首页 > 最新文献

Patterns最新文献

英文 中文
A proposal in Brazil to use generative AI in education threatens quality and equity 巴西关于在教育中使用生成式人工智能的提案威胁到教育质量和公平性
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-01 DOI: 10.1016/j.patter.2024.101020
Fernanda D.A.O. Matos, Gildo Girotto Junior, Ana de Medeiros Arnt, Adriana Lippi

Artificial intelligence (AI) is considered one of the most revolutionary technological developments today. But can it replace teachers in education? A new proposal in São Paulo, Brazil, suggests this might be possible, but it raises significant concerns about educational quality and equity.

人工智能(AI)被认为是当今最具革命性的技术发展之一。但是,它能取代教育中的教师吗?巴西圣保罗的一项新提案表明,这也许是可能的,但它引发了人们对教育质量和公平性的极大担忧。
{"title":"A proposal in Brazil to use generative AI in education threatens quality and equity","authors":"Fernanda D.A.O. Matos, Gildo Girotto Junior, Ana de Medeiros Arnt, Adriana Lippi","doi":"10.1016/j.patter.2024.101020","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101020","url":null,"abstract":"<p>Artificial intelligence (AI) is considered one of the most revolutionary technological developments today. But can it replace teachers in education? A new proposal in São Paulo, Brazil, suggests this might be possible, but it raises significant concerns about educational quality and equity.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why brain organoids are not conscious yet 为什么大脑有机体还没有意识
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-24 DOI: 10.1016/j.patter.2024.101011
Kenneth S. Kosik

Rapid advances in human brain organoid technologies have prompted the question of their consciousness. Although brain organoids resemble many facets of the brain, their shortcomings strongly suggest that they do not fit any of the operational definitions of consciousness. As organoids gain internal processing systems through statistical learning and closed loop algorithms, interact with the external world, and become embodied through fusion with other organ systems, questions of biosynthetic consciousness will arise.

人脑类器官技术的飞速发展引发了人们对其意识的质疑。虽然类脑器官在很多方面与大脑相似,但它们的缺陷强烈表明,它们不符合意识的任何操作定义。随着类器官通过统计学习和闭环算法获得内部处理系统,与外部世界互动,并通过与其他器官系统的融合而成为实体,生物合成意识的问题将会出现。
{"title":"Why brain organoids are not conscious yet","authors":"Kenneth S. Kosik","doi":"10.1016/j.patter.2024.101011","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101011","url":null,"abstract":"<p>Rapid advances in human brain organoid technologies have prompted the question of their consciousness. Although brain organoids resemble many facets of the brain, their shortcomings strongly suggest that they do not fit any of the operational definitions of consciousness. As organoids gain internal processing systems through statistical learning and closed loop algorithms, interact with the external world, and become embodied through fusion with other organ systems, questions of biosynthetic consciousness will arise.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hierarchically annotated dataset drives tangled filament recognition in digital neuron reconstruction 分层注释数据集推动数字神经元重建中的缠结细丝识别
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-21 DOI: 10.1016/j.patter.2024.101007
Wu Chen, Mingwei Liao, Shengda Bao, Sile An, Wenwei Li, Xin Liu, Ganghua Huang, Hui Gong, Qingming Luo, Chi Xiao, Anan Li

Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. However, it remains a significant challenge due to its complex structure, dense distribution, and low image contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual intervention. Therefore, reconstructing hundreds of neurons is already a daunting task for general research projects. A key issue is the lack of specialized training for challenging regions due to inadequate data and training methods. This study extracted 2,800 challenging neuronal blocks and categorized them into multiple density levels. Furthermore, we enhanced images using an axial continuity-based network that improved three-dimensional voxel resolution while reducing the difficulty of neuron recognition. Comparing the pre- and post-enhancement results in automatic algorithms using fluorescence micro-optical sectioning tomography (fMOST) data, we observed a significant increase in the recall rate. Our study not only enhances the throughput of reconstruction but also provides a fundamental dataset for tangled neuron reconstruction.

重建神经元形态对于神经元分类和绘制大脑连接图至关重要。然而,由于神经元结构复杂、分布密集、图像对比度低,它仍然是一项重大挑战。尤其是人工智能辅助方法经常会产生大量错误,需要大量人工干预。因此,对于一般研究项目来说,重建数百个神经元已经是一项艰巨的任务。一个关键问题是,由于数据和训练方法不足,缺乏针对高难度区域的专门训练。本研究提取了 2,800 个具有挑战性的神经元区块,并将其分为多个密度等级。此外,我们还利用基于轴向连续性的网络增强了图像,提高了三维体素分辨率,同时降低了神经元识别的难度。在使用荧光显微光学切片断层成像(fMOST)数据的自动算法中,比较增强前和增强后的结果,我们观察到召回率显著提高。我们的研究不仅提高了重建的吞吐量,还为纠结神经元重建提供了一个基础数据集。
{"title":"A hierarchically annotated dataset drives tangled filament recognition in digital neuron reconstruction","authors":"Wu Chen, Mingwei Liao, Shengda Bao, Sile An, Wenwei Li, Xin Liu, Ganghua Huang, Hui Gong, Qingming Luo, Chi Xiao, Anan Li","doi":"10.1016/j.patter.2024.101007","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101007","url":null,"abstract":"<p>Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. However, it remains a significant challenge due to its complex structure, dense distribution, and low image contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual intervention. Therefore, reconstructing hundreds of neurons is already a daunting task for general research projects. A key issue is the lack of specialized training for challenging regions due to inadequate data and training methods. This study extracted 2,800 challenging neuronal blocks and categorized them into multiple density levels. Furthermore, we enhanced images using an axial continuity-based network that improved three-dimensional voxel resolution while reducing the difficulty of neuron recognition. Comparing the pre- and post-enhancement results in automatic algorithms using fluorescence micro-optical sectioning tomography (fMOST) data, we observed a significant increase in the recall rate. Our study not only enhances the throughput of reconstruction but also provides a fundamental dataset for tangled neuron reconstruction.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainability pitfalls: Beyond dark patterns in explainable AI 可解释性陷阱:超越可解释人工智能的黑暗模式
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-14 DOI: 10.1016/j.patter.2024.100971
Upol Ehsan, Mark O. Riedl

To make explainable artificial intelligence (XAI) systems trustworthy, understanding harmful effects is important. In this paper, we address an important yet unarticulated type of negative effect in XAI. We introduce explainability pitfalls (EPs), unanticipated negative downstream effects from AI explanations manifesting even when there is no intention to manipulate users. EPs are different from dark patterns, which are intentionally deceptive practices. We articulate the concept of EPs by demarcating it from dark patterns and highlighting the challenges arising from uncertainties around pitfalls. We situate and operationalize the concept using a case study that showcases how, despite best intentions, unsuspecting negative effects, such as unwarranted trust in numerical explanations, can emerge. We propose proactive and preventative strategies to address EPs at three interconnected levels: research, design, and organizational. We discuss design and societal implications around reframing AI adoption, recalibrating stakeholder empowerment, and resisting the “move fast and break things” mindset.

要使可解释人工智能(XAI)系统值得信赖,了解有害效应非常重要。在本文中,我们将讨论 XAI 中一种重要但尚未阐明的负面效应。我们引入了可解释性陷阱(EPs),这是人工智能解释所产生的意料之外的负面下游效应,即使在无意操纵用户的情况下也会表现出来。EPs不同于黑暗模式,后者是有意的欺骗行为。我们阐明了EPs的概念,将其与黑暗模式区分开来,并强调了陷阱的不确定性所带来的挑战。我们通过一个案例研究来定位和操作这一概念,该案例研究展示了尽管用心良苦,但还是会出现意想不到的负面影响,例如对数字解释的无端信任。我们从研究、设计和组织三个相互关联的层面提出了应对 EPs 的积极预防策略。我们将围绕重新构建人工智能的采用、重新调整利益相关者的授权以及抵制 "快速行动、打破常规 "的思维方式,讨论设计和社会影响。
{"title":"Explainability pitfalls: Beyond dark patterns in explainable AI","authors":"Upol Ehsan, Mark O. Riedl","doi":"10.1016/j.patter.2024.100971","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100971","url":null,"abstract":"<p>To make explainable artificial intelligence (XAI) systems trustworthy, understanding harmful effects is important. In this paper, we address an important yet unarticulated type of negative effect in XAI. We introduce explainability pitfalls (EPs), unanticipated negative downstream effects from AI explanations manifesting even when there is no intention to manipulate users. EPs are different from dark patterns, which are intentionally deceptive practices. We articulate the concept of EPs by demarcating it from dark patterns and highlighting the challenges arising from uncertainties around pitfalls. We situate and operationalize the concept using a case study that showcases how, despite best intentions, unsuspecting negative effects, such as unwarranted trust in numerical explanations, can emerge. We propose proactive and preventative strategies to address EPs at three interconnected levels: research, design, and organizational. We discuss design and societal implications around reframing AI adoption, recalibrating stakeholder empowerment, and resisting the “move fast and break things” mindset.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large pre-trained models for treatment effect estimation: Are we there yet? 用于治疗效果估计的大型预训练模型:我们到了吗?
IF 6.5 Q2 Decision Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.patter.2024.101005
Sheng Li
{"title":"Large pre-trained models for treatment effect estimation: Are we there yet?","authors":"Sheng Li","doi":"10.1016/j.patter.2024.101005","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101005","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141394867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing visibility and inclusivity of queer scientists to advance equality in academia 提高同性恋科学家的知名度和包容性,促进学术界的平等
IF 6.5 Q2 Decision Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.patter.2024.101008
Zhuokun Feng, Yuanyuan Fu, Youping Deng
{"title":"Enhancing visibility and inclusivity of queer scientists to advance equality in academia","authors":"Zhuokun Feng, Yuanyuan Fu, Youping Deng","doi":"10.1016/j.patter.2024.101008","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101008","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing LGBTQ+ inclusion in STEM education and AI research 推动 LGBTQ+ 融入 STEM 教育和人工智能研究
IF 6.5 Q2 Decision Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.patter.2024.101010
Emily Wong, R. Urbanowicz, T. Bright, Nicholas P. Tatonetti, Yi-Wen Hsiao, Xiuzhen Huang, Jason H. Moore, Pei-Chen Peng
{"title":"Advancing LGBTQ+ inclusion in STEM education and AI research","authors":"Emily Wong, R. Urbanowicz, T. Bright, Nicholas P. Tatonetti, Yi-Wen Hsiao, Xiuzhen Huang, Jason H. Moore, Pei-Chen Peng","doi":"10.1016/j.patter.2024.101010","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101010","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141391366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent methodological advances in federated learning for healthcare 医疗保健联合学习方法的最新进展
IF 6.5 Q2 Decision Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.patter.2024.101006
Fan Zhang, Daniel Kreuter, Yichen Chen, Sören Dittmer, Samuel Tull, Tolou Shadbahr, Martijn Schut, Folkert Asselbergs, Sujoy Kar, S. Sivapalaratnam, Sophie Williams, Mickey Koh, Y. Henskens, Bart de Wit, Umberto D’Alessandro, B. Bah, Ousman Secka, P. Nachev, Rajeev Gupta, Sara Trompeter, Nancy Boeckx, Christine van Laer, G. A. Awandare, Kwabena Sarpong, Lucas Amenga-Etego, Mathie Leers, Mirelle Huijskens, Samuel McDermott, Willem H. Ouwehand, James H. F. Rudd, Carola-Bibiane Schӧnlieb, Nicholas Gleadall, Michael Roberts, J. Preller, James H. F. Rudd, J. A. Aston, C. Schönlieb
{"title":"Recent methodological advances in federated learning for healthcare","authors":"Fan Zhang, Daniel Kreuter, Yichen Chen, Sören Dittmer, Samuel Tull, Tolou Shadbahr, Martijn Schut, Folkert Asselbergs, Sujoy Kar, S. Sivapalaratnam, Sophie Williams, Mickey Koh, Y. Henskens, Bart de Wit, Umberto D’Alessandro, B. Bah, Ousman Secka, P. Nachev, Rajeev Gupta, Sara Trompeter, Nancy Boeckx, Christine van Laer, G. A. Awandare, Kwabena Sarpong, Lucas Amenga-Etego, Mathie Leers, Mirelle Huijskens, Samuel McDermott, Willem H. Ouwehand, James H. F. Rudd, Carola-Bibiane Schӧnlieb, Nicholas Gleadall, Michael Roberts, J. Preller, James H. F. Rudd, J. A. Aston, C. Schönlieb","doi":"10.1016/j.patter.2024.101006","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101006","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141390623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meet the authors: Rita González-Márquez, Philipp Berens, and Dmitry Kobak 与作者见面丽塔-冈萨雷斯-马尔克斯、菲利普-贝伦斯和德米特里-科巴克
IF 6.5 Q2 Decision Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.patter.2024.100993
Rita González-Márquez, Philipp Berens, D. Kobak
{"title":"Meet the authors: Rita González-Márquez, Philipp Berens, and Dmitry Kobak","authors":"Rita González-Márquez, Philipp Berens, D. Kobak","doi":"10.1016/j.patter.2024.100993","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100993","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
psHarmonize: Facilitating reproducible large-scale pre-statistical data harmonization and documentation in R psHarmonize:在 R 中促进可重复的大规模预统计数据协调和记录
IF 6.5 Q2 Decision Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.patter.2024.101003
John J. Stephen, Padraig Carolan, A. Krefman, Sanaz Sedaghat, Maxwell Mansolf, Norrina B. Allen, Denise Scholtens
{"title":"psHarmonize: Facilitating reproducible large-scale pre-statistical data harmonization and documentation in R","authors":"John J. Stephen, Padraig Carolan, A. Krefman, Sanaz Sedaghat, Maxwell Mansolf, Norrina B. Allen, Denise Scholtens","doi":"10.1016/j.patter.2024.101003","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101003","url":null,"abstract":"","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141415608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Patterns
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1