Background: Self-reports are commonly used to assess physical activity in children. Existing self-reports for physical activity have not been validated for use among primary school children in Kilimanjaro, Tanzania. In order to understand if primary school children can accurately report their physical activity, we examined the validity of self-reported physical activity against accelerometer measured physical activity. Methods: A community based cross-sectional study was conducted from May to July, 2018 among four primary schools in Moshi municipal and Moshi rural districts, Kilimanjaro, Tanzania. A total of 51 primary school children aged 9-11 years were enrolled using a simple random sampling technique. A self-reported questionnaire was used to collect physical activity related variables. In addition, children wore accelerometers for seven consecutive days to capture physical activity movements. Spearman's rank test and Bland Altman plots were used for assessing validity and agreement between self-reports and accelerometer moderate to vigorous physical activity (MVPA). Results: The mean age of the study participants was 10 (SD=0.8) years. Majority of the study participants were female 32 (63%). A moderate, positive correlation was found between self-reports and accelerometer MVPA (rho=0.36, p=0.009). Accelerometer had higher MVPA compared to self-reports. Children who reported walking to school had higher MVPA for both accelerometer and self- reports compared to children who use other means of transport to school, e.g. school buses (p < 0.001). Conclusions: This study found the moderate positive correlation between self-reports and accelerometers. Self-reports are prone to errors due to recall bias, and this interferes their validity. More research is needed to develop better self-reported measures with specific activities which can easily be recalled by children. Also, researchers have to be aware of self-reports validity limitation.
Background: Human African trypanosomiasis (HAT) is a protozoal disease transmitted by tsetse flies. Infection with trypanosomes can lead directly to active HAT or latent infection with no detectable parasites, which may progress to active HAT or to spontaneous self-cure. Genetic variation could explain these differences in the outcome of infection. To test this hypothesis, polymorphisms in 17 candidate genes were tested ( APOL1 [ G1 and G2], CFH, HLA-A, HPR, HP, IL1B, IL12B, IL12RB1, IL10, IL4R, MIF, TNFA , IL6, IL4, IL8, IFNG, and HLA-G). Methods: Samples were collected in Democratic Republic of the Congo. 233 samples were genotyped: 100 active HAT cases, 33 from subjects with latent infections and 100 negative controls. Commercial service providers genotyped polymorphisms at 96 single nucleotide polymorphisms (SNPs) on 17 genes. Data were analyzed using Plink V1.9 software and R. Loci, with suggestive associations (uncorrected p < 0.05) validated using an additional 594 individuals, including 164 cases and 430 controls. Results: After quality control, 87 SNPs remained in the analysis. Two SNPs in IL4 and two in IFNG were suggestively associated (uncorrected p<0.05) with a differential risk of developing a Trypanosoma brucei gambiense infection in the Congolese population. The IFNG minor allele (rs2430561, rs2069718) SNPs were protective in comparison between latent infections and controls. Carriers of the rs2243258_T and rs2243279_A alleles of IL4 and the rs2069728_T allele of IFNG had a reduced risk of developing illness or latent infection, respectively. None of these associations were significant after Bonferroni correction for multiple testing. A validation study using more samples was run to determine if the absence of significant association was due to lack of power. Conclusions: This study showed no evidence of an association of HAT with IL4 and IFNG SNPs or with APOL1 G1 and G2 alleles, which have been found to be protective in other studies.
Background: Tuberculin skin test and interferon gamma release assay (IGRA) show limitations in diagnosing latent tuberculosis infection (LTBI) and poorly predict progression to active tuberculosis. This study will explore detection of Mycobacterium tuberculosis ( M.tb) DNA in CD34 + peripheral blood mononuclear cells (PBMCs) as a biomarker for LTBI and monitoring chemoprophylaxis response. Methods: In a cross-sectional study, 120 household contacts (60 HIV positive and 60 HIV negative) will be recruited. Also, 10 patients with sputum positive pulmonary tuberculosis and 10 visitors from low incidence countries with no history of TB treatment will be recruited as positive and negative controls, respectively. Participants will donate 100 ml (50 ml for TB patients) of blood to isolate PBMCs using density gradient centrifugation. Isolated PBMCs will be separated into CD34 + and CD34 - enriched cellular fractions. DNA from each fraction will be purified, quantified and subjected to droplet digital PCR targeting IS6110 (a M.tb Complex multi-copy gene) and rpoB, a single copy gene. Also, 4 ml of blood will be drawn for IGRA. In a nested prospective study, 60 HIV positive participants will be given 300 mg of Isoniazid Preventive Therapy (IPT) daily for six months, after which they will donate a second 100 ml blood sample that will be processed as described above. Data from the cross-sectional study will be analysed to determine the proportion of individuals in whom M.tb DNA is detectable in CD34 + and CD34 - fractions and number of M.tb genomes present. Data from the prospective study will be analysed to compare the proportion of individuals with detectable M.tb DNA in CD34 + and CD34 - fractions, and median M.tb genome copy number, post vs pre-IPT. Discussion: This study will determine whether detection of M.tb DNA in CD34 + PBMCs holds promise as a biomarker for LTBI and monitoring chemoprophylaxis response.
Background: We aimed at investigating the impact of malaria on the haematological parameters of residents from different demographic settlements in the Ashanti Region of Ghana. Malaria parasites trigger changes in certain haematological parameters, which may result in a number of clinical manifestations. Differences in demographic settlements, such as rural, peri-urban and urban settlements may also influence these changes, but this has not been extensively studied in Ghana. Methods: We conducted a hospital-based, cross-sectional study from January to December 2018 in three different settlements. A total of 598 participants were recruited. Blood smears were examined to detect and quantify malaria parasitaemia, while haematological parameters were measured using a haematology analyser. Results: Participants from the rural settlement had the highest malaria prevalence (21.3%) compared to urban (11.8%) and peri-urban areas (13.3%); however, the peri-urban area had the highest median parasite density (568; IQR=190.0-1312.0). Age was significantly associated with the odds of malaria positivity (OR: 0.97; CI:0.96 - 0.99; p=4.96*10 -4). When haematological parameters of the malaria-infected study participants were compared to the parameters of uninfected participants, red blood cell count (p=0.017), haemoglobin (p=0.0165), haematocrit (p=0.0015), mean corpuscular volume (p=0.0014), plateletcrit (p<0.0001) and platelet count (p<0.0001) were all significantly lower in the malaria infected group. In addition to age, haemoglobin and plateletcrit levels were also inversely correlated with the odds of testing positive for malaria, suggesting that children who were anaemic and/or thrombocytopaenic were likely to be infected. After fitting the data to a logistic regression model comprising the three variables, the model correctly categorised 78% of uninfected study participants, but only 50% of the malaria-positive participants. Conclusions: Study participants who were positive for malaria were younger and had low haemoglobin and plateletcrit levels compared to uninfected individuals. Further studies are needed to more precisely elucidate the relationship between malaria infection,demographic and haematological parameters.