Accurate analysis of social behaviors in animals is hindered by methodological challenges. Here, we develop a segmentation tracking and clustering system (STCS) to address two major challenges in computational neuroethology: reliable multi-animal tracking and pose estimation under complex interaction conditions and providing interpretable insights into social differences guided by genotype information. We established a comprehensive, long-term, multi-animal-tracking dataset across various experimental settings. Benchmarking STCS against state-of-the-art tracking algorithms, we demonstrated its superior efficacy in analyzing behavioral experiments and establishing a robust tracking baseline. By analyzing the behavior of mice with autism spectrum disorder (ASD) using a novel weakly supervised clustering method under both solitary and social conditions, STCS reveals potential links between social stress and motor impairments. Benefiting from its modular and web-based design, STCS allows researchers to easily integrate the latest computer vision methods, enabling comprehensive behavior analysis services over the Internet, even from a single laptop.