The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted human life safety and the global economy. The rapid mutation of the SARS-CoV-2 genome has attracted widespread attention, with almost every site in the genome experiencing single nucleotide variants (SNVs). Among these, the mutations in the spike (S) protein are of particular importance, as they play a more critical role in the virus's adaptive evolution and transmission. In this review, we summarize the phylogenetic relationships between SARS-CoV-2 and related coronaviruses in non-human animals, and delves into the lineage classification of SARS-CoV-2 and the impact of key amino acid variations on viral biological characteristics. Furthermore, it outlines the current challenges and looks forward to the promising application of deep mutational scanning (DMS) combined with artificial intelligence methods in predicting the prevalence trends of SARS-CoV-2 variants.
{"title":"Current understanding of the adaptive evolution of the SARS-CoV-2 genome.","authors":"Lin Zhang, Zhuo-Cheng Yao, Jian Lu, Xiao-Lu Tang","doi":"10.16288/j.yczz.24-231","DOIUrl":"https://doi.org/10.16288/j.yczz.24-231","url":null,"abstract":"<p><p>The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted human life safety and the global economy. The rapid mutation of the SARS-CoV-2 genome has attracted widespread attention, with almost every site in the genome experiencing single nucleotide variants (SNVs). Among these, the mutations in the spike (S) protein are of particular importance, as they play a more critical role in the virus's adaptive evolution and transmission. In this review, we summarize the phylogenetic relationships between SARS-CoV-2 and related coronaviruses in non-human animals, and delves into the lineage classification of SARS-CoV-2 and the impact of key amino acid variations on viral biological characteristics. Furthermore, it outlines the current challenges and looks forward to the promising application of deep mutational scanning (DMS) combined with artificial intelligence methods in predicting the prevalence trends of SARS-CoV-2 variants.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 2","pages":"211-227"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie-Yu Shen, Tian-Han Su, Da-Qi Yu, Sheng-Jun Tan, Yong-E Zhang
Gene duplication is the process of a gene copied via specific molecular mechanisms to form more duplicate genes. As an important approach to the origination of new genes, gene duplication contributes to around half of the genes in eukaryotic genomes, facilitating the adaptive evolution of species. Over the past fifty years, especially since entering the genomics era in the last two decades, there have been extensive and profound discussions on the mechanisms, evolutionary processes and forces behind the emergence of duplicate genes. Sequence similarity of duplicate genes often leads to functional redundancy, enhancing organismal robustness. Conversely, functional divergence can create novel functions and improve evolvability. In this review, we summarize the mechanism of gene duplication, the fate and the evolutionary models of duplicate genes. This article concludes by outlining how long-read sequencing technologies, gene editing, and various other high-throughput techniques will further advance our understanding of the role of duplicate genes in the genetics-development-evolution network.
{"title":"Evolution by gene duplication: in the era of genomics.","authors":"Jie-Yu Shen, Tian-Han Su, Da-Qi Yu, Sheng-Jun Tan, Yong-E Zhang","doi":"10.16288/j.yczz.24-215","DOIUrl":"https://doi.org/10.16288/j.yczz.24-215","url":null,"abstract":"<p><p>Gene duplication is the process of a gene copied via specific molecular mechanisms to form more duplicate genes. As an important approach to the origination of new genes, gene duplication contributes to around half of the genes in eukaryotic genomes, facilitating the adaptive evolution of species. Over the past fifty years, especially since entering the genomics era in the last two decades, there have been extensive and profound discussions on the mechanisms, evolutionary processes and forces behind the emergence of duplicate genes. Sequence similarity of duplicate genes often leads to functional redundancy, enhancing organismal robustness. Conversely, functional divergence can create novel functions and improve evolvability. In this review, we summarize the mechanism of gene duplication, the fate and the evolutionary models of duplicate genes. This article concludes by outlining how long-read sequencing technologies, gene editing, and various other high-throughput techniques will further advance our understanding of the role of duplicate genes in the genetics-development-evolution network.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 2","pages":"147-171"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During evolution, mutations occur randomly and are fixed by selection. At the same time, species gradually formed, producing various life forms. In the traditional evolutionary theory system, mutations are considered genetic mutations by default, and somatic mutations are usually applicable in specific scenarios such as carcinogenesis, immunity and aging. At the same time, selection plays a role at multiple levels of living systems, including genes, cells, tissues and organs, individuals, populations, species, and even ecosystems. The research community of modern life science expresses genetic mutations as genotypes and cellular and other level characteristics as phenotypes, and finds that phenotypes are determined by both genotypes and environmental factors. Currently, it is unclear how genotypic and environmental factors act at the cellular level to create and fix new cell types. In this review, we summarize that it's time to move forward from gene evolution to build the framework for cell type evolution and finally update the theoretical system for evolutionary biology.
{"title":"Theoretical thinking from gene evolution to cell type evolution.","authors":"Li Zhang, Chuan-Yun Li","doi":"10.16288/j.yczz.24-148","DOIUrl":"https://doi.org/10.16288/j.yczz.24-148","url":null,"abstract":"<p><p>During evolution, mutations occur randomly and are fixed by selection. At the same time, species gradually formed, producing various life forms. In the traditional evolutionary theory system, mutations are considered genetic mutations by default, and somatic mutations are usually applicable in specific scenarios such as carcinogenesis, immunity and aging. At the same time, selection plays a role at multiple levels of living systems, including genes, cells, tissues and organs, individuals, populations, species, and even ecosystems. The research community of modern life science expresses genetic mutations as genotypes and cellular and other level characteristics as phenotypes, and finds that phenotypes are determined by both genotypes and environmental factors. Currently, it is unclear how genotypic and environmental factors act at the cellular level to create and fix new cell types. In this review, we summarize that it's time to move forward from gene evolution to build the framework for cell type evolution and finally update the theoretical system for evolutionary biology.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 2","pages":"172-182"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tumor itself is a complex microecosystem, with complex spatio-temporal dynamics and multi-dimensional interactions. Its unimaginable heterogeneity and evolvability have exceeded the cognition of traditional oncology medicine. How to systematically characterize the whole tumor cell ecosystem from the dynamics and interaction of material, energy and signal levels, in order to explore new cognition, new rules and new therapies for the occurrence and development of tumors, is a new proposition and goal of tumor ecology. In this review, we discuss the origin, occurrence and development of tumors from the perspective of evolutionary ecology. First, we discuss the application of some classical concepts of ecology with tumor evolution. Subsequently, through the integration of the frontier papers of tumor ecology, we highlight the importance of ecological interactions on the occurrence and development of tumors from multiple levels, such as between cancer cells, between cancer cells and other normal somatic cells, and the tumor ecosystem. Finally, we propose the concept of tumor cell ecosystem, discussed how to characterize the entire tumor ecosystem from the system theory and proposed possible innovative treatment directions.
{"title":"Evolutionary ecology in tumor evolution: concept, application and innovation.","authors":"Can Liu, Wei-Wei Zhai, Xue-Mei Lu","doi":"10.16288/j.yczz.24-264","DOIUrl":"https://doi.org/10.16288/j.yczz.24-264","url":null,"abstract":"<p><p>Tumor itself is a complex microecosystem, with complex spatio-temporal dynamics and multi-dimensional interactions. Its unimaginable heterogeneity and evolvability have exceeded the cognition of traditional oncology medicine. How to systematically characterize the whole tumor cell ecosystem from the dynamics and interaction of material, energy and signal levels, in order to explore new cognition, new rules and new therapies for the occurrence and development of tumors, is a new proposition and goal of tumor ecology. In this review, we discuss the origin, occurrence and development of tumors from the perspective of evolutionary ecology. First, we discuss the application of some classical concepts of ecology with tumor evolution. Subsequently, through the integration of the frontier papers of tumor ecology, we highlight the importance of ecological interactions on the occurrence and development of tumors from multiple levels, such as between cancer cells, between cancer cells and other normal somatic cells, and the tumor ecosystem. Finally, we propose the concept of tumor cell ecosystem, discussed how to characterize the entire tumor ecosystem from the system theory and proposed possible innovative treatment directions.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 2","pages":"228-236"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Echolocation is a complex biological traits that collaborated by multiple systems. Its origin can be traced back to 68 million years ago, and repeatedly appeared in multiple vertebrate groups in the subsequent biological evolution. The strong vitality has become a typical case of the convergence evolution in nature. However, it was not until the beginning of the 20th century that humans really opened the prelude to the research on animal echolocation, and became research hotspots in the fields of zoology, behavior, and genetics, and achieved rich results in the past 80 years. In this review, we summarize the development history of animal echo positioning, summarize different echo positioning animal groups in detail, and focuse on the research progress of echo positioning in sound mechanisms, acoustic characteristics, and high-frequency listening mechanisms in order to provide reference for comprehensive understanding of animal echo positioning.
{"title":"Advances in vocalizating and hearing mechanisms of echolocation in vertebrate.","authors":"Qi Liu, Peng Shi","doi":"10.16288/j.yczz.24-273","DOIUrl":"https://doi.org/10.16288/j.yczz.24-273","url":null,"abstract":"<p><p>Echolocation is a complex biological traits that collaborated by multiple systems. Its origin can be traced back to 68 million years ago, and repeatedly appeared in multiple vertebrate groups in the subsequent biological evolution. The strong vitality has become a typical case of the convergence evolution in nature. However, it was not until the beginning of the 20th century that humans really opened the prelude to the research on animal echolocation, and became research hotspots in the fields of zoology, behavior, and genetics, and achieved rich results in the past 80 years. In this review, we summarize the development history of animal echo positioning, summarize different echo positioning animal groups in detail, and focuse on the research progress of echo positioning in sound mechanisms, acoustic characteristics, and high-frequency listening mechanisms in order to provide reference for comprehensive understanding of animal echo positioning.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 2","pages":"237-257"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The origin and evolution of sex chromosomes have long been a focus of research in biology. Two of the most studied systems are the XY system and the ZW system. Due to Y/W degeneration, heterozygous (XY/ZW) sex-linked genes are absent and their dosage is reduced when compared to autosomal genes and homozygous (XX/ZZ) sex-linked genes, creating an issue of dosage imbalance between sex chromosomes and autosomes. Multiple evolutionary models have been proposed to explain the evolutionary mechanism of dosage compensation that might resolve such dosage imbalance. In this review, we summarize the findings related to the dosage effect of sex chromosomes from a variety of perspectives, including transcriptomes, proteomes, haploid cells, and single cells. In addition, a summary of the dosage effect of sex chromosomes in major phylogenetic branches of multiple species is provided. Finally, we approved an overview of the related theoretical models and future research directions at the end of this paper.
{"title":"Dosage compensation of sex chromosomes in animals.","authors":"Xiao-Shu Chen, Jia-Bi Chen","doi":"10.16288/j.yczz.24-165","DOIUrl":"https://doi.org/10.16288/j.yczz.24-165","url":null,"abstract":"<p><p>The origin and evolution of sex chromosomes have long been a focus of research in biology. Two of the most studied systems are the XY system and the ZW system. Due to Y/W degeneration, heterozygous (XY/ZW) sex-linked genes are absent and their dosage is reduced when compared to autosomal genes and homozygous (XX/ZZ) sex-linked genes, creating an issue of dosage imbalance between sex chromosomes and autosomes. Multiple evolutionary models have been proposed to explain the evolutionary mechanism of dosage compensation that might resolve such dosage imbalance. In this review, we summarize the findings related to the dosage effect of sex chromosomes from a variety of perspectives, including transcriptomes, proteomes, haploid cells, and single cells. In addition, a summary of the dosage effect of sex chromosomes in major phylogenetic branches of multiple species is provided. Finally, we approved an overview of the related theoretical models and future research directions at the end of this paper.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 2","pages":"200-210"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evolutionary developmental biology combines evolutionary biology and developmental biology, focusing on the evolution of developmental processes and the mechanisms of morphological diversification. Since the discovery of the homeobox gene in 1984, the genetic mechanisms of morphogenesis in multiple model organisms have been systematically studied. In contrast, non-model organisms are rich in complex evolutionary traits, yet their underlying genetic mechanisms have not yet been fully elucidated, so more relevant studies are still needed. Among non-model organisms, butterflies are rich in species diversity, with more than 18,700 species. In particular, butterfly wings have simple flat structures but exhibit diverse and complex patterns, likely associated with complex functions(e.g., defense and courtship) and subject to strong selective pressures, which makes them a classic system for evolutionary developmental biology studies. Early comparative morphological studies proposed the Nymphalid ground plan, providing a theoretical framework for the evolutionary developmental biology of butterfly wing patterns; a series of interference experiments on butterfly wing discs later confirmed the association between the wing developmental process and phenotypes. In recent years, by integrating genetics, developmental biology, and genomics research methods, genetic toolkit genes and loci involved in wing pattern regulation have been identified in several butterfly species, further improving the theoretical framework for studying butterfly wing pattern evolution and development. From the methodological perspective, experimental methods such as in situ hybridization and gene editing have played an important role in evolutionary developmental biology studies of butterfly wings, and the development of hybridization chain reaction technology and CRISPR/Cas9 gene editing technology has further advanced the feasibility of functional validation in butterflies. In the future, the development and optimization of lepidopteran RNA interference and gene editing technologies can promote functional studies, thus expanding the research systems of evolutionary developmental biology by comparing and analyzing complex traits. The above research can also be broadened to an ecological-evolutionary-developmental context to explore genetic and environmental factors that shape complex phenotypes(e.g., butterfly wing patterns), thereby deepening the understanding of key scientific issues such as the origin and evolution of biodiversity.
{"title":"Progress and prospects on evolutionary developmental biology of butterfly wing patterns.","authors":"Jia-Xin Ni, Wei Zhang","doi":"10.16288/j.yczz.24-126","DOIUrl":"https://doi.org/10.16288/j.yczz.24-126","url":null,"abstract":"<p><p>Evolutionary developmental biology combines evolutionary biology and developmental biology, focusing on the evolution of developmental processes and the mechanisms of morphological diversification. Since the discovery of the <i>homeobox</i> gene in 1984, the genetic mechanisms of morphogenesis in multiple model organisms have been systematically studied. In contrast, non-model organisms are rich in complex evolutionary traits, yet their underlying genetic mechanisms have not yet been fully elucidated, so more relevant studies are still needed. Among non-model organisms, butterflies are rich in species diversity, with more than 18,700 species. In particular, butterfly wings have simple flat structures but exhibit diverse and complex patterns, likely associated with complex functions(e.g., defense and courtship) and subject to strong selective pressures, which makes them a classic system for evolutionary developmental biology studies. Early comparative morphological studies proposed the Nymphalid ground plan, providing a theoretical framework for the evolutionary developmental biology of butterfly wing patterns; a series of interference experiments on butterfly wing discs later confirmed the association between the wing developmental process and phenotypes. In recent years, by integrating genetics, developmental biology, and genomics research methods, genetic toolkit genes and loci involved in wing pattern regulation have been identified in several butterfly species, further improving the theoretical framework for studying butterfly wing pattern evolution and development. From the methodological perspective, experimental methods such as <i>in situ</i> hybridization and gene editing have played an important role in evolutionary developmental biology studies of butterfly wings, and the development of hybridization chain reaction technology and CRISPR/Cas9 gene editing technology has further advanced the feasibility of functional validation in butterflies. In the future, the development and optimization of lepidopteran RNA interference and gene editing technologies can promote functional studies, thus expanding the research systems of evolutionary developmental biology by comparing and analyzing complex traits. The above research can also be broadened to an ecological-evolutionary-developmental context to explore genetic and environmental factors that shape complex phenotypes(e.g., butterfly wing patterns), thereby deepening the understanding of key scientific issues such as the origin and evolution of biodiversity.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 2","pages":"258-270"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why should we stop translating \"evolution\" to \"\" and turn to use \"\" in Chinese.","authors":"Zhong-Yi Sun, Guo-Jie Zhang","doi":"10.16288/j.yczz.24-194","DOIUrl":"https://doi.org/10.16288/j.yczz.24-194","url":null,"abstract":"","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 1","pages":"5-17"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142956106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since Darwin's era, speciation has been one of the most central issues in evolutionary biology studies. Understanding the processes of species origin is crucial in deepening our understanding of the formation of species biodiversity, which is essential for their protections. However, speciation research has been challenging due to the rather complex evolutionary histories of many extant species. In recent years, with the continuous advancements in genomic sequencing techniques, significant advances have been achieved in the field of speciation researches. In this review, we overview speciation study advances, especially in the concepts and latest developments in research methods for studying speciation in the genomic era, encompassing the major research aspects: species delimitation, bifurcating speciation, hybrid speciation, polyploid speciation, reproductive isolation genes and speciation genes. Furthermore, we discuss the limitations of these studies and methods. Finally, we provide the outlook on the future challenges and directions in speciation researches.
{"title":"Speciation studies in the genomic era.","authors":"Ze-Fu Wang, Jian-Quan Liu","doi":"10.16288/j.yczz.24-218","DOIUrl":"https://doi.org/10.16288/j.yczz.24-218","url":null,"abstract":"<p><p>Since Darwin's era, speciation has been one of the most central issues in evolutionary biology studies. Understanding the processes of species origin is crucial in deepening our understanding of the formation of species biodiversity, which is essential for their protections. However, speciation research has been challenging due to the rather complex evolutionary histories of many extant species. In recent years, with the continuous advancements in genomic sequencing techniques, significant advances have been achieved in the field of speciation researches. In this review, we overview speciation study advances, especially in the concepts and latest developments in research methods for studying speciation in the genomic era, encompassing the major research aspects: species delimitation, bifurcating speciation, hybrid speciation, polyploid speciation, reproductive isolation genes and speciation genes. Furthermore, we discuss the limitations of these studies and methods. Finally, we provide the outlook on the future challenges and directions in speciation researches.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 1","pages":"71-100"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142956104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The northern part of Asia, including Siberia, the Mongolian Plateau, and northern China, is not only a crossroads for population exchange on the Eurasian continent but also an important bridge connecting the American continent. This region holds a unique and irreplaceable significance in exploring the origins of humanity, tracking human migration routes, and elucidating evolutionary mechanisms. Despite the limited number of samples unearthed, varying preservation conditions, and constraints of technical means, our understanding of the interactions among populations in northern Asia is still in its infancy. However, the development of high-throughput sequencing technology and its advancement in ancient DNA research have provided us with a new perspective for delving into the genetic history of ancient populations from a molecular level. In this review, we synthesize the changes in the genetic structure of ancient populations in different stages of northern Asia, aiming to reveal the patterns of interaction among ancient populations in this region, the evolutionary process of their genetic structure, and their genetic contributions to modern populations. It will also discuss the adaptive strategies of humans in response to extreme natural conditions. This will not only deepen our understanding of the origins and migration processes of humanity but also provide a solid foundation for studying the evolutionary mechanisms and adaptive strategies of humans under environmental selective pressures.
{"title":"The migration and evolutionary mechanisms of northern Asian populations from the perspective of ancient genomics.","authors":"Da-Xuan Zhang, Shen-Ru Dai, Yin-Qiu Cui","doi":"10.16288/j.yczz.24-196","DOIUrl":"https://doi.org/10.16288/j.yczz.24-196","url":null,"abstract":"<p><p>The northern part of Asia, including Siberia, the Mongolian Plateau, and northern China, is not only a crossroads for population exchange on the Eurasian continent but also an important bridge connecting the American continent. This region holds a unique and irreplaceable significance in exploring the origins of humanity, tracking human migration routes, and elucidating evolutionary mechanisms. Despite the limited number of samples unearthed, varying preservation conditions, and constraints of technical means, our understanding of the interactions among populations in northern Asia is still in its infancy. However, the development of high-throughput sequencing technology and its advancement in ancient DNA research have provided us with a new perspective for delving into the genetic history of ancient populations from a molecular level. In this review, we synthesize the changes in the genetic structure of ancient populations in different stages of northern Asia, aiming to reveal the patterns of interaction among ancient populations in this region, the evolutionary process of their genetic structure, and their genetic contributions to modern populations. It will also discuss the adaptive strategies of humans in response to extreme natural conditions. This will not only deepen our understanding of the origins and migration processes of humanity but also provide a solid foundation for studying the evolutionary mechanisms and adaptive strategies of humans under environmental selective pressures.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 1","pages":"34-45"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142956105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}