Pub Date : 2024-01-01DOI: 10.1615/CritRevOncog.2024053667
Ryan McWhorter, Benjamin Bonavida
Tumor-associated macrophages (TAMs) are the predominant cell infiltrate in the immunosuppressive tumor microenvironment (TME). TAMs are central to fostering pro-inflammatory conditions, tumor growth, metastasis, and inhibiting therapy responses. Many cancer patients are innately refractory to chemotherapy and or develop resistance following initial treatments. There is a clinical correlation between the level of TAMs in the TME and chemoresistance. Hence, the pivotal role of TAMs in contributing to chemoresistance has garnered significant attention toward targeting TAMs to reverse this resistance. A prerequisite for such an approach requires a thorough understanding of the various underlying mechanisms by which TAMs inhibit response to chemotherapeutic drugs. Such mechanisms include enhancing drug efflux, regulating drug metabolism and detoxification, supporting cancer stem cell (CSCs) resistance, promoting epithelial-mesenchymal transition (EMT), inhibiting drug penetration and its metabolism, stimulating angiogenesis, impacting inhibitory STAT3/NF-κB survival pathways, and releasing specific inhibitory cytokines including TGF-β and IL-10. Accordingly, several strategies have been developed to overcome TAM-modulated chemoresistance. These include novel therapies that aim to deplete TAMs, repolarize them toward the anti-tumor M1-like phenotype, or block recruitment of monocytes into the TME. Current results from TAM-targeted treatments have been unimpressive; however, the use of TAM-targeted therapies in combination appears promising These include targeting TAMs with radiotherapy, chemotherapy, chemokine receptor inhibitors, immunotherapy, and loaded nanoparticles. The clinical limitations of these strategies are discussed.
肿瘤相关巨噬细胞(TAMs)是免疫抑制性肿瘤微环境(TME)中最主要的细胞浸润。TAMs 在促进炎症、肿瘤生长、转移和抑制治疗反应方面起着核心作用。许多癌症患者对化疗天生难治,或在初次治疗后产生抗药性。TME中的TAMs水平与化疗耐药性之间存在临床相关性。因此,TAMs 在导致化疗耐药性方面的关键作用引起了人们对靶向 TAMs 以逆转这种耐药性的极大关注。采用这种方法的先决条件是透彻了解 TAMs 抑制化疗药物反应的各种基本机制。这些机制包括增强药物外流、调节药物代谢和解毒、支持癌症干细胞(CSCs)抗药性、促进上皮-间质转化(EMT)、抑制药物渗透及其代谢、刺激血管生成、影响抑制性 STAT3/NF-κB 生存途径以及释放特定抑制性细胞因子(包括 TGF-β 和 IL-10)。因此,人们开发了多种策略来克服 TAM 调节的化疗抗药性。这些策略包括旨在消耗 TAMs、使其重新极化为抗肿瘤 M1 样表型或阻止单核细胞招募进入 TME 的新型疗法。目前以 TAM 为靶点的治疗效果并不理想,但结合使用以 TAM 为靶点的疗法似乎很有前景,这些疗法包括以 TAM 为靶点的放疗、化疗、趋化因子受体抑制剂、免疫疗法和负载纳米粒子。本文讨论了这些策略的临床局限性。
{"title":"The Role of TAMs in the Regulation of Tumor Cell Resistance to Chemotherapy.","authors":"Ryan McWhorter, Benjamin Bonavida","doi":"10.1615/CritRevOncog.2024053667","DOIUrl":"10.1615/CritRevOncog.2024053667","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are the predominant cell infiltrate in the immunosuppressive tumor microenvironment (TME). TAMs are central to fostering pro-inflammatory conditions, tumor growth, metastasis, and inhibiting therapy responses. Many cancer patients are innately refractory to chemotherapy and or develop resistance following initial treatments. There is a clinical correlation between the level of TAMs in the TME and chemoresistance. Hence, the pivotal role of TAMs in contributing to chemoresistance has garnered significant attention toward targeting TAMs to reverse this resistance. A prerequisite for such an approach requires a thorough understanding of the various underlying mechanisms by which TAMs inhibit response to chemotherapeutic drugs. Such mechanisms include enhancing drug efflux, regulating drug metabolism and detoxification, supporting cancer stem cell (CSCs) resistance, promoting epithelial-mesenchymal transition (EMT), inhibiting drug penetration and its metabolism, stimulating angiogenesis, impacting inhibitory STAT3/NF-κB survival pathways, and releasing specific inhibitory cytokines including TGF-β and IL-10. Accordingly, several strategies have been developed to overcome TAM-modulated chemoresistance. These include novel therapies that aim to deplete TAMs, repolarize them toward the anti-tumor M1-like phenotype, or block recruitment of monocytes into the TME. Current results from TAM-targeted treatments have been unimpressive; however, the use of TAM-targeted therapies in combination appears promising These include targeting TAMs with radiotherapy, chemotherapy, chemokine receptor inhibitors, immunotherapy, and loaded nanoparticles. The clinical limitations of these strategies are discussed.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 4","pages":"97-125"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1615/CritRevOncog.2024051588
Mark A Jara
The current rapid development of more selective and effective drugs for the treatment of thyroid cancer has open a new era in the treatment of patients with this condition, in the past limited to the possibility of only radioactive iodine for well differentiated tumor and surgery for medullary thyroid carcinoma (MTC). The treatment of advanced medullary thyroid carcinoma has evolved in the last few years and options for patients with advanced disease are now available. Multikinase inhibitors (MKIs) with nonselective RET inhibition like Vandetanib and Cabozantinib were approved for the treatment of MTC, although the efficacy is limited due to the lack of specificity resulting in a higher rate of drug-related adverse events, leading to subsequent dose reductions, or discontinuation, and the development of a resistance mechanism like seen on the RET Val804 gatekeeper mutations. MTC is associated with mutations in the RET protooncogene, and new highly selective RET inhibitors have been developed including Selpercatinib and Pralsetinib, drugs that have demonstrate excellent results in clinical trials, and efficacy even in the presence of gatekeeper mutations. However, despite their efficacy and great tolerability, mechanisms of resistance have been described, such as the RET solvent front mutations. Due to this, the need of constant evolution and drug research is necessary to overcome the emergence of resistance mechanisms.
目前,用于治疗甲状腺癌的选择性更强、更有效的药物发展迅速,为甲状腺癌患者的治疗开创了一个新纪元。过去,对于分化良好的肿瘤,只能使用放射性碘,而对于甲状腺髓样癌则只能进行手术治疗。在过去几年中,晚期甲状腺髓样癌的治疗方法不断发展,晚期患者现在有了更多选择。具有非选择性RET抑制作用的多激酶抑制剂(MKIs),如凡达尼布(Vandetanib)和卡博赞替尼(Cabozantinib),已被批准用于治疗MTC,但其疗效有限,因为缺乏特异性,导致药物相关不良反应发生率较高,从而导致随后的剂量减少或停药,以及耐药机制的发展,如RET Val804守门员突变。MTC 与 RET 原癌基因的突变有关,目前已开发出新的高选择性 RET 抑制剂,包括赛乐替尼(Selpercatinib)和普乐替尼(Pralsetinib)。然而,尽管这些药物具有良好的疗效和耐受性,但也出现了耐药机制,如 RET 溶剂前突变。因此,要克服耐药机制的出现,就需要不断地进化和药物研究。
{"title":"Management of Advanced Medullary Thyroid Carcinoma: Current Systemic Therapy Options.","authors":"Mark A Jara","doi":"10.1615/CritRevOncog.2024051588","DOIUrl":"10.1615/CritRevOncog.2024051588","url":null,"abstract":"<p><p>The current rapid development of more selective and effective drugs for the treatment of thyroid cancer has open a new era in the treatment of patients with this condition, in the past limited to the possibility of only radioactive iodine for well differentiated tumor and surgery for medullary thyroid carcinoma (MTC). The treatment of advanced medullary thyroid carcinoma has evolved in the last few years and options for patients with advanced disease are now available. Multikinase inhibitors (MKIs) with nonselective RET inhibition like Vandetanib and Cabozantinib were approved for the treatment of MTC, although the efficacy is limited due to the lack of specificity resulting in a higher rate of drug-related adverse events, leading to subsequent dose reductions, or discontinuation, and the development of a resistance mechanism like seen on the RET Val804 gatekeeper mutations. MTC is associated with mutations in the RET protooncogene, and new highly selective RET inhibitors have been developed including Selpercatinib and Pralsetinib, drugs that have demonstrate excellent results in clinical trials, and efficacy even in the presence of gatekeeper mutations. However, despite their efficacy and great tolerability, mechanisms of resistance have been described, such as the RET solvent front mutations. Due to this, the need of constant evolution and drug research is necessary to overcome the emergence of resistance mechanisms.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 3","pages":"83-90"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1615/CritRevOncog.v29.i3.30
Benjamin Bonavida, Stuart Samuels
{"title":"Preface.","authors":"Benjamin Bonavida, Stuart Samuels","doi":"10.1615/CritRevOncog.v29.i3.30","DOIUrl":"https://doi.org/10.1615/CritRevOncog.v29.i3.30","url":null,"abstract":"","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 3","pages":"ix-x"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1615/CritRevOncog.2023050852
Janette Herr, Radka Stoyanova, Eric Albert Mellon
Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.
{"title":"Convolutional Neural Networks for Glioma Segmentation and Prognosis: A Systematic Review.","authors":"Janette Herr, Radka Stoyanova, Eric Albert Mellon","doi":"10.1615/CritRevOncog.2023050852","DOIUrl":"10.1615/CritRevOncog.2023050852","url":null,"abstract":"<p><p>Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 3","pages":"33-65"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1615/CritRevOncog.2023050817
Olivia Mihulka, Eric Nisenbaum, Elizabeth Nicolli
Oral cavity cancer remains a significant cause of morbidity and mortality globally, with a poor prognosis once the disease has metastasized to cervical lymph nodes. The anatomy of lymphatic drainage in the neck gives us a roadmap to follow when assessing for metastasis, although the predictive factors are still not well understood. The mainstay of treatment continues to be neck dissection. However, there is much debate on the management of the clinically negative neck. The necessity of elective neck dissection has been questioned in recent years, with other options such as sentinel lymph node biopsy gaining popularity. This review will explore the aspects of surgical management of the neck in oral cavity cancer and highlights the further research that needs to be done.
{"title":"Surgical Management of the Neck in Oral Cavity Squamous Cell Carcinoma.","authors":"Olivia Mihulka, Eric Nisenbaum, Elizabeth Nicolli","doi":"10.1615/CritRevOncog.2023050817","DOIUrl":"10.1615/CritRevOncog.2023050817","url":null,"abstract":"<p><p>Oral cavity cancer remains a significant cause of morbidity and mortality globally, with a poor prognosis once the disease has metastasized to cervical lymph nodes. The anatomy of lymphatic drainage in the neck gives us a roadmap to follow when assessing for metastasis, although the predictive factors are still not well understood. The mainstay of treatment continues to be neck dissection. However, there is much debate on the management of the clinically negative neck. The necessity of elective neck dissection has been questioned in recent years, with other options such as sentinel lymph node biopsy gaining popularity. This review will explore the aspects of surgical management of the neck in oral cavity cancer and highlights the further research that needs to be done.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 3","pages":"25-31"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140872541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1615/CritRevOncog.v29.i2.30
Maurizio Cè, Michaela Cellina
{"title":"Preface: Artificial Intelligence and the Revolution of Oncological Imaging.","authors":"Maurizio Cè, Michaela Cellina","doi":"10.1615/CritRevOncog.v29.i2.30","DOIUrl":"https://doi.org/10.1615/CritRevOncog.v29.i2.30","url":null,"abstract":"","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 2","pages":"ix-xi"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.
{"title":"Neuroplasticity: Pathophysiology and Role in Major Depressive Disorder.","authors":"Sreeharshini Kadiyala, Priyamvada Bhamidipati, Rama Rao Malla","doi":"10.1615/CritRevOncog.2024051197","DOIUrl":"10.1615/CritRevOncog.2024051197","url":null,"abstract":"<p><p>Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 4","pages":"19-32"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1615/CritRevOncog.2023050055
Benjamin J Rich, Stuart E Samuels, Gregory A Azzam, Gregory Kubicek, Laura Freedman
Squamous cell carcinoma of the oral cavity presents a significant global health burden, primarily due to risk factors such as tobacco smoking, smokeless tobacco use, heavy alcohol consumption, and betel quid chewing. Common clinical manifestations of oral cavity cancer include visible lesions and sores, often accompanied by pain in advanced stages. Diagnosis relies on a comprehensive assessment involving detailed history, physical examination, and biopsy. Ancillary imaging studies and functional evaluations aid in accurate staging and facilitate treatment planning. Prognostic information is obtained from histopathological factors, such as tumor grade, depth of invasion, lymphovascular invasion, and perineural invasion. Notably, lymph node metastasis, found in approximately half of the patients, carries significant prognostic implications. Effective management necessitates a multidisciplinary approach to optimize patient outcomes. Surgical resection is the backbone of treatment, aimed at complete tumor removal while preserving functional outcomes. Adjuvant therapies, including radiation and chemotherapy, are tailored according to pathological factors. Further work in risk stratification and treatment is necessary to optimize outcomes in squamous cell carcinoma of the oral cavity.
{"title":"Oral Cavity Squamous Cell Carcinoma: Review of Pathology, Diagnosis, and Management.","authors":"Benjamin J Rich, Stuart E Samuels, Gregory A Azzam, Gregory Kubicek, Laura Freedman","doi":"10.1615/CritRevOncog.2023050055","DOIUrl":"10.1615/CritRevOncog.2023050055","url":null,"abstract":"<p><p>Squamous cell carcinoma of the oral cavity presents a significant global health burden, primarily due to risk factors such as tobacco smoking, smokeless tobacco use, heavy alcohol consumption, and betel quid chewing. Common clinical manifestations of oral cavity cancer include visible lesions and sores, often accompanied by pain in advanced stages. Diagnosis relies on a comprehensive assessment involving detailed history, physical examination, and biopsy. Ancillary imaging studies and functional evaluations aid in accurate staging and facilitate treatment planning. Prognostic information is obtained from histopathological factors, such as tumor grade, depth of invasion, lymphovascular invasion, and perineural invasion. Notably, lymph node metastasis, found in approximately half of the patients, carries significant prognostic implications. Effective management necessitates a multidisciplinary approach to optimize patient outcomes. Surgical resection is the backbone of treatment, aimed at complete tumor removal while preserving functional outcomes. Adjuvant therapies, including radiation and chemotherapy, are tailored according to pathological factors. Further work in risk stratification and treatment is necessary to optimize outcomes in squamous cell carcinoma of the oral cavity.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 3","pages":"5-24"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The prevalence of electronic cigarette use has been declared an epidemic by the U.S. Surgeon General in 2018, particularly among youth aged 18-24 years old. Little is known about the differential use of e-cigarettes by different groups. PubMed, Cochrane, and Google Scholar were used to find relevant articles. A total of 77 articles were included. The extant literature reveals disparities in e-cigarette use by race/ethnicity and sexuality/gender. There are conflicting conclusions regarding disparities by socioeconomic status.
{"title":"Disparities in Electronic Cigarette Use: A Narrative Review.","authors":"Kyle Edwards, Aysswarya Manoharan, Taghrid Asfar, Samuel Kareff, Gilberto Lopes, Estelamari Rodriguez, Coral Olazagasti","doi":"10.1615/CritRevOncog.2024051128","DOIUrl":"10.1615/CritRevOncog.2024051128","url":null,"abstract":"<p><p>The prevalence of electronic cigarette use has been declared an epidemic by the U.S. Surgeon General in 2018, particularly among youth aged 18-24 years old. Little is known about the differential use of e-cigarettes by different groups. PubMed, Cochrane, and Google Scholar were used to find relevant articles. A total of 77 articles were included. The extant literature reveals disparities in e-cigarette use by race/ethnicity and sexuality/gender. There are conflicting conclusions regarding disparities by socioeconomic status.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":"29 3","pages":"91-98"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}