Global food production consumes a large fraction of energy budget, land area, and freshwater; however, a larger fraction of the produce is lost or unutilized, which has potential to produce useful products for human use. The biogenic synthesis of silver nanoparticles from such waste food appears to be a promising strategy. A conservative estimate of 70–140 thousand tons of potato peels is produced annually by food-chain companies globally; however, they are primarily utilized to produce substandard feed for livestock or manure. For the formation of highly profitable compounds, enhancement of value, and the process of extraction, such as nanocomposite, organic antioxidants, and organic meal inclusions, potato peels can be used as a cheap, productive, and readily available source of raw material. In the present research, silver nanoparticles (AgNPs) were extracted from the peels of potato ( Solanum tuberosum ) . The fabrication of potato peel-derived AgNPs was established using UV-visible spectroscopy analysis. Approaches like X-ray diffraction (XRD), attenuated total reflection-infrared (ATR-IR) spectroscopy analysis, and field emission scanning electron microscopy (FESEM) were used to determine the characteristics of the AgNPs. Additionally, strains of Gram-positive bacteria such as Staphylococcus aureus ( S. aureus ) (ATCC 25923) and Gram-negative bacteria such as Escherichia coli ( E. coli ) (ATCC 25922) were used to determine the antibacterial activity of AgNPs via the disc diffusion technique. The antibacterial properties of AgNPs could help protect food from microbial contamination. Furthermore, AgNPs were tested for their potential application in purification of industrial wastewater. The results revealed that AgNPs derived from the potato peels could be used in industrial and biomedical applications and possess excellent antibacterial activity. Our research suggests that AgNPs can be extracted from a safe and ecofriendly fabrication technique from largely unused potato peels that have a great potential for inhibiting the bacterial growth and for the in situ purification of wastewater in the upcoming years. Therefore, besides value addition to the farm produce, such recycling of potato peels is likely to reduce the burden of the solid waste volumes in agro-centers, kitchen wastes, and food industries across the globe.
{"title":"Biosynthesis and characterization of silver nanoparticles generated from peels of Solanum tuberosum (potato) and their antibacterial and wastewater treatment potential","authors":"None Deepa, Raunak Dhanker, Ram Kumar, Shashank S. Kamble, None Kamakshi, Shubham Goyal","doi":"10.3389/fnano.2023.1213160","DOIUrl":"https://doi.org/10.3389/fnano.2023.1213160","url":null,"abstract":"Global food production consumes a large fraction of energy budget, land area, and freshwater; however, a larger fraction of the produce is lost or unutilized, which has potential to produce useful products for human use. The biogenic synthesis of silver nanoparticles from such waste food appears to be a promising strategy. A conservative estimate of 70–140 thousand tons of potato peels is produced annually by food-chain companies globally; however, they are primarily utilized to produce substandard feed for livestock or manure. For the formation of highly profitable compounds, enhancement of value, and the process of extraction, such as nanocomposite, organic antioxidants, and organic meal inclusions, potato peels can be used as a cheap, productive, and readily available source of raw material. In the present research, silver nanoparticles (AgNPs) were extracted from the peels of potato ( Solanum tuberosum ) . The fabrication of potato peel-derived AgNPs was established using UV-visible spectroscopy analysis. Approaches like X-ray diffraction (XRD), attenuated total reflection-infrared (ATR-IR) spectroscopy analysis, and field emission scanning electron microscopy (FESEM) were used to determine the characteristics of the AgNPs. Additionally, strains of Gram-positive bacteria such as Staphylococcus aureus ( S. aureus ) (ATCC 25923) and Gram-negative bacteria such as Escherichia coli ( E. coli ) (ATCC 25922) were used to determine the antibacterial activity of AgNPs via the disc diffusion technique. The antibacterial properties of AgNPs could help protect food from microbial contamination. Furthermore, AgNPs were tested for their potential application in purification of industrial wastewater. The results revealed that AgNPs derived from the potato peels could be used in industrial and biomedical applications and possess excellent antibacterial activity. Our research suggests that AgNPs can be extracted from a safe and ecofriendly fabrication technique from largely unused potato peels that have a great potential for inhibiting the bacterial growth and for the in situ purification of wastewater in the upcoming years. Therefore, besides value addition to the farm produce, such recycling of potato peels is likely to reduce the burden of the solid waste volumes in agro-centers, kitchen wastes, and food industries across the globe.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135114523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-14DOI: 10.3389/fnano.2023.1256439
Himanshi Jangir, Brijesh Kaler, Gaurav Srivastava, M. Das
Introduction: Agriculture predominantly follows three farming systems: natural, organic (organic manures for soil nutrition), and agrochemical intensive. Agrochemical-intensive farming uses synthetic fertilizers, insecticides, pesticides, and weedicides. It holds the most prominent place in the modern agriculture business. Humankind realizes that over-reliance on synthetic agrochemicals has resulted in the declining health of the ecosystem’s soil, water, and living species. It must explore strategies to reduce synthetic agrochemicals without compromising agricultural production to restore the ecological balance. Nano-formulations help lower dosages of agrochemicals, leading to the emergence of nano-agriculture. However, the critical challenge is how we could exploit nanomaterials’ power to selectively improve crop plants’ metabolic performance so that it has a better competitive edge in the field to withstand the nutrient-seeking pressure exerted by other plants.Methods: Here we have achieved the same by root treatment of the onion crop and then growing them in the presence of organic goat manure.Results: In a 2 years field trial with onion crops, we report an increase in yield through root treatment with nano-pyrite (FeS2) plus soil application of goat dropping (Test) as compared to the use of goat dropping alone (Control). In the first-year field trial (November 2018- April 2019), the total biomass (bulb + leaf) weight of the test sample was 4.75 kg (n = 86), while control samples weighed 3.5 kg (n = 83). The total bulb weight for the control and test was 2.6 and 3.6 kg, respectively. In the second-year field trial (December 2019- April 2020), the total biomass of the test sample was 2.65 kg (n = 64), while control samples weighed 2.30 kg (n = 64). We observed a yield-boosting effect of root treatment with nano-pyrite plus soil application of goat dropping in onion crops. As monitored by spectroscopic absorbance, there is a significant increase in the anthocyanin content in test bulbs (0.069) compared to control bulbs (0.02). Similarly, the relative flavanol content in test leaves (0.253) was significantly higher compared to the control samples (0.086). We have integrated nano-agriculture and organic farming, resulting in a hybrid form; nano-organic farming bolsters the metabolic fitness of the onion (Allium cepa) to achieve sustainable food production.
{"title":"Sustainable nano-interventions to enhance crop yield, anthocyanin content, and marketability of onion (Allium cepa)","authors":"Himanshi Jangir, Brijesh Kaler, Gaurav Srivastava, M. Das","doi":"10.3389/fnano.2023.1256439","DOIUrl":"https://doi.org/10.3389/fnano.2023.1256439","url":null,"abstract":"Introduction: Agriculture predominantly follows three farming systems: natural, organic (organic manures for soil nutrition), and agrochemical intensive. Agrochemical-intensive farming uses synthetic fertilizers, insecticides, pesticides, and weedicides. It holds the most prominent place in the modern agriculture business. Humankind realizes that over-reliance on synthetic agrochemicals has resulted in the declining health of the ecosystem’s soil, water, and living species. It must explore strategies to reduce synthetic agrochemicals without compromising agricultural production to restore the ecological balance. Nano-formulations help lower dosages of agrochemicals, leading to the emergence of nano-agriculture. However, the critical challenge is how we could exploit nanomaterials’ power to selectively improve crop plants’ metabolic performance so that it has a better competitive edge in the field to withstand the nutrient-seeking pressure exerted by other plants.Methods: Here we have achieved the same by root treatment of the onion crop and then growing them in the presence of organic goat manure.Results: In a 2 years field trial with onion crops, we report an increase in yield through root treatment with nano-pyrite (FeS2) plus soil application of goat dropping (Test) as compared to the use of goat dropping alone (Control). In the first-year field trial (November 2018- April 2019), the total biomass (bulb + leaf) weight of the test sample was 4.75 kg (n = 86), while control samples weighed 3.5 kg (n = 83). The total bulb weight for the control and test was 2.6 and 3.6 kg, respectively. In the second-year field trial (December 2019- April 2020), the total biomass of the test sample was 2.65 kg (n = 64), while control samples weighed 2.30 kg (n = 64). We observed a yield-boosting effect of root treatment with nano-pyrite plus soil application of goat dropping in onion crops. As monitored by spectroscopic absorbance, there is a significant increase in the anthocyanin content in test bulbs (0.069) compared to control bulbs (0.02). Similarly, the relative flavanol content in test leaves (0.253) was significantly higher compared to the control samples (0.086). We have integrated nano-agriculture and organic farming, resulting in a hybrid form; nano-organic farming bolsters the metabolic fitness of the onion (Allium cepa) to achieve sustainable food production.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42610596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.3389/fnano.2023.1214313
Xuyiling Wang, D. Cabrera, Ying Yang, N. Telling
Magnetic nanoparticles (MNPs) are promising as local heat generators for magnetic hyperthermia under AC magnetic fields. The heating efficacy of MNPs is determined by the AC hysteresis loop area, which in turn is affected by the dynamic magnetic properties of the nanoparticles. Whilst inductive-based AC magnetometers can measure the average magnetic behavior of samples, the use of the magneto-optical Faraday effect with a focused laser spot allows point-probe measurements to be made, and without some of the magnetic field limitations imposed by inductive methods. In this work, the AC magnetic properties of different sized iron oxide MNPs in suspension were measured by AC magnetometry and AC susceptibility techniques. AC hysteresis loops measured by magneto-optical magnetometry were validated using a commercial inductive AC magnetometer, and compared to the magnetization relaxation behavior revealed by fitting the AC susceptibility data. The spatial sensitivity of the point-probe magneto-optical method is also demonstrated by measuring the AC hysteresis loop from large (>1 μm) MNP aggregates dried onto glass slides. These aggregated particles are found to be magnetically softer than in their suspension form, suggesting interparticle coupling mechanisms could occur when the nanoparticles form dense aggregates.
{"title":"Probing magnetization dynamics of iron oxide nanoparticles using a point-probe magneto-optical method","authors":"Xuyiling Wang, D. Cabrera, Ying Yang, N. Telling","doi":"10.3389/fnano.2023.1214313","DOIUrl":"https://doi.org/10.3389/fnano.2023.1214313","url":null,"abstract":"Magnetic nanoparticles (MNPs) are promising as local heat generators for magnetic hyperthermia under AC magnetic fields. The heating efficacy of MNPs is determined by the AC hysteresis loop area, which in turn is affected by the dynamic magnetic properties of the nanoparticles. Whilst inductive-based AC magnetometers can measure the average magnetic behavior of samples, the use of the magneto-optical Faraday effect with a focused laser spot allows point-probe measurements to be made, and without some of the magnetic field limitations imposed by inductive methods. In this work, the AC magnetic properties of different sized iron oxide MNPs in suspension were measured by AC magnetometry and AC susceptibility techniques. AC hysteresis loops measured by magneto-optical magnetometry were validated using a commercial inductive AC magnetometer, and compared to the magnetization relaxation behavior revealed by fitting the AC susceptibility data. The spatial sensitivity of the point-probe magneto-optical method is also demonstrated by measuring the AC hysteresis loop from large (>1 μm) MNP aggregates dried onto glass slides. These aggregated particles are found to be magnetically softer than in their suspension form, suggesting interparticle coupling mechanisms could occur when the nanoparticles form dense aggregates.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48766840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.3389/fnano.2023.1216921
A. Campaña, Athanasios Saragliadis, P. Mikheenko, D. Linke
Metal nanoparticles have attracted considerable attention due to their astounding potential for a wide range of commercial applications. From targeted drug delivery and antimicrobial agents to electronics, metal nanoparticles seem to have immeasurable prospects in all areas of science. However, modern industrial production frequently involves complex procedures, large amounts of energy, utilizes strong chemical solvents, or produces hazardous waste. Biological synthesis has been proposed as an alternative for simpler, inexpensive, and more eco-friendly metal nanoparticle production. Microorganisms possess multiple mechanisms to transport, regulate and bind metal ions that may result in the biosynthesis of nanoparticles. They can synthesize even complex bimetallic nanoparticles, which are difficult to produce with normal chemical and physical processes. A better understanding of bacteria-metal interactions might thus pave the way for a wide array of industrial applications. This review will summarize the current methods for metal nanoparticle synthesis, with a focus on the microbial (bio) synthesis of nanoparticles. We will describe the general mechanisms of bacteria-metal ion interactions, including cellular uptake and the subsequent reduction into nanoparticles. Protocols for the production of metal-based nanoparticles of relevant elements with different bacterial strains are compiled and the current challenges in bacterial synthesis of metal nanoparticles in the industry are discussed.
{"title":"Insights into the bacterial synthesis of metal nanoparticles","authors":"A. Campaña, Athanasios Saragliadis, P. Mikheenko, D. Linke","doi":"10.3389/fnano.2023.1216921","DOIUrl":"https://doi.org/10.3389/fnano.2023.1216921","url":null,"abstract":"Metal nanoparticles have attracted considerable attention due to their astounding potential for a wide range of commercial applications. From targeted drug delivery and antimicrobial agents to electronics, metal nanoparticles seem to have immeasurable prospects in all areas of science. However, modern industrial production frequently involves complex procedures, large amounts of energy, utilizes strong chemical solvents, or produces hazardous waste. Biological synthesis has been proposed as an alternative for simpler, inexpensive, and more eco-friendly metal nanoparticle production. Microorganisms possess multiple mechanisms to transport, regulate and bind metal ions that may result in the biosynthesis of nanoparticles. They can synthesize even complex bimetallic nanoparticles, which are difficult to produce with normal chemical and physical processes. A better understanding of bacteria-metal interactions might thus pave the way for a wide array of industrial applications. This review will summarize the current methods for metal nanoparticle synthesis, with a focus on the microbial (bio) synthesis of nanoparticles. We will describe the general mechanisms of bacteria-metal ion interactions, including cellular uptake and the subsequent reduction into nanoparticles. Protocols for the production of metal-based nanoparticles of relevant elements with different bacterial strains are compiled and the current challenges in bacterial synthesis of metal nanoparticles in the industry are discussed.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49162764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-24DOI: 10.3389/fnano.2023.1147396
Shady O. Agwa, T. Prodromakis
The applications of the Artificial Intelligence are currently dominating the technology landscape. Meanwhile, the conventional Von Neumann architectures are struggling with the data-movement bottleneck to meet the ever-increasing performance demands of these data-centric applications. Moreover, The vector-matrix multiplication cost, in the binary domain, is a major computational bottleneck for these applications. This paper introduces a novel digital in-memory stochastic computing architecture that leverages the simplicity of the stochastic computing for in-memory vector-matrix multiplication. The proposed architecture incorporates several new approaches including a new stochastic number generator with ideal binary-to-stochastic mapping, a best seeding approach for accurate-enough low stochastic bit-precisions, a hybrid stochastic-binary accumulation approach for vector-matrix multiplication, and the conversion of conventional memory read operations into on-the-fly stochastic multiplication operations with negligible overhead. Thanks to the combination of these approaches, the accuracy analysis of the vector-matrix multiplication benchmark shows that scaling down the stochastic bit-precision from 16-bit to 4-bit achieves nearly the same average error (less than 3%). The derived analytical model of the proposed in-memory stochastic computing architecture demonstrates that the 4-bit stochastic architecture achieves the highest throughput per sub-array (122 Ops/Cycle), which is better than the 16-bit stochastic precision by 4.36x, while still maintaining a small average error of 2.25%.
{"title":"Digital in-memory stochastic computing architecture for vector-matrix multiplication","authors":"Shady O. Agwa, T. Prodromakis","doi":"10.3389/fnano.2023.1147396","DOIUrl":"https://doi.org/10.3389/fnano.2023.1147396","url":null,"abstract":"The applications of the Artificial Intelligence are currently dominating the technology landscape. Meanwhile, the conventional Von Neumann architectures are struggling with the data-movement bottleneck to meet the ever-increasing performance demands of these data-centric applications. Moreover, The vector-matrix multiplication cost, in the binary domain, is a major computational bottleneck for these applications. This paper introduces a novel digital in-memory stochastic computing architecture that leverages the simplicity of the stochastic computing for in-memory vector-matrix multiplication. The proposed architecture incorporates several new approaches including a new stochastic number generator with ideal binary-to-stochastic mapping, a best seeding approach for accurate-enough low stochastic bit-precisions, a hybrid stochastic-binary accumulation approach for vector-matrix multiplication, and the conversion of conventional memory read operations into on-the-fly stochastic multiplication operations with negligible overhead. Thanks to the combination of these approaches, the accuracy analysis of the vector-matrix multiplication benchmark shows that scaling down the stochastic bit-precision from 16-bit to 4-bit achieves nearly the same average error (less than 3%). The derived analytical model of the proposed in-memory stochastic computing architecture demonstrates that the 4-bit stochastic architecture achieves the highest throughput per sub-array (122 Ops/Cycle), which is better than the 16-bit stochastic precision by 4.36x, while still maintaining a small average error of 2.25%.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49419461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.3389/fnano.2023.1186386
Ignacio Rivero Berti, M. Gantner, Santiago Rodriguez, G. A. Islan, W. Fávaro, A. Talevi, G. R. Castro, N. Durán
Violacein is a pigment produced by Gram-negative bacteria, which has shown several beneficial biological activities. The most relevant activities of violacein include the interference in the physiological activities of biological membranes, inhibition of cell proliferation, antioxidant, and anti-inflammatory activities. Moreover, the antiviral activities of violacein against some enveloped and non-enveloped viruses have also been reported. Violacein showed a wide spectrum of protease inhibition, both experimentally and in silico. Other in silico studies have suggested that violacein binds to the SARS-CoV-2 spike. Empirical physicochemical studies indicate that violacein (or, occasionally, its derivatives) may be administered orally to treat different disorders. In addition, different alternatives to product violacein, and molecular devices for delivery of this pigment are reviewed.
{"title":"Potential biocide roles of violacein","authors":"Ignacio Rivero Berti, M. Gantner, Santiago Rodriguez, G. A. Islan, W. Fávaro, A. Talevi, G. R. Castro, N. Durán","doi":"10.3389/fnano.2023.1186386","DOIUrl":"https://doi.org/10.3389/fnano.2023.1186386","url":null,"abstract":"Violacein is a pigment produced by Gram-negative bacteria, which has shown several beneficial biological activities. The most relevant activities of violacein include the interference in the physiological activities of biological membranes, inhibition of cell proliferation, antioxidant, and anti-inflammatory activities. Moreover, the antiviral activities of violacein against some enveloped and non-enveloped viruses have also been reported. Violacein showed a wide spectrum of protease inhibition, both experimentally and in silico. Other in silico studies have suggested that violacein binds to the SARS-CoV-2 spike. Empirical physicochemical studies indicate that violacein (or, occasionally, its derivatives) may be administered orally to treat different disorders. In addition, different alternatives to product violacein, and molecular devices for delivery of this pigment are reviewed.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45123273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-17DOI: 10.3389/fnano.2023.1227025
Malte Becher, J. Jagosz, C. Bock, A. Ostendorf, E. Gurevich
The formation of laser-induced periodic surface structures (LIPSSs) on the atomic layer-deposited (ALD) molybdenum disulfide (MoS2) upon femtosecond laser processing is studied experimentally. Laser-processing parameters such as average laser power and the scan speed at which the formation of the periodic nanostructures takes place are identified. Optical and scanning electron microscopy are applied to identify the parameter regions for the different LIPSS formations and transitions between them. High- and low-spatial frequency LIPSS (HSFL and LSFL) with two distinct periods λLSFL ≈ 1.1 μm and λHSFL ≈ 83 nm can be observed. The HSFL are dominating at higher and the LSFL at lower laser average powers. Formation of LIPSS is found to inhibit laser ablation at lower scan speeds.
{"title":"Formation of low- and high-spatial frequency laser-induced periodic surface structures (LIPSSs) in ALD-deposited MoS2","authors":"Malte Becher, J. Jagosz, C. Bock, A. Ostendorf, E. Gurevich","doi":"10.3389/fnano.2023.1227025","DOIUrl":"https://doi.org/10.3389/fnano.2023.1227025","url":null,"abstract":"The formation of laser-induced periodic surface structures (LIPSSs) on the atomic layer-deposited (ALD) molybdenum disulfide (MoS2) upon femtosecond laser processing is studied experimentally. Laser-processing parameters such as average laser power and the scan speed at which the formation of the periodic nanostructures takes place are identified. Optical and scanning electron microscopy are applied to identify the parameter regions for the different LIPSS formations and transitions between them. High- and low-spatial frequency LIPSS (HSFL and LSFL) with two distinct periods λLSFL ≈ 1.1 μm and λHSFL ≈ 83 nm can be observed. The HSFL are dominating at higher and the LSFL at lower laser average powers. Formation of LIPSS is found to inhibit laser ablation at lower scan speeds.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46912852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-10DOI: 10.3389/fnano.2023.1233885
Ying‐Chen Chen, A. Amirsoleimani, Yao‐Feng Chang
{"title":"Editorial: Emerging memories, circuits, and systems for post-Moore computing applications in nanotechnology","authors":"Ying‐Chen Chen, A. Amirsoleimani, Yao‐Feng Chang","doi":"10.3389/fnano.2023.1233885","DOIUrl":"https://doi.org/10.3389/fnano.2023.1233885","url":null,"abstract":"","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42213086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-29DOI: 10.3389/fnano.2023.1239130
S. Wallen
{"title":"Editorial: Global excellence in nanotechnology: United States","authors":"S. Wallen","doi":"10.3389/fnano.2023.1239130","DOIUrl":"https://doi.org/10.3389/fnano.2023.1239130","url":null,"abstract":"","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42348355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.3389/fnano.2023.1229232
H. Ripberger, Samantha M Harvey, B. Cossairt
Colloidal semiconductor nanocrystals have attracted considerable attention over the past several decades due to their size-dependent optoelectronic properties, which have driven their integration into cutting-edge applications ranging from LEDs and displays to quantum computing and biosensing. The utility of these materials stems from their solution processability, broad absorption profiles, narrow photoluminescence emission, and surfaces that can be easily modulated. Wet chemical synthesis of these materials provides a versatile space for development of new compositions, morphologies, heterostructures, and coordination environments simply by changing precursors, ligands, concentrations, and temperatures. Mechanistic studies into molecular and cluster intermediates during formation can direct researchers towards better control over synthetic outcomes. Furthermore, the high surface to volume ratios inherent to nanocrystals makes the study of their surfaces and their stabilizing ligands particularly important, with surface accessibility controlling reaction and charge transfer rates in catalytic applications and photovoltaics. We organized this Research Topic to highlight some of the recent advances in the field of nanocrystal synthesis. We are particularly interested in understanding the reactions that make and modify nanocrystals at the atomic level, including precursor conversion, ligand exchange, and cluster formation and dissolution. By understanding the molecular underpinnings of nanoscale semiconductor synthesis, it becomes possible to control end products and their properties. Precursor reactivity gates the nucleation and growth of nanocrystals in colloidal syntheses. In the synthesis of WSe2, tungsten hexacarbonyl is often used as the metal precursor, which typically requires high reaction temperatures to force the cleavage of the strongW–CO bond. Schimpf and colleagues demonstrate thatW–CO bond labilization, and hence the availability of tungsten metal for subsequent monomer formation, can be tuned through the inclusion of common ligands such as trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) (Geisenhoff et al.). Using IR spectroscopy for reaction monitoring in the presence of TOPO, the authors noted W(CO)6 rapidly decomposes into W(CO)6-x(TOPO)x, which promoted rapid nucleation of WSe2 nanocrystals and lower reaction temperatures. The structural assignment of this intermediate was corroborated through the growth of a diffraction-quality single crystal of the triarylphosphine analogue W(CO)5(TPPO) (TPPO = triphenylphosphine oxide). On the other hand, the use of strongly coordinating triphenylphosphine (TPP) was found to sequester tungsten as W(CO)5(TPP), OPEN ACCESS
在过去的几十年里,胶体半导体纳米晶体由于其与尺寸相关的光电特性而引起了相当大的关注,这促使它们集成到从led和显示器到量子计算和生物传感等尖端应用中。这些材料的实用性源于它们的溶液可加工性、宽吸收谱、窄光致发光发射以及易于调制的表面。这些材料的湿化学合成为开发新的成分、形态、异质结构和配位环境提供了一个多用途的空间,只需改变前体、配体、浓度和温度。对形成过程中分子和簇状中间体的机理研究可以指导研究人员更好地控制合成结果。此外,纳米晶体固有的高表面体积比使得对其表面及其稳定配体的研究尤为重要,表面可及性控制催化应用和光伏中的反应和电荷转移速率。我们组织了这个研究主题,以突出纳米晶体合成领域的一些最新进展。我们特别感兴趣的是理解在原子水平上制造和修饰纳米晶体的反应,包括前体转化、配体交换、簇的形成和溶解。通过了解纳米级半导体合成的分子基础,可以控制最终产品及其性质。在胶体合成中,前驱体的反应性决定了纳米晶体的成核和生长。在WSe2的合成中,通常使用六羰基钨作为金属前驱体,这通常需要较高的反应温度来迫使强w - co键断裂。Schimpf及其同事证明,w - co键的稳定性,以及随后形成单体的钨金属的可用性,可以通过包含三辛基膦(TOP)和三辛基膦氧化物(TOPO)等常见配体来调节(Geisenhoff等人)。在TOPO存在的情况下,利用红外光谱监测反应,作者注意到W(CO)6迅速分解成W(CO)6-x(TOPO)x,这促进了WSe2纳米晶体的快速成核和降低了反应温度。该中间体的结构分配通过三苯基磷化氢类似物W(CO)5(TPPO) (TPPO =三苯基氧化磷化氢)的衍射质量单晶的生长得到证实。另一方面,使用强配位的三苯基膦(TPP)可以将钨隔离为W(CO)5(TPP), OPEN ACCESS
{"title":"Editorial: The molecular underpinnings of nanoscale semiconductor synthesis","authors":"H. Ripberger, Samantha M Harvey, B. Cossairt","doi":"10.3389/fnano.2023.1229232","DOIUrl":"https://doi.org/10.3389/fnano.2023.1229232","url":null,"abstract":"Colloidal semiconductor nanocrystals have attracted considerable attention over the past several decades due to their size-dependent optoelectronic properties, which have driven their integration into cutting-edge applications ranging from LEDs and displays to quantum computing and biosensing. The utility of these materials stems from their solution processability, broad absorption profiles, narrow photoluminescence emission, and surfaces that can be easily modulated. Wet chemical synthesis of these materials provides a versatile space for development of new compositions, morphologies, heterostructures, and coordination environments simply by changing precursors, ligands, concentrations, and temperatures. Mechanistic studies into molecular and cluster intermediates during formation can direct researchers towards better control over synthetic outcomes. Furthermore, the high surface to volume ratios inherent to nanocrystals makes the study of their surfaces and their stabilizing ligands particularly important, with surface accessibility controlling reaction and charge transfer rates in catalytic applications and photovoltaics. We organized this Research Topic to highlight some of the recent advances in the field of nanocrystal synthesis. We are particularly interested in understanding the reactions that make and modify nanocrystals at the atomic level, including precursor conversion, ligand exchange, and cluster formation and dissolution. By understanding the molecular underpinnings of nanoscale semiconductor synthesis, it becomes possible to control end products and their properties. Precursor reactivity gates the nucleation and growth of nanocrystals in colloidal syntheses. In the synthesis of WSe2, tungsten hexacarbonyl is often used as the metal precursor, which typically requires high reaction temperatures to force the cleavage of the strongW–CO bond. Schimpf and colleagues demonstrate thatW–CO bond labilization, and hence the availability of tungsten metal for subsequent monomer formation, can be tuned through the inclusion of common ligands such as trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) (Geisenhoff et al.). Using IR spectroscopy for reaction monitoring in the presence of TOPO, the authors noted W(CO)6 rapidly decomposes into W(CO)6-x(TOPO)x, which promoted rapid nucleation of WSe2 nanocrystals and lower reaction temperatures. The structural assignment of this intermediate was corroborated through the growth of a diffraction-quality single crystal of the triarylphosphine analogue W(CO)5(TPPO) (TPPO = triphenylphosphine oxide). On the other hand, the use of strongly coordinating triphenylphosphine (TPP) was found to sequester tungsten as W(CO)5(TPP), OPEN ACCESS","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45305928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}