Pub Date : 2024-05-23DOI: 10.1016/j.giant.2024.100292
Chengbin Yao , Yan Xia , Zhuoran Yang , Zhongmeng Zhu , Zheyu Li , Han Jiang
Soft adhesive systems (SASs), which consist of a soft adhesive layer and/or soft adherends, have been extensively applied in advanced fields such as biomedicine, flexible electronics, and soft robotics. Understanding the fatigue failure of SASs is crucial for ensuring their structural safety and functional stability, as they are often subjected to fatigue loading. This paper systematically reviews the fatigue failure of SASs, aiming to provide a comprehensive understanding and contribute to the study of fatigue failure mechanisms and lifetime prediction of SASs. The review starts by introducing classical research methods for fatigue failure of adhesive systems, with a focus on total fatigue lifetime and fatigue crack growth (FCG). After summarizing the complexity of fatigue failure in SASs, it provides an overview of fatigue research for the three types of SASs: “soft interface”, “soft adherend”, and “soft-soft” adhesive systems. Then, the relations between the fatigue failure and energy dissipation of various SASs are specifically discussed noting that significant energy dissipation accompanying the cyclic deformation of SASs during fatigue loading can substantially affect the final fatigue failure of SASs. Finally, the current unresolved issues and challenges in this field are presented.
软粘合系统(SAS)由软粘合层和/或软粘合剂组成,已广泛应用于生物医学、柔性电子和软机器人等先进领域。由于 SAS 经常承受疲劳载荷,因此了解 SAS 的疲劳失效对于确保其结构安全和功能稳定性至关重要。本文对 SAS 的疲劳失效进行了系统综述,旨在提供一个全面的理解,为 SAS 的疲劳失效机制研究和寿命预测做出贡献。综述首先介绍了粘合剂系统疲劳失效的经典研究方法,重点是总疲劳寿命和疲劳裂纹增长(FCG)。在总结了 SAS 疲劳破坏的复杂性后,综述了三种类型 SAS 的疲劳研究:"软界面"、"软粘合剂 "和 "软-软 "粘合剂系统。然后,具体讨论了各种 SAS 的疲劳失效与能量耗散之间的关系,指出在疲劳加载过程中伴随 SAS 循环变形的大量能量耗散会对 SAS 的最终疲劳失效产生重大影响。最后,介绍了该领域目前尚未解决的问题和面临的挑战。
{"title":"Fatigue failure of soft adhesive systems: A state-of-the-art review","authors":"Chengbin Yao , Yan Xia , Zhuoran Yang , Zhongmeng Zhu , Zheyu Li , Han Jiang","doi":"10.1016/j.giant.2024.100292","DOIUrl":"10.1016/j.giant.2024.100292","url":null,"abstract":"<div><p>Soft adhesive systems (SASs), which consist of a soft adhesive layer and/or soft adherends, have been extensively applied in advanced fields such as biomedicine, flexible electronics, and soft robotics. Understanding the fatigue failure of SASs is crucial for ensuring their structural safety and functional stability, as they are often subjected to fatigue loading. This paper systematically reviews the fatigue failure of SASs, aiming to provide a comprehensive understanding and contribute to the study of fatigue failure mechanisms and lifetime prediction of SASs. The review starts by introducing classical research methods for fatigue failure of adhesive systems, with a focus on total fatigue lifetime and fatigue crack growth (FCG). After summarizing the complexity of fatigue failure in SASs, it provides an overview of fatigue research for the three types of SASs: “soft interface”, “soft adherend”, and “soft-soft” adhesive systems. Then, the relations between the fatigue failure and energy dissipation of various SASs are specifically discussed noting that significant energy dissipation accompanying the cyclic deformation of SASs during fatigue loading can substantially affect the final fatigue failure of SASs. Finally, the current unresolved issues and challenges in this field are presented.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000560/pdfft?md5=aad0e74ea6f71b9ca50d483c6a2a3d45&pid=1-s2.0-S2666542524000560-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141133596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.giant.2024.100293
Xiaomin Wang , Heyi Pan , Lin Lian , Xiangjun Gong , Yang Wang , Chaoqun Zhang
The low-temperature environment caused by solvent evaporation leads to the condensation of water vapor into water droplets that remain on the surface of the film to form breath figure patterns. The conventional approach to regulate the pore morphology in the breath figure process is to optimize the ambient temperature, humidity, and solution concentration. However, realizing a wide adjustable window of pore size and uniform distribution of the pore are still challenges. Here, inspired by the rainfall phenomenon, we proposed a simple and efficient method called the “raining boxing method” (RBM) for preparing porous films based on exogenously given water droplets as templates. The RBM broadened the adjustable window of pore size (0.6–225 µm in this work) and solved the inherent problem of radial reduction of pore size from the film center to the edge caused by the significant difference in low-temperature duration at different locations accompanying the solvent evaporation process. Furthermore, this method could realize multi-types porous films, including surface porous films, spongy porous films, and honeycomb porous films, and could be universally applied in the casting process of various polymer solutions.
{"title":"Raining-inspired method for construction of porous film material","authors":"Xiaomin Wang , Heyi Pan , Lin Lian , Xiangjun Gong , Yang Wang , Chaoqun Zhang","doi":"10.1016/j.giant.2024.100293","DOIUrl":"10.1016/j.giant.2024.100293","url":null,"abstract":"<div><p>The low-temperature environment caused by solvent evaporation leads to the condensation of water vapor into water droplets that remain on the surface of the film to form breath figure patterns. The conventional approach to regulate the pore morphology in the breath figure process is to optimize the ambient temperature, humidity, and solution concentration. However, realizing a wide adjustable window of pore size and uniform distribution of the pore are still challenges. Here, inspired by the rainfall phenomenon, we proposed a simple and efficient method called the “raining boxing method” (RBM) for preparing porous films based on exogenously given water droplets as templates. The RBM broadened the adjustable window of pore size (0.6–225 µm in this work) and solved the inherent problem of radial reduction of pore size from the film center to the edge caused by the significant difference in low-temperature duration at different locations accompanying the solvent evaporation process. Furthermore, this method could realize multi-types porous films, including surface porous films, spongy porous films, and honeycomb porous films, and could be universally applied in the casting process of various polymer solutions.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000572/pdfft?md5=6f318d42175150e218508c27aab69e8e&pid=1-s2.0-S2666542524000572-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141145227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1016/j.giant.2024.100290
Conglong Yuan , Yuxing Zhan , Huixian Liu , Zhaoyi Wang , Ning Shen , Binghui Liu , Honglong Hu , Zhigang Zheng
The twist-bend nematic (NTB) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious NTB phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled NTB material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed NTB material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable NTB phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.
{"title":"Room temperature stable twist-bend nematic materials without crystallization over 1 year","authors":"Conglong Yuan , Yuxing Zhan , Huixian Liu , Zhaoyi Wang , Ning Shen , Binghui Liu , Honglong Hu , Zhigang Zheng","doi":"10.1016/j.giant.2024.100290","DOIUrl":"10.1016/j.giant.2024.100290","url":null,"abstract":"<div><p>The twist-bend nematic (N<sub>TB</sub>) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious N<sub>TB</sub> phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled N<sub>TB</sub> material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed N<sub>TB</sub> material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable N<sub>TB</sub> phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000547/pdfft?md5=ffedc8eea5fda2ed3e0b8c09e2c5379d&pid=1-s2.0-S2666542524000547-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141141847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.giant.2024.100285
Yue Yao , Ziyang Fan , Min Sang , Xinglong Gong , Shouhu Xuan
With the development of intelligent protective wearable equipment, flexible materials with impact resistance have become a focus of attention. Shear stiffening gel (SSG) is a flexible smart material that can perceive external force loads and generate mechanical responses, boasting exceptional properties like fast response, adaptability, and self-healing. Since the SSG can absorb a large amount of energy during dynamic impact, it shows remarkable advantages for safety protection applications. During the past decade, there has been strong interests in the research community on the SSG composites and their various applications in cutting-edge fields. In this review, we summarize the recent research achievements of SSG composite, by focusing on the improved properties, enhanced functions, and manifold structures. Meanwhile, we also discuss the practical applications of SSG composite in battery protection, vibration control, intelligent sensing, wearable safety protection, and triboelectric nanogenerator (TENG). Finally, we propose the prospects and challenges for the further development and application of SSG composite in the future.
{"title":"Anti-impact composite based on shear stiffening gel: Structural design and multifunctional applications","authors":"Yue Yao , Ziyang Fan , Min Sang , Xinglong Gong , Shouhu Xuan","doi":"10.1016/j.giant.2024.100285","DOIUrl":"10.1016/j.giant.2024.100285","url":null,"abstract":"<div><p>With the development of intelligent protective wearable equipment, flexible materials with impact resistance have become a focus of attention. Shear stiffening gel (SSG) is a flexible smart material that can perceive external force loads and generate mechanical responses, boasting exceptional properties like fast response, adaptability, and self-healing. Since the SSG can absorb a large amount of energy during dynamic impact, it shows remarkable advantages for safety protection applications. During the past decade, there has been strong interests in the research community on the SSG composites and their various applications in cutting-edge fields. In this review, we summarize the recent research achievements of SSG composite, by focusing on the improved properties, enhanced functions, and manifold structures. Meanwhile, we also discuss the practical applications of SSG composite in battery protection, vibration control, intelligent sensing, wearable safety protection, and triboelectric nanogenerator (TENG). Finally, we propose the prospects and challenges for the further development and application of SSG composite in the future.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654252400050X/pdfft?md5=fd2934bcc863b132269ef4bbe949995a&pid=1-s2.0-S266654252400050X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.giant.2024.100288
Svetlana V. Prudnikova , Evgeniy G. Kiselev , Aleksey V. Demidenko , Ivan V. Nemtsev , Ekaterina I. Shishatskaya , Sabu Thomas , Tatiana G. Volova
The features of the degradation of the "green" plastic poly(3-hydroxybutyrate) [P(3HB)] in the soil of various geographical regions were studied: in red ferralitic soil under tropical conditions (Kerala, India) and in chernozem soil under conditions of a sharply continental climate (Eastern Siberia, Russia). Significant differences in the chemical composition, temperature, and humidity of the studied soils were revealed. The number of bacteria and mycelial fungi in the Siberian chernozem was higher than in the red soil of India, from 2-3 to 10 or more times. The degradation of P(3HB) films in the chernozem occurred faster than in the red soil, which was drier, with a low content of humus and minerals, and fewer microorganisms than the chernozem. The half-life of polymer samples in Siberia and India was 64.8 and 126.4 days, respectively. During degradation, a decrease in the molecular weight and an increase in the degree of crystallinity of polymer samples were revealed, which indicates a more active biodegradation of the amorphous phase of the polymer by soil microorganisms. The primary degraders of the polymer have been isolated and identified, and it has been shown that the complexes of degrading bacteria and fungi in different types of soils did not have common species. Despite the presence of species with pronounced depolymerase activity, the rate of film degradation in red ferralitic soils was slowed down by unfavorable environmental conditions. The obtained results confirm the importance of studying the process of PHA degradation in natural conditions.
{"title":"Biodegradation of microbial plastic poly(3-hydroxybutyrate) in soil ecosystems at different latitudes","authors":"Svetlana V. Prudnikova , Evgeniy G. Kiselev , Aleksey V. Demidenko , Ivan V. Nemtsev , Ekaterina I. Shishatskaya , Sabu Thomas , Tatiana G. Volova","doi":"10.1016/j.giant.2024.100288","DOIUrl":"10.1016/j.giant.2024.100288","url":null,"abstract":"<div><p>The features of the degradation of the \"green\" plastic poly(3-hydroxybutyrate) [P(3HB)] in the soil of various geographical regions were studied: in red ferralitic soil under tropical conditions (Kerala, India) and in chernozem soil under conditions of a sharply continental climate (Eastern Siberia, Russia). Significant differences in the chemical composition, temperature, and humidity of the studied soils were revealed. The number of bacteria and mycelial fungi in the Siberian chernozem was higher than in the red soil of India, from 2-3 to 10 or more times. The degradation of P(3HB) films in the chernozem occurred faster than in the red soil, which was drier, with a low content of humus and minerals, and fewer microorganisms than the chernozem. The half-life of polymer samples in Siberia and India was 64.8 and 126.4 days, respectively. During degradation, a decrease in the molecular weight and an increase in the degree of crystallinity of polymer samples were revealed, which indicates a more active biodegradation of the amorphous phase of the polymer by soil microorganisms. The primary degraders of the polymer have been isolated and identified, and it has been shown that the complexes of degrading bacteria and fungi in different types of soils did not have common species. Despite the presence of species with pronounced depolymerase activity, the rate of film degradation in red ferralitic soils was slowed down by unfavorable environmental conditions. The obtained results confirm the importance of studying the process of PHA degradation in natural conditions.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000535/pdfft?md5=b27097e462068a2b444a7301b194028a&pid=1-s2.0-S2666542524000535-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polymer network is a crucial component of hydrogels, and network imperfection is a prominent feature of polymer networks, significantly influencing the performance of hydrogels. Two essential features of network imperfection are unequal chain lengths and dangling chains, both of which have a significant impact on the mechanical properties of single-network (SN) hydrogels. However, a theoretical framework considering network imperfection in SN hydrogels is still lacking. Here, we propose a theoretical model for SN hydrogels with network imperfection to study the damage behavior during deformation, in which we adopt different chain length distributions to accurately depict the real physical characteristics of the polymer network and incorporate the normalized critical chain force for a more precise measurement of network damage. To verify our theory, we discuss the effects of model parameters on the stress-stretch responses of SN hydrogels and predict the results of uniaxial loading-unloading tests of SN hydrogels, which agree well with experimentally measured stress-stretch behaviors. Finally, we implement the constitutive model into ABAQUS as a user subroutine to study the inhomogeneous deformation of hydrogels.
聚合物网络是水凝胶的重要组成部分,而网络不完善是聚合物网络的一个突出特征,对水凝胶的性能有重大影响。网络不完善的两个基本特征是链长不等和悬链,两者都对单网络(SN)水凝胶的机械性能有重大影响。然而,目前仍缺乏考虑单网络水凝胶中网络不完善的理论框架。我们采用不同的链长分布来准确描述聚合物网络的真实物理特性,并结合归一化临界链力来更精确地测量网络损伤。为了验证我们的理论,我们讨论了模型参数对 SN 水凝胶应力拉伸响应的影响,并预测了 SN 水凝胶单轴加载-卸载试验的结果,结果与实验测量的应力拉伸行为非常吻合。最后,我们将构成模型作为用户子程序应用到 ABAQUS 中,以研究水凝胶的不均匀变形。
{"title":"Mechanics of single-network hydrogels with network imperfection","authors":"Zhi Sheng, Siqi Yan, Jie Ma, Jiabao Bai, Zihang Shen, Zheng Jia","doi":"10.1016/j.giant.2024.100287","DOIUrl":"10.1016/j.giant.2024.100287","url":null,"abstract":"<div><p>Polymer network is a crucial component of hydrogels, and network imperfection is a prominent feature of polymer networks, significantly influencing the performance of hydrogels. Two essential features of network imperfection are unequal chain lengths and dangling chains, both of which have a significant impact on the mechanical properties of single-network (SN) hydrogels. However, a theoretical framework considering network imperfection in SN hydrogels is still lacking. Here, we propose a theoretical model for SN hydrogels with network imperfection to study the damage behavior during deformation, in which we adopt different chain length distributions to accurately depict the real physical characteristics of the polymer network and incorporate the normalized critical chain force for a more precise measurement of network damage. To verify our theory, we discuss the effects of model parameters on the stress-stretch responses of SN hydrogels and predict the results of uniaxial loading-unloading tests of SN hydrogels, which agree well with experimentally measured stress-stretch behaviors. Finally, we implement the constitutive model into ABAQUS as a user subroutine to study the inhomogeneous deformation of hydrogels.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000523/pdfft?md5=c4db0e5572150588908c21a2b39cdba8&pid=1-s2.0-S2666542524000523-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1016/j.giant.2024.100284
Mohammad Hassan Shahriari , Hossein Salmani , Mohammad Akrami , Zeinab Salehi
Nowadays, microneedles as novel transdermal delivery systems are interested in scientists for biomedical applications. This work aims to present a Cascade Microneedle Molding Technique (CMMT) for the reusable fabrication of polydimethylsiloxane (PDMS) molds to produce microneedle devices. To produce a positive master mold from epoxy resin, a negative PDMS mold was first fabricated. PDMS can be molded, and microneedles can be fabricated using this epoxy mold in a scalable and cost-effective manner. These molds were used to manufacture solid, coated, and dissolving microneedles, which were characterized comprehensively. Microneedle morphology and geometry were evaluated using Scanning Electron Microscopy (SEM). The mechanical integrity and ability to insert the microneedle device into the skin were assessed using compression strength analysis and force-displacement measurements. Drug penetration through animal skin was evaluated for Rhodamine B (RhB) loaded microneedles. The depth of needle insertion was also visualized using histological analysis while the spatial distribution of released cargo was determined by using confocal microscopy. Taken together, CMMT offers a simple, rapid, cost-effective, and scalable method for mass-producing microneedles with remarkable properties compared to direct 3D printing or laser ablation.
{"title":"Development of a Facile, Versatile and Scalable Fabrication Approach of Solid, Coated, and Dissolving Microneedle Devices for Transdermal Drug Delivery Applications","authors":"Mohammad Hassan Shahriari , Hossein Salmani , Mohammad Akrami , Zeinab Salehi","doi":"10.1016/j.giant.2024.100284","DOIUrl":"10.1016/j.giant.2024.100284","url":null,"abstract":"<div><p>Nowadays, microneedles as novel transdermal delivery systems are interested in scientists for biomedical applications. This work aims to present a Cascade Microneedle Molding Technique (CMMT) for the reusable fabrication of polydimethylsiloxane (PDMS) molds to produce microneedle devices. To produce a positive master mold from epoxy resin, a negative PDMS mold was first fabricated. PDMS can be molded, and microneedles can be fabricated using this epoxy mold in a scalable and cost-effective manner. These molds were used to manufacture solid, coated, and dissolving microneedles, which were characterized comprehensively. Microneedle morphology and geometry were evaluated using Scanning Electron Microscopy (SEM). The mechanical integrity and ability to insert the microneedle device into the skin were assessed using compression strength analysis and force-displacement measurements. Drug penetration through animal skin was evaluated for Rhodamine B (RhB) loaded microneedles. The depth of needle insertion was also visualized using histological analysis while the spatial distribution of released cargo was determined by using confocal microscopy. Taken together, CMMT offers a simple, rapid, cost-effective, and scalable method for mass-producing microneedles with remarkable properties compared to direct 3D printing or laser ablation.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000493/pdfft?md5=682bf337751df7fe84a301c0f28a8ff0&pid=1-s2.0-S2666542524000493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141026740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1016/j.giant.2024.100283
Pierre Delliere, Nathanael Guigo
Biobased furan resins (furfuryl alcohol based) are functionalized by taking advantage of a side-reaction occurring during its polymerization. The furan ring-opening reactions yields carbonyls which can be functionalized by reaction with primary amines. Light is shed on unexplored parameters impacting the properties of PFA/Amine systems. First, PFA/Amines were prepared using PFA resins at conversion degree between 0.3 and 0.95. Overall, high conversion degrees (0.9 and above) are best suited to produce rigid materials. In addition, a precipitation process may be used to reach high Tg biobased materials (145 °C). Finally, the impact of the amines’ basicity on the properties of PFA/Amines was investigated. The results highlighted that PFAs at conversion degrees above 0.9 are little affected by the basicity. However, the properties of PFA functionalized at lower conversion degrees are strongly affected by the bases, i.e. high brittleness. This can be circumvented by limiting the functionalization degree to 0.25 and below.
{"title":"Tuning conditions for the amine-functionalization of carbonyls formed in biobased polyfurfuryl alcohol","authors":"Pierre Delliere, Nathanael Guigo","doi":"10.1016/j.giant.2024.100283","DOIUrl":"10.1016/j.giant.2024.100283","url":null,"abstract":"<div><p>Biobased furan resins (furfuryl alcohol based) are functionalized by taking advantage of a side-reaction occurring during its polymerization. The furan ring-opening reactions yields carbonyls which can be functionalized by reaction with primary amines. Light is shed on unexplored parameters impacting the properties of PFA/Amine systems. First, PFA/Amines were prepared using PFA resins at conversion degree between 0.3 and 0.95. Overall, high conversion degrees (0.9 and above) are best suited to produce rigid materials. In addition, a precipitation process may be used to reach high <em>T<sub>g</sub></em> biobased materials (145 °C). Finally, the impact of the amines’ basicity on the properties of PFA/Amines was investigated. The results highlighted that PFAs at conversion degrees above 0.9 are little affected by the basicity. However, the properties of PFA functionalized at lower conversion degrees are strongly affected by the bases, i.e. high brittleness. This can be circumvented by limiting the functionalization degree to 0.25 and below.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000481/pdfft?md5=a8a8b66fa774ebeb9360878a7b103f50&pid=1-s2.0-S2666542524000481-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141039829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1016/j.giant.2024.100286
Hao Gu , Juan Zhu , Haiyang Chen , Guang Zeng , Xining Chen , Xiaohua Tang , Jinfeng Xia , Tianjiao Zhang , Ben Zhang , Jiandong Zhang , Junyuan Ding , Yaowen Li , Yongfang Li
High-efficiency organic solar cells (OSCs) are typically produced through spin-coating, restricting their application to small areas. Blade-coating, however, emerging as a promising method for large-scale production, yet faces challenges in film morphology optimization, which often leads to reduced power conversion efficiency (PCE). This study delves into the influence of both liquid and solid additives on the morphology of active layer in blade-coated OSCs, comparing them with spin-coated counterparts, using the high-efficiency PM6:D18:BTP-eC9 active layer. For the first time, we discovered the distinct impacts of solid versus liquid additives on the film uniformity, phase separation and crystalline regulation in blade-coating technique. Our findings reveal that liquid additives in blade-coating trigger outward Marangoni flow, causing undesirable material aggregation and phase separation, thereby impairing device performances. Conversely, switching to solid additives, like 1,4-Diiodobenzene (DIB), prevents these detrimental changes in fluid mechanics and preserves the desired additive effects. We demonstrate that solid additives can significantly change these inferior behaviors introduced by liquid additives in blade-coating, regulate phase separation, enhance π-π accumulation and delay crystallization, and ultimately boost OSC efficiency. Using DIB solid additive, we achieved a PCE of 18.81 % in blade-coated devices. Scaling up by 252 times, the PCE of large-area OSC module (15.64 cm²) sustained at 16.70 % (certified 16.66 %), ranking among the highest efficiency for OSC modules reported so far. These modules also exhibited exceptional storage stability, retaining 98 % efficiency after 5880 h in a nitrogen atmosphere. This research also provides a comprehensive understanding from various film characterizations and the perspective of fluid mechanics normally lack in the research. This research not only establishes a new framework for high-performance and large-area OSC modules but also extends its findings to other OSC systems with different additives, demonstrating a roll-to-roll compatible technique.
{"title":"Mechanics manipulation in large-area organic solar modules achieving over 16.5 % efficiency","authors":"Hao Gu , Juan Zhu , Haiyang Chen , Guang Zeng , Xining Chen , Xiaohua Tang , Jinfeng Xia , Tianjiao Zhang , Ben Zhang , Jiandong Zhang , Junyuan Ding , Yaowen Li , Yongfang Li","doi":"10.1016/j.giant.2024.100286","DOIUrl":"10.1016/j.giant.2024.100286","url":null,"abstract":"<div><p>High-efficiency organic solar cells (OSCs) are typically produced through spin-coating, restricting their application to small areas. Blade-coating, however, emerging as a promising method for large-scale production, yet faces challenges in film morphology optimization, which often leads to reduced power conversion efficiency (PCE). This study delves into the influence of both liquid and solid additives on the morphology of active layer in blade-coated OSCs, comparing them with spin-coated counterparts, using the high-efficiency PM6:D18:BTP-eC9 active layer. For the first time, we discovered the distinct impacts of solid versus liquid additives on the film uniformity, phase separation and crystalline regulation in blade-coating technique. Our findings reveal that liquid additives in blade-coating trigger outward Marangoni flow, causing undesirable material aggregation and phase separation, thereby impairing device performances. Conversely, switching to solid additives, like 1,4-Diiodobenzene (DIB), prevents these detrimental changes in fluid mechanics and preserves the desired additive effects. We demonstrate that solid additives can significantly change these inferior behaviors introduced by liquid additives in blade-coating, regulate phase separation, enhance π-π accumulation and delay crystallization, and ultimately boost OSC efficiency. Using DIB solid additive, we achieved a PCE of 18.81 % in blade-coated devices. Scaling up by 252 times, the PCE of large-area OSC module (15.64 cm²) sustained at 16.70 % (certified 16.66 %), ranking among the highest efficiency for OSC modules reported so far. These modules also exhibited exceptional storage stability, retaining 98 % efficiency after 5880 h in a nitrogen atmosphere. This research also provides a comprehensive understanding from various film characterizations and the perspective of fluid mechanics normally lack in the research. This research not only establishes a new framework for high-performance and large-area OSC modules but also extends its findings to other OSC systems with different additives, demonstrating a roll-to-roll compatible technique.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000511/pdfft?md5=5ffc8847315fcfdd912fd013c32eede5&pid=1-s2.0-S2666542524000511-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141042793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1016/j.giant.2024.100281
Zhenguang Li , Yaning Wang , Jielin Xu , Jing Wu , Huaping Wang
To enhance the degradation rate of poly (butylene adipate-co-terephthalate) (PBAT) in the natural environment and to investigate the effect of modified monomers on the molding and structure of copolyester fibers, a series of isosorbide modified PBAT (PBIAT) tetrapolyesters were synthesized and monofilaments were prepared by solid-state drawing in this work. The experimental results revealed that the introduction of isosorbide formed a partial block structure in the molecular chain, and that a significant improvement in the properties of heat resistance and degradability of the copolyester was observed with the introduction of isosorbide. In the research of fiber forming and structure-property relationship by isosorbide, it was found that although the monofilament orientation process was affected by the V-shape structure of isosorbide, the change of the crystal structure under stress was similar to that of polybutylene terephthalate (PBT). The PBIAT monofilaments showed a decrease in the strength at break affected by the introduction of isosorbide but they still met the requirements for textile applications.
为了提高聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)(PBAT)在自然环境中的降解率,并研究改性单体对共聚酯纤维成型和结构的影响,本研究合成了一系列异山梨醇改性 PBAT(PBIAT)四元共聚酯,并通过固态拉伸制备了单丝。实验结果表明,异山梨醇的引入在分子链中形成了部分嵌段结构,并且随着异山梨醇的引入,共聚聚酯的耐热性和降解性得到了显著改善。在研究异山梨醇醚的纤维成型和结构-性能关系时发现,虽然单丝取向过程受到异山梨醇醚 V 型结构的影响,但晶体结构在应力作用下的变化与聚对苯二甲酸丁二醇酯(PBT)相似。PBIAT 单丝在引入异山梨醇后,断裂强度有所下降,但仍能满足纺织品应用的要求。
{"title":"Monofilaments of isosorbide-based tetrapolyesters with enhanced (bio)degradability prepared by a solid-state drawing process: Synthesis and struture-property relations","authors":"Zhenguang Li , Yaning Wang , Jielin Xu , Jing Wu , Huaping Wang","doi":"10.1016/j.giant.2024.100281","DOIUrl":"10.1016/j.giant.2024.100281","url":null,"abstract":"<div><p>To enhance the degradation rate of poly (butylene adipate-co-terephthalate) (PBAT) in the natural environment and to investigate the effect of modified monomers on the molding and structure of copolyester fibers, a series of isosorbide modified PBAT (PBIAT) tetrapolyesters were synthesized and monofilaments were prepared by solid-state drawing in this work. The experimental results revealed that the introduction of isosorbide formed a partial block structure in the molecular chain, and that a significant improvement in the properties of heat resistance and degradability of the copolyester was observed with the introduction of isosorbide. In the research of fiber forming and structure-property relationship by isosorbide, it was found that although the monofilament orientation process was affected by the V-shape structure of isosorbide, the change of the crystal structure under stress was similar to that of polybutylene terephthalate (PBT). The PBIAT monofilaments showed a decrease in the strength at break affected by the introduction of isosorbide but they still met the requirements for textile applications.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000468/pdfft?md5=a22f835d08b365a0b46cfa57bda31d6a&pid=1-s2.0-S2666542524000468-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}