Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240932
Hengrui Cao
With the rapid and large-scale development of rail transit engineering in China, the vibration and noise problems caused by rail transit operations are increasingly receiving widespread attention from all sectors of society. This paper is based on literature research and comprehensively analyzes the vibration and noise sources of urban rail transit. It systematically analyzes the composition, characteristics, and causes of vibration and noise in rail transit, and provides systematic governance measures for vibration and noise reduction in rail transit from two aspects: noise sources and propagation paths. The research results of this article have significant reference value for the engineering practice of vibration and noise reduction in rail transit.
{"title":"Analysis and control measures of vibration and noise sources in urban rail transit under the perspective of standard governance","authors":"Hengrui Cao","doi":"10.54254/2755-2721/61/20240932","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240932","url":null,"abstract":"With the rapid and large-scale development of rail transit engineering in China, the vibration and noise problems caused by rail transit operations are increasingly receiving widespread attention from all sectors of society. This paper is based on literature research and comprehensively analyzes the vibration and noise sources of urban rail transit. It systematically analyzes the composition, characteristics, and causes of vibration and noise in rail transit, and provides systematic governance measures for vibration and noise reduction in rail transit from two aspects: noise sources and propagation paths. The research results of this article have significant reference value for the engineering practice of vibration and noise reduction in rail transit.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140997727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240939
Keming Hu
Ocean acidification is a serious marine ecosystem problem caused by the abundant human emission of CO2. It is now a prevalent cognition that the dissolution of CO2 tends to raise the concentration of H+ in the ocean and therefore make it more acidic. Anthropogenic CO2 emission exacerbates the situation. This will then lead to another obvious problem---the dissolution of calcium carbonate shells of certain ocean organisms. This article will present a brief dissolution model, which can provide an analysis of the acidification effects from two perspectives---both the forming and the dissolution of seashells. The model shows an exponential relationship between the dissolved Ca2+ concentration and the pH of seawater. It also presents the anticipation regarding a dissolution turning point in (approximately) 2090 under the RCP8.5 scenario. This turning point indicates an abrupt acceleration of calcium carbonate shells dissolution. The result depicts the drastic but possible change in the seawater solution system and gives a warning signal of a probable deadline for us to control the CO2 emission. Hopefully, it will attract more scholars to pay attention to this topic and figure out methodologies to avoid the possible tragedy.
{"title":"An analysis of seashell calcium carbonate dissolution caused by ocean acidification based on chemistry equilibrium","authors":"Keming Hu","doi":"10.54254/2755-2721/61/20240939","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240939","url":null,"abstract":"Ocean acidification is a serious marine ecosystem problem caused by the abundant human emission of CO2. It is now a prevalent cognition that the dissolution of CO2 tends to raise the concentration of H+ in the ocean and therefore make it more acidic. Anthropogenic CO2 emission exacerbates the situation. This will then lead to another obvious problem---the dissolution of calcium carbonate shells of certain ocean organisms. This article will present a brief dissolution model, which can provide an analysis of the acidification effects from two perspectives---both the forming and the dissolution of seashells. The model shows an exponential relationship between the dissolved Ca2+ concentration and the pH of seawater. It also presents the anticipation regarding a dissolution turning point in (approximately) 2090 under the RCP8.5 scenario. This turning point indicates an abrupt acceleration of calcium carbonate shells dissolution. The result depicts the drastic but possible change in the seawater solution system and gives a warning signal of a probable deadline for us to control the CO2 emission. Hopefully, it will attract more scholars to pay attention to this topic and figure out methodologies to avoid the possible tragedy.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 32","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240983
Hexuan Ma
Quantum dots (QDs) are semiconductor-based nanocrystals. These nanoparticles have exhibited their unique optical and electronic properties. With these characteristics, QDs attracted scientists interest in biomedical areas such as bioimaging, drug delivery and biosensors apart from other applications like photocatalysis, light-emitting, and solar cells in recent years, and plenty of QDs and QD-based materials have exhibited their unique properties in their applications of biomedical areas. Nevertheless, the potential toxicity of QDs becomes the limitation of QDs application in biomedical areas. The toxicity of QDs might come from: the toxicity core material of QDs; the toxicity substances from the surface of QDs; the free radicals or reactive species released from QDs; the biological environment induced QDs toxicity. In this article, we review the properties of QDs, the applications of QDs in different biomedical fields, how QDs cause toxicity, and how to reduce or prevent QDs potential toxicity. In the future, we expect the improvement and further application of QDs in biomedical areas.
{"title":"Quantum dots and their potential biomedical applications","authors":"Hexuan Ma","doi":"10.54254/2755-2721/61/20240983","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240983","url":null,"abstract":"Quantum dots (QDs) are semiconductor-based nanocrystals. These nanoparticles have exhibited their unique optical and electronic properties. With these characteristics, QDs attracted scientists interest in biomedical areas such as bioimaging, drug delivery and biosensors apart from other applications like photocatalysis, light-emitting, and solar cells in recent years, and plenty of QDs and QD-based materials have exhibited their unique properties in their applications of biomedical areas. Nevertheless, the potential toxicity of QDs becomes the limitation of QDs application in biomedical areas. The toxicity of QDs might come from: the toxicity core material of QDs; the toxicity substances from the surface of QDs; the free radicals or reactive species released from QDs; the biological environment induced QDs toxicity. In this article, we review the properties of QDs, the applications of QDs in different biomedical fields, how QDs cause toxicity, and how to reduce or prevent QDs potential toxicity. In the future, we expect the improvement and further application of QDs in biomedical areas.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240925
Hongyu Mu
FRP (Fiber Reinforced Polymers) materials are being increasingly used in various engineering fields due to their high specific strength, designability and durability. Having been rapidly developing in recent years, the Asia-Pacific region is also equipped with a continuously expanding demand for the research and application of FRP materials. This paper summarizes the application of FRP materials in the Asia-Pacific region through literature and case analysis. Some of the current issues existing in the procedure of FPR materials application are discussed, and predictions on the development and application prospects of this kind of materials in the Asia-Pacific region are also briefly suggested. It is found that FRP materials have been widely utilized in various fields including concrete structures reinforcement, bridge engineering construction and new energy facilities in the Asia-Pacific region, where is equipped with a relatively broad and promising market. Meanwhile, the shortcomings relevant to this kind of materials in several aspects, such as expensive unit prices and imperfect technical specification systems, also restricted the application of FRP materials in this region.
{"title":"A review of the application of FRP materials in Asia-Pacific region","authors":"Hongyu Mu","doi":"10.54254/2755-2721/61/20240925","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240925","url":null,"abstract":"FRP (Fiber Reinforced Polymers) materials are being increasingly used in various engineering fields due to their high specific strength, designability and durability. Having been rapidly developing in recent years, the Asia-Pacific region is also equipped with a continuously expanding demand for the research and application of FRP materials. This paper summarizes the application of FRP materials in the Asia-Pacific region through literature and case analysis. Some of the current issues existing in the procedure of FPR materials application are discussed, and predictions on the development and application prospects of this kind of materials in the Asia-Pacific region are also briefly suggested. It is found that FRP materials have been widely utilized in various fields including concrete structures reinforcement, bridge engineering construction and new energy facilities in the Asia-Pacific region, where is equipped with a relatively broad and promising market. Meanwhile, the shortcomings relevant to this kind of materials in several aspects, such as expensive unit prices and imperfect technical specification systems, also restricted the application of FRP materials in this region.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":"11 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240934
Sizhuo Chen
Carbon dioxide, a greenhouse gas, has contributed to environmental issues on the planet in the past few years. Thus, it would be helpful to mitigate the impact that caused by carbon footprint, which is trying to reduce the carbon dioxide emission to the atmosphere and utilize it to generate green products for usage. It has been reported that CO_2 reduction could be converted to a valuable fuel source and thus it could be a potential solution to mitigate the impact of CO_2. In this paper, it illustrates three underlying approaches which are conventional heterogeneous catalysis, photocatalysis and electrochemical, and flaws existed inCO_2 converted to CH_3 OH production. Approach mechanism, principles and barriers are included in the following with detailed product selectivity/yield comparison between different catalysts under various conditions. Studies on different approaches have made substantial information focusing on various aspects and recommending the appropriate catalyst for the technique under the specific scenario. Finally, the overview of the research aims to provide feedback on progress made in CH_3 OH production from CO_2 in a large scale along with a summary regarding the future expectations on the research of the methanol conversion approaches developed.
{"title":"Preview of CO2 utilization in converting to methanol process","authors":"Sizhuo Chen","doi":"10.54254/2755-2721/61/20240934","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240934","url":null,"abstract":"Carbon dioxide, a greenhouse gas, has contributed to environmental issues on the planet in the past few years. Thus, it would be helpful to mitigate the impact that caused by carbon footprint, which is trying to reduce the carbon dioxide emission to the atmosphere and utilize it to generate green products for usage. It has been reported that CO_2 reduction could be converted to a valuable fuel source and thus it could be a potential solution to mitigate the impact of CO_2. In this paper, it illustrates three underlying approaches which are conventional heterogeneous catalysis, photocatalysis and electrochemical, and flaws existed inCO_2 converted to CH_3 OH production. Approach mechanism, principles and barriers are included in the following with detailed product selectivity/yield comparison between different catalysts under various conditions. Studies on different approaches have made substantial information focusing on various aspects and recommending the appropriate catalyst for the technique under the specific scenario. Finally, the overview of the research aims to provide feedback on progress made in CH_3 OH production from CO_2 in a large scale along with a summary regarding the future expectations on the research of the methanol conversion approaches developed.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240931
Wei Zhou, Yao Chen, Qi Wang, Weifeng Wang
Global warming caused by factors such as the expansion of construction land poses a major threat to the sustainable development of China. As an important component of China's low-carbon development strategy, there is a relative lack of analysis of the spatial and temporal evolution of land-use carbon emissions and the influencing factors at county-level. In this study, we employed Emission-Factor Approach to estimate carbon emissions from land use in 107 counties, Shaanxi province, China. Our findings revealed construction land were the primary contributors to carbon emissions, showing a substantial increase from 2000 to 2020. There was positive spatial autocorrelation in carbon emissions among counties, forming distinct aggregation patterns around the City of Xi'an and both the southern and northern regions of Shaanxi. By utilizing the Spatial Durbin Error Model (SDEM), demographic factors emerged as key drivers of carbon emissions, indicating the significance of addressing population concentration to curb emissions. Furthermore, promoting coordinated development and adjusting the economic structure in different counties can mitigate both population concentration and carbon emissions. Emphasizing industrial development and investments can also effectively suppress carbon emissions. Additionally, managing transportation-related emissions can be achieved by enhancing public transportation services and regulating private car usage.
{"title":"Spatiotemporal evolutions and reasons of land-use carbon emissions in counties, Shaanxi Province, China","authors":"Wei Zhou, Yao Chen, Qi Wang, Weifeng Wang","doi":"10.54254/2755-2721/61/20240931","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240931","url":null,"abstract":"Global warming caused by factors such as the expansion of construction land poses a major threat to the sustainable development of China. As an important component of China's low-carbon development strategy, there is a relative lack of analysis of the spatial and temporal evolution of land-use carbon emissions and the influencing factors at county-level. In this study, we employed Emission-Factor Approach to estimate carbon emissions from land use in 107 counties, Shaanxi province, China. Our findings revealed construction land were the primary contributors to carbon emissions, showing a substantial increase from 2000 to 2020. There was positive spatial autocorrelation in carbon emissions among counties, forming distinct aggregation patterns around the City of Xi'an and both the southern and northern regions of Shaanxi. By utilizing the Spatial Durbin Error Model (SDEM), demographic factors emerged as key drivers of carbon emissions, indicating the significance of addressing population concentration to curb emissions. Furthermore, promoting coordinated development and adjusting the economic structure in different counties can mitigate both population concentration and carbon emissions. Emphasizing industrial development and investments can also effectively suppress carbon emissions. Additionally, managing transportation-related emissions can be achieved by enhancing public transportation services and regulating private car usage.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240922
Mingyu Qin
In recent decades, the serious excessive level of carbon emissions has become the worthiest of human consideration to alleviate the problem. The negative impacts of carbon emissions on human beings involve a variety of aspects, such as sea level rise, deforestation, air pollution, global warming, etc. Any one of these issues could cause serious negative impacts on human society. In a large number of relevant studies, Carbon Capture and Storage (CCS) programs are considered to be the most promising and effective approach. The carbon produced during production is captured and transported to rock formations deep underground where it is centrally stored. There are nearly 300 CCS plants in operation around the world that demonstrate the feasibility of such projects. However, one relevant question is whether the project is costly and has barriers to deploy at a scale. We gathered a comprehensive list of large-scale CCS projects globally by utilizing the CCUS Projects Database. We then conducted a comparative analysis of these projects across various categories of project status, ensuring comparability by standardizing cost and extraction figures for each project. We found that the cost of Capture and Storage Projects is the highest, followed by just Capture Projects and just Storage Projects. These plants predominantly exist in developed regions: the U.S. hosts the most, then Europe, parts of Australia, with fewer plants scattered globally. Based on detailed project-specific information, we found that that the two most common reasons for suspended or closed plants are high costs without sufficient financial support and the impact of government agencies permissions and regulation. As such, improvement in the capital market and more policy support would be crucial for the deployment and operation of Carbon Capture and Storage projects.
{"title":"Exploring attributes of global CCS projects and the key factors to their accomplishment based on the CCUS project database","authors":"Mingyu Qin","doi":"10.54254/2755-2721/61/20240922","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240922","url":null,"abstract":"In recent decades, the serious excessive level of carbon emissions has become the worthiest of human consideration to alleviate the problem. The negative impacts of carbon emissions on human beings involve a variety of aspects, such as sea level rise, deforestation, air pollution, global warming, etc. Any one of these issues could cause serious negative impacts on human society. In a large number of relevant studies, Carbon Capture and Storage (CCS) programs are considered to be the most promising and effective approach. The carbon produced during production is captured and transported to rock formations deep underground where it is centrally stored. There are nearly 300 CCS plants in operation around the world that demonstrate the feasibility of such projects. However, one relevant question is whether the project is costly and has barriers to deploy at a scale. We gathered a comprehensive list of large-scale CCS projects globally by utilizing the CCUS Projects Database. We then conducted a comparative analysis of these projects across various categories of project status, ensuring comparability by standardizing cost and extraction figures for each project. We found that the cost of Capture and Storage Projects is the highest, followed by just Capture Projects and just Storage Projects. These plants predominantly exist in developed regions: the U.S. hosts the most, then Europe, parts of Australia, with fewer plants scattered globally. Based on detailed project-specific information, we found that that the two most common reasons for suspended or closed plants are high costs without sufficient financial support and the impact of government agencies permissions and regulation. As such, improvement in the capital market and more policy support would be crucial for the deployment and operation of Carbon Capture and Storage projects.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240938
Qinyang Zhu
With rapid industrialisation and population growth, the Earths ecological environment now confronts increasingly complex and diverse challenges. Traditional pollution treatment methods, such as activated sludge for sewage and electrostatic precipitation for air pollution, can effectively manage most environmental pollution. However, some pollutants (e.g. metals, organic dyes, gaseous trace pollutants in heavy water) either cannot be addressed by conventional methods or are prohibitively expensive. Hence, there is a pressing need to develop new environmental technologies. The emergence and development of nanotechnology and nanoscience present novel opportunities for environmental governance, as nanomaterials offer advantageous traits such as high specific surface area, catalytic activity, and photocatalytic activity. This renders nanomaterials better adsorbents, catalysts, and sensors compared to traditional materials. This article examines three methods - adsorption, filtration, and degradation - through which nanomaterials can be utilised to address environmental challenges, and the advantages and disadvantages of such methods are discussed. Finally, this article provides insights in response to the findings presented.
{"title":"Common methodologies for treating environmental issues with nanomaterials","authors":"Qinyang Zhu","doi":"10.54254/2755-2721/61/20240938","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240938","url":null,"abstract":"With rapid industrialisation and population growth, the Earths ecological environment now confronts increasingly complex and diverse challenges. Traditional pollution treatment methods, such as activated sludge for sewage and electrostatic precipitation for air pollution, can effectively manage most environmental pollution. However, some pollutants (e.g. metals, organic dyes, gaseous trace pollutants in heavy water) either cannot be addressed by conventional methods or are prohibitively expensive. Hence, there is a pressing need to develop new environmental technologies. The emergence and development of nanotechnology and nanoscience present novel opportunities for environmental governance, as nanomaterials offer advantageous traits such as high specific surface area, catalytic activity, and photocatalytic activity. This renders nanomaterials better adsorbents, catalysts, and sensors compared to traditional materials. This article examines three methods - adsorption, filtration, and degradation - through which nanomaterials can be utilised to address environmental challenges, and the advantages and disadvantages of such methods are discussed. Finally, this article provides insights in response to the findings presented.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240936
Fansong Chu
Human demand for fossil fuels has reached a very high level. However, fossil energy stocks are limited and, more importantly, their impact on the environment is increasing. The exploration of clean energy is particularly important. Among all the clean energy sources, solar energy is a very promising and important alternative to fossil fuels. And one of the primary reasons for the failure of solar photovoltaic cells to achieve rapid development is the generation of Auger composite. In order to provide support to solve this problem or facilitate the follow-up of researchers, this paper summarizes several effective methods such as Interfacial Engineering and Gradient Alloying to solve the Auger recombination problem in multi-exciton photovoltaic cells through reading and comparing a large number of relevant authoritative literature. The two methods mentioned above suppress Auger recombination by applying a new type of MXene (Nb2CTX-MXene) to the interface of SnO2 layers to pssivate the interfacial defects and promote charge transport and to generate InAs/CdSe core/shell QDs, overcoating InAs QDs with a lattice-matched CdSe shell. Comparing a large number of pieces of literature, it is found that the above two methods have guiding effects in improving the efficiency of photovoltaic cells.
{"title":"Research on the assessment of technical methods to suppress auger recombination","authors":"Fansong Chu","doi":"10.54254/2755-2721/61/20240936","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240936","url":null,"abstract":"Human demand for fossil fuels has reached a very high level. However, fossil energy stocks are limited and, more importantly, their impact on the environment is increasing. The exploration of clean energy is particularly important. Among all the clean energy sources, solar energy is a very promising and important alternative to fossil fuels. And one of the primary reasons for the failure of solar photovoltaic cells to achieve rapid development is the generation of Auger composite. In order to provide support to solve this problem or facilitate the follow-up of researchers, this paper summarizes several effective methods such as Interfacial Engineering and Gradient Alloying to solve the Auger recombination problem in multi-exciton photovoltaic cells through reading and comparing a large number of relevant authoritative literature. The two methods mentioned above suppress Auger recombination by applying a new type of MXene (Nb2CTX-MXene) to the interface of SnO2 layers to pssivate the interfacial defects and promote charge transport and to generate InAs/CdSe core/shell QDs, overcoating InAs QDs with a lattice-matched CdSe shell. Comparing a large number of pieces of literature, it is found that the above two methods have guiding effects in improving the efficiency of photovoltaic cells.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.54254/2755-2721/61/20240930
Tengtao Wu
Till now, it remains a challenge for effective prediction and screening of novel materials with high thermal conductivity, as well as further optimization of the interface thermal resistance. Normally, people have to spend long time on tedious calculations when predicting and screening these materials. In this paper, I combined machine learning with molecular dynamics simulations to investigate the thermal conductive properties of materials with the aim of significantly reducing computational consumption. I first applied molecular dynamics simulations to obtain the relevant properties of materials, then generated models for predicting physical properties by machine learning, and finally made predictions of thermophysical properties of materials. The use of machine learning significantly reduces the prediction time compared to direct molecular dynamics simulations. Especially when the XGBoost and the neural network models are employed, the prediction efficiency is significantly improved. This work guides a new way for the future screening of high-performance thermal interface materials.
{"title":"High throughput screening of thermal interface materials by machine learning","authors":"Tengtao Wu","doi":"10.54254/2755-2721/61/20240930","DOIUrl":"https://doi.org/10.54254/2755-2721/61/20240930","url":null,"abstract":"Till now, it remains a challenge for effective prediction and screening of novel materials with high thermal conductivity, as well as further optimization of the interface thermal resistance. Normally, people have to spend long time on tedious calculations when predicting and screening these materials. In this paper, I combined machine learning with molecular dynamics simulations to investigate the thermal conductive properties of materials with the aim of significantly reducing computational consumption. I first applied molecular dynamics simulations to obtain the relevant properties of materials, then generated models for predicting physical properties by machine learning, and finally made predictions of thermophysical properties of materials. The use of machine learning significantly reduces the prediction time compared to direct molecular dynamics simulations. Especially when the XGBoost and the neural network models are employed, the prediction efficiency is significantly improved. This work guides a new way for the future screening of high-performance thermal interface materials.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}