid=1-s2.0-S2666542524000808-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}