首页 > 最新文献

Patterns最新文献

英文 中文
Exposing image splicing traces in scientific publications via uncertainty-guided refinement 通过不确定性引导的精炼揭示科学出版物中的图像拼接痕迹
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-08 DOI: 10.1016/j.patter.2024.101038

Recently, a surge in image manipulations in scientific publications has led to numerous retractions, highlighting the importance of image integrity. Although forensic detectors for image duplication and synthesis have been researched, the detection of image splicing in scientific publications remains largely unexplored. Splicing detection is more challenging than duplication detection due to the lack of reference images and more difficult than synthesis detection because of the presence of smaller tampered-with areas. Moreover, disruptive factors in scientific images, such as artifacts, abnormal patterns, and noise, present misleading features like splicing traces, rendering this task difficult. In addition, the scarcity of high-quality datasets of spliced scientific images has limited advancements. Therefore, we propose the uncertainty-guided refinement network (URN) to mitigate these disruptive factors. We also construct a dataset for image splicing detection (SciSp) with 1,290 spliced images by collecting and manually splicing. Comprehensive experiments demonstrate the URN’s superior splicing detection performance.

最近,科学出版物中的图像篡改现象激增,导致许多出版物被撤回,这凸显了图像完整性的重要性。尽管针对图像复制和合成的法证检测器已经得到研究,但科学出版物中的图像拼接检测在很大程度上仍未得到探索。由于缺乏参考图像,拼接检测比复制检测更具挑战性;由于存在较小的篡改区域,拼接检测比合成检测更加困难。此外,科学图像中的干扰因素,如人工痕迹、异常模式和噪声,会呈现出拼接痕迹等误导性特征,从而使这项任务变得困难。此外,高质量拼接科学图像数据集的稀缺也限制了研究的进展。因此,我们提出了不确定性引导细化网络(URN)来减少这些干扰因素。我们还通过收集和手动拼接的方式,构建了一个包含 1,290 幅拼接图像的图像拼接检测数据集(SciSp)。综合实验证明了 URN 的卓越拼接检测性能。
{"title":"Exposing image splicing traces in scientific publications via uncertainty-guided refinement","authors":"","doi":"10.1016/j.patter.2024.101038","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101038","url":null,"abstract":"<p>Recently, a surge in image manipulations in scientific publications has led to numerous retractions, highlighting the importance of image integrity. Although forensic detectors for image duplication and synthesis have been researched, the detection of image splicing in scientific publications remains largely unexplored. Splicing detection is more challenging than duplication detection due to the lack of reference images and more difficult than synthesis detection because of the presence of smaller tampered-with areas. Moreover, disruptive factors in scientific images, such as artifacts, abnormal patterns, and noise, present misleading features like splicing traces, rendering this task difficult. In addition, the scarcity of high-quality datasets of spliced scientific images has limited advancements. Therefore, we propose the uncertainty-guided refinement network (URN) to mitigate these disruptive factors. We also construct a dataset for image splicing detection (SciSp) with 1,290 spliced images by collecting and manually splicing. Comprehensive experiments demonstrate the URN’s superior splicing detection performance.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"2011 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly accurate and precise determination of mouse mass using computer vision 利用计算机视觉高精度地测定鼠标质量
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-07 DOI: 10.1016/j.patter.2024.101039

Changes in body mass are key indicators of health in humans and animals and are routinely monitored in animal husbandry and preclinical studies. In rodent studies, the current method of manually weighing the animal on a balance causes at least two issues. First, directly handling the animal induces stress, possibly confounding studies. Second, these data are static, limiting continuous assessment and obscuring rapid changes. A non-invasive, continuous method of monitoring animal mass would have utility in multiple biomedical research areas. We combine computer vision with statistical modeling to demonstrate the feasibility of determining mouse body mass by using video data. Our methods determine mass with a 4.8% error across genetically diverse mouse strains with varied coat colors and masses. This error is low enough to replace manual weighing in most mouse studies. We conclude that visually determining rodent mass enables non-invasive, continuous monitoring, improving preclinical studies and animal welfare.

体重变化是人类和动物健康的关键指标,也是动物饲养和临床前研究的常规监测指标。在啮齿动物研究中,目前在天平上手动称量动物体重的方法至少会造成两个问题。首先,直接处理动物会造成应激,可能会干扰研究。其次,这些数据是静态的,限制了连续评估,并掩盖了快速变化。一种非侵入式的连续动物质量监测方法将在多个生物医学研究领域发挥作用。我们将计算机视觉与统计建模相结合,证明了利用视频数据确定小鼠体重的可行性。我们的方法能确定具有不同毛色和体重的不同基因小鼠品系的体重,误差仅为 4.8%。这个误差很低,足以在大多数小鼠研究中取代人工称重。我们的结论是,目测啮齿动物的体重可以实现无创、连续的监测,从而改善临床前研究和动物福利。
{"title":"Highly accurate and precise determination of mouse mass using computer vision","authors":"","doi":"10.1016/j.patter.2024.101039","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101039","url":null,"abstract":"<p>Changes in body mass are key indicators of health in humans and animals and are routinely monitored in animal husbandry and preclinical studies. In rodent studies, the current method of manually weighing the animal on a balance causes at least two issues. First, directly handling the animal induces stress, possibly confounding studies. Second, these data are static, limiting continuous assessment and obscuring rapid changes. A non-invasive, continuous method of monitoring animal mass would have utility in multiple biomedical research areas. We combine computer vision with statistical modeling to demonstrate the feasibility of determining mouse body mass by using video data. Our methods determine mass with a 4.8% error across genetically diverse mouse strains with varied coat colors and masses. This error is low enough to replace manual weighing in most mouse studies. We conclude that visually determining rodent mass enables non-invasive, continuous monitoring, improving preclinical studies and animal welfare.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A federated learning architecture for secure and private neuroimaging analysis 用于安全保密神经成像分析的联合学习架构
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-01 DOI: 10.1016/j.patter.2024.101031

The amount of biomedical data continues to grow rapidly. However, collecting data from multiple sites for joint analysis remains challenging due to security, privacy, and regulatory concerns. To overcome this challenge, we use federated learning, which enables distributed training of neural network models over multiple data sources without sharing data. Each site trains the neural network over its private data for some time and then shares the neural network parameters (i.e., weights and/or gradients) with a federation controller, which in turn aggregates the local models and sends the resulting community model back to each site, and the process repeats. Our federated learning architecture, MetisFL, provides strong security and privacy. First, sample data never leave a site. Second, neural network parameters are encrypted before transmission and the global neural model is computed under fully homomorphic encryption. Finally, we use information-theoretic methods to limit information leakage from the neural model to prevent a “curious” site from performing model inversion or membership attacks. We present a thorough evaluation of the performance of secure, private federated learning in neuroimaging tasks, including for predicting Alzheimer’s disease and for brain age gap estimation (BrainAGE) from magnetic resonance imaging (MRI) studies in challenging, heterogeneous federated environments where sites have different amounts of data and statistical distributions.

生物医学数据量持续快速增长。然而,出于安全、隐私和监管等方面的考虑,从多个站点收集数据进行联合分析仍然具有挑战性。为了克服这一挑战,我们采用了联合学习的方法,即在不共享数据的情况下,通过多个数据源对神经网络模型进行分布式训练。每个站点通过其私有数据对神经网络进行一段时间的训练,然后与联盟控制器共享神经网络参数(即权重和/或梯度),该控制器反过来汇总本地模型,并将生成的社区模型发送回每个站点,整个过程重复进行。我们的联合学习架构 MetisFL 具有很强的安全性和私密性。首先,样本数据永远不会离开站点。其次,神经网络参数在传输前已加密,全局神经模型是在完全同态加密的情况下计算得出的。最后,我们使用信息论方法限制神经模型的信息泄露,以防止 "好奇 "的网站进行模型反转或成员攻击。我们对神经成像任务中的安全、私有联合学习的性能进行了全面评估,包括在具有挑战性的异构联合环境中预测阿尔茨海默氏症和从磁共振成像(MRI)研究中估计脑年龄差距(BrainAGE),这些环境中的站点拥有不同数量的数据和统计分布。
{"title":"A federated learning architecture for secure and private neuroimaging analysis","authors":"","doi":"10.1016/j.patter.2024.101031","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101031","url":null,"abstract":"<p>The amount of biomedical data continues to grow rapidly. However, collecting data from multiple sites for joint analysis remains challenging due to security, privacy, and regulatory concerns. To overcome this challenge, we use federated learning, which enables distributed training of neural network models over multiple data sources without sharing data. Each site trains the neural network over its private data for some time and then shares the neural network parameters (i.e., weights and/or gradients) with a federation controller, which in turn aggregates the local models and sends the resulting community model back to each site, and the process repeats. Our federated learning architecture, MetisFL, provides strong security and privacy. First, sample data never leave a site. Second, neural network parameters are encrypted before transmission and the global neural model is computed under fully homomorphic encryption. Finally, we use information-theoretic methods to limit information leakage from the neural model to prevent a “curious” site from performing model inversion or membership attacks. We present a thorough evaluation of the performance of secure, private federated learning in neuroimaging tasks, including for predicting Alzheimer’s disease and for brain age gap estimation (BrainAGE) from magnetic resonance imaging (MRI) studies in challenging, heterogeneous federated environments where sites have different amounts of data and statistical distributions.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"22 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The reanimation of pseudoscience in machine learning and its ethical repercussions 机器学习中伪科学的复活及其伦理反响
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-08-01 DOI: 10.1016/j.patter.2024.101027

The present perspective outlines how epistemically baseless and ethically pernicious paradigms are recycled back into the scientific literature via machine learning (ML) and explores connections between these two dimensions of failure. We hold up the renewed emergence of physiognomic methods, facilitated by ML, as a case study in the harmful repercussions of ML-laundered junk science. A summary and analysis of several such studies is delivered, with attention to the means by which unsound research lends itself to social harms. We explore some of the many factors contributing to poor practice in applied ML. In conclusion, we offer resources for research best practices to developers and practitioners.

本视角概述了在认识论上毫无根据、在伦理道德上有害的范式是如何通过机器学习(ML)重新回到科学文献中的,并探讨了这两方面失败之间的联系。我们将机器学习推动下重新出现的相貌学方法作为一个案例,研究机器学习垃圾科学的有害影响。我们将对几项此类研究进行总结和分析,并关注不靠谱的研究是如何造成社会危害的。我们探讨了造成应用 ML 不良实践的诸多因素。最后,我们为开发人员和从业人员提供了研究最佳实践的资源。
{"title":"The reanimation of pseudoscience in machine learning and its ethical repercussions","authors":"","doi":"10.1016/j.patter.2024.101027","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101027","url":null,"abstract":"<p>The present perspective outlines how epistemically baseless and ethically pernicious paradigms are recycled back into the scientific literature via machine learning (ML) and explores connections between these two dimensions of failure. We hold up the renewed emergence of physiognomic methods, facilitated by ML, as a case study in the harmful repercussions of ML-laundered junk science. A summary and analysis of several such studies is delivered, with attention to the means by which unsound research lends itself to social harms. We explore some of the many factors contributing to poor practice in applied ML. In conclusion, we offer resources for research best practices to developers and practitioners.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"86 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the reversal curse and other deductive logical reasoning in BERT and GPT-based large language models 探索基于 BERT 和 GPT 的大型语言模型中的逆转诅咒和其他演绎逻辑推理
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-25 DOI: 10.1016/j.patter.2024.101030

The “Reversal Curse” describes the inability of autoregressive decoder large language models (LLMs) to deduce “B is A” from “A is B,” assuming that B and A are distinct and can be uniquely identified from each other. This logical failure suggests limitations in using generative pretrained transformer (GPT) models for tasks like constructing knowledge graphs. Our study revealed that a bidirectional LLM, bidirectional encoder representations from transformers (BERT), does not suffer from this issue. To investigate further, we focused on more complex deductive reasoning by training encoder and decoder LLMs to perform union and intersection operations on sets. While both types of models managed tasks involving two sets, they struggled with operations involving three sets. Our findings underscore the differences between encoder and decoder models in handling logical reasoning. Thus, selecting BERT or GPT should depend on the task’s specific needs, utilizing BERT’s bidirectional context comprehension or GPT’s sequence prediction strengths.

逆转诅咒 "描述的是自回归解码器大型语言模型(LLM)无法从 "A 是 B "推导出 "B 是 A",前提是 B 和 A 是不同的,并且可以从彼此中唯一地识别出来。这种逻辑上的失败表明,在构建知识图谱等任务中使用生成式预训练转换器(GPT)模型存在局限性。我们的研究表明,双向 LLM--来自变换器的双向编码器表征(BERT)并不存在这个问题。为了进一步研究,我们将重点放在了更复杂的演绎推理上,训练编码器和解码器 LLM 对集合进行联合和相交运算。虽然这两类模型都能完成涉及两个集合的任务,但它们在涉及三个集合的运算中却举步维艰。我们的发现强调了编码器模型和解码器模型在处理逻辑推理方面的差异。因此,选择 BERT 还是 GPT 应取决于任务的具体需求,利用 BERT 的双向上下文理解能力或 GPT 的序列预测能力。
{"title":"Exploring the reversal curse and other deductive logical reasoning in BERT and GPT-based large language models","authors":"","doi":"10.1016/j.patter.2024.101030","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101030","url":null,"abstract":"<p>The “Reversal Curse” describes the inability of autoregressive decoder large language models (LLMs) to deduce “B is A” from “A is B,” assuming that B and A are distinct and can be uniquely identified from each other. This logical failure suggests limitations in using generative pretrained transformer (GPT) models for tasks like constructing knowledge graphs. Our study revealed that a bidirectional LLM, bidirectional encoder representations from transformers (BERT), does not suffer from this issue. To investigate further, we focused on more complex deductive reasoning by training encoder and decoder LLMs to perform union and intersection operations on sets. While both types of models managed tasks involving two sets, they struggled with operations involving three sets. Our findings underscore the differences between encoder and decoder models in handling logical reasoning. Thus, selecting BERT or GPT should depend on the task’s specific needs, utilizing BERT’s bidirectional context comprehension or GPT’s sequence prediction strengths.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"7 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A privacy-preserving approach for cloud-based protein fold recognition 基于云的蛋白质折叠识别的隐私保护方法
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-19 DOI: 10.1016/j.patter.2024.101023

The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.

训练机器学习模型的复杂性和成本使得基于云的机器学习即服务(MLaaS)对企业和研究人员极具吸引力。MLaaS 通过提供预建模型和基础设施,消除了对内部专业知识的需求。然而,它也引发了数据隐私和模型安全性方面的担忧,尤其是在蛋白质折叠识别等医学领域。我们提出了一种基于三方计算的安全 MLaaS 解决方案,用于保护蛋白质折叠识别的隐私,同时保护序列和模型隐私。我们的高效私密构建模块可以私下进行复杂的运算,包括加法、乘法、不同方法的多路复用器、最显著位、模数转换和精确指数运算。我们展示了保护隐私的递归核网络(RKN)解决方案,结果表明它与非隐私模型的性能不相上下。我们的可扩展性分析表明了 RKN 参数的线性可扩展性,使其在现实世界的部署成为可行。该解决方案有望利用我们的构建模块将其他医疗领域的机器学习算法转换为隐私保护型 MLaaS。
{"title":"A privacy-preserving approach for cloud-based protein fold recognition","authors":"","doi":"10.1016/j.patter.2024.101023","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101023","url":null,"abstract":"<p>The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modularized neural network incorporating physical priors for future building energy modeling 模块化神经网络结合物理先验,用于未来建筑能耗建模
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-19 DOI: 10.1016/j.patter.2024.101029

Building energy modeling (BEM) is fundamental for achieving optimized energy control, resilient retrofit designs, and sustainable urbanization to mitigate climate change. However, traditional BEM requires detailed building information, expert knowledge, substantial modeling efforts, and customized case-by-case calibrations. This process must be repeated for every building, thereby limiting its scalability. To address these limitations, we developed a modularized neural network incorporating physical priors (ModNN), which is improved by its model structure incorporating heat balance equations, physically consistent model constraints, and data-driven modular design that can allow for multiple-building applications through model sharing and inheritance. We demonstrated its scalability in four cases: load prediction, indoor environment modeling, building retrofitting, and energy optimization. This approach provides guidance for future BEM by incorporating physical priors into data-driven models without extensive modeling efforts, paving the way for large-scale BEM, energy management, retrofit designs, and buildings-to-grid integration.

建筑能源建模(BEM)是实现优化能源控制、弹性改造设计和可持续城市化以减缓气候变化的基础。然而,传统的 BEM 需要详细的建筑信息、专家知识、大量建模工作以及定制的个案校准。每个建筑都必须重复这一过程,从而限制了其可扩展性。为了解决这些局限性,我们开发了一种包含物理先验的模块化神经网络(ModNN),其模型结构包含热平衡方程、物理上一致的模型约束以及数据驱动的模块化设计,可通过模型共享和继承实现多建筑应用。我们在负载预测、室内环境建模、建筑改造和能源优化等四个案例中展示了其可扩展性。这种方法无需大量建模工作就能将物理先验纳入数据驱动模型,为未来的 BEM 提供了指导,为大规模 BEM、能源管理、改造设计和楼宇并网集成铺平了道路。
{"title":"Modularized neural network incorporating physical priors for future building energy modeling","authors":"","doi":"10.1016/j.patter.2024.101029","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101029","url":null,"abstract":"<p>Building energy modeling (BEM) is fundamental for achieving optimized energy control, resilient retrofit designs, and sustainable urbanization to mitigate climate change. However, traditional BEM requires detailed building information, expert knowledge, substantial modeling efforts, and customized case-by-case calibrations. This process must be repeated for every building, thereby limiting its scalability. To address these limitations, we developed a modularized neural network incorporating physical priors (ModNN), which is improved by its model structure incorporating heat balance equations, physically consistent model constraints, and data-driven modular design that can allow for multiple-building applications through model sharing and inheritance. We demonstrated its scalability in four cases: load prediction, indoor environment modeling, building retrofitting, and energy optimization. This approach provides guidance for future BEM by incorporating physical priors into data-driven models without extensive modeling efforts, paving the way for large-scale BEM, energy management, retrofit designs, and buildings-to-grid integration.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"80 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG spectral attractors identify a geometric core of brain dynamics 脑电图频谱吸引子确定大脑动态的几何核心
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-19 DOI: 10.1016/j.patter.2024.101025

Multidimensional reconstruction of brain attractors from electroencephalography (EEG) data enables the analysis of geometric complexity and interactions between signals in state space. Utilizing resting-state data from young and older adults, we characterize periodic (traditional frequency bands) and aperiodic (broadband exponent) attractors according to their geometric complexity and shared dynamical signatures, which we refer to as a geometric cross-parameter coupling. Alpha and aperiodic attractors are the least complex, and their global shapes are shared among all other frequency bands, affording alpha and aperiodic greater predictive power. Older adults show lower geometric complexity but greater coupling, resulting from dedifferentiation of gamma activity. The form and content of resting-state thoughts were further associated with the complexity of attractor dynamics. These findings support a process-developmental perspective on the brain’s dynamic core, whereby more complex information differentiates out of an integrative and global geometric core.

从脑电图(EEG)数据中多维重构大脑吸引子可分析状态空间中信号之间的几何复杂性和相互作用。利用年轻人和老年人的静息态数据,我们根据其几何复杂性和共同的动态特征(我们称之为几何交叉参数耦合)来描述周期性(传统频带)和非周期性(宽带指数)吸引子。α吸引子和非周期性吸引子的复杂性最低,它们的全局形状在所有其他频段中是共享的,这使得α吸引子和非周期性吸引子具有更强的预测能力。老年人的几何复杂度较低,但耦合度较高,这是由于伽马活动的去分化造成的。静息状态思维的形式和内容与吸引子动力学的复杂性进一步相关。这些研究结果支持从过程-发展的角度来看待大脑的动态核心,即更复杂的信息会从整合性和全局性的几何核心中分化出来。
{"title":"EEG spectral attractors identify a geometric core of brain dynamics","authors":"","doi":"10.1016/j.patter.2024.101025","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101025","url":null,"abstract":"<p>Multidimensional reconstruction of brain attractors from electroencephalography (EEG) data enables the analysis of geometric complexity and interactions between signals in state space. Utilizing resting-state data from young and older adults, we characterize periodic (traditional frequency bands) and aperiodic (broadband exponent) attractors according to their geometric complexity and shared dynamical signatures, which we refer to as a geometric cross-parameter coupling. Alpha and aperiodic attractors are the least complex, and their global shapes are shared among all other frequency bands, affording alpha and aperiodic greater predictive power. Older adults show lower geometric complexity but greater coupling, resulting from dedifferentiation of gamma activity. The form and content of resting-state thoughts were further associated with the complexity of attractor dynamics. These findings support a process-developmental perspective on the brain’s dynamic core, whereby more complex information differentiates out of an integrative and global geometric core.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"92 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BIOMERO: A scalable and extensible image analysis framework BIOMERO:可扩展的图像分析框架
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-18 DOI: 10.1016/j.patter.2024.101024

In the rapidly evolving field of bioimaging, the integration and orchestration of findable, accessible, interoperable, and reusable (FAIR) image analysis workflows remains a challenge. We introduce BIOMERO (bioimage analysis in OMERO), a bridge connecting OMERO, a renowned bioimaging data management platform; FAIR workflows; and high-performance computing (HPC) environments. BIOMERO facilitates seamless execution of FAIR workflows, particularly for large datasets from high-content or high-throughput screening. BIOMERO empowers researchers by eliminating the need for specialized knowledge, enabling scalable image processing directly from OMERO. BIOMERO notably supports the sharing and utilization of FAIR workflows between OMERO, Cytomine/BIAFLOWS, and other bioimaging communities. BIOMERO will promote the widespread adoption of FAIR workflows, emphasizing reusability, across the realm of bioimaging research. Its user-friendly interface will empower users, including those without technical expertise, to seamlessly apply these workflows to their datasets, democratizing the utilization of AI by the broader research community.

在快速发展的生物成像领域,如何整合和协调可查找、可访问、可互操作和可重用(FAIR)的图像分析工作流程仍然是一项挑战。我们介绍了 BIOMERO(OMERO 中的生物图像分析),它是连接著名生物成像数据管理平台 OMERO、FAIR 工作流和高性能计算(HPC)环境的桥梁。BIOMERO促进了FAIR工作流程的无缝执行,特别是对于来自高内容或高通量筛选的大型数据集。BIOMERO 无需专业知识,可直接从 OMERO 进行可扩展的图像处理,从而增强了研究人员的能力。BIOMERO 特别支持在 OMERO、Cytomine/BIAFLOWS 和其他生物成像社区之间共享和利用 FAIR 工作流程。BIOMERO 将促进 FAIR 工作流程在生物成像研究领域的广泛应用,强调可重用性。它的用户友好界面将使用户,包括那些没有专业技术知识的用户,能够将这些工作流程无缝地应用于他们的数据集,从而使更广泛的研究界对人工智能的利用更加民主化。
{"title":"BIOMERO: A scalable and extensible image analysis framework","authors":"","doi":"10.1016/j.patter.2024.101024","DOIUrl":"https://doi.org/10.1016/j.patter.2024.101024","url":null,"abstract":"<p>In the rapidly evolving field of bioimaging, the integration and orchestration of findable, accessible, interoperable, and reusable (FAIR) image analysis workflows remains a challenge. We introduce BIOMERO (bioimage analysis in OMERO), a bridge connecting OMERO, a renowned bioimaging data management platform; FAIR workflows; and high-performance computing (HPC) environments. BIOMERO facilitates seamless execution of FAIR workflows, particularly for large datasets from high-content or high-throughput screening. BIOMERO empowers researchers by eliminating the need for specialized knowledge, enabling scalable image processing directly from OMERO. BIOMERO notably supports the sharing and utilization of FAIR workflows between OMERO, Cytomine/BIAFLOWS, and other bioimaging communities. BIOMERO will promote the widespread adoption of FAIR workflows, emphasizing reusability, across the realm of bioimaging research. Its user-friendly interface will empower users, including those without technical expertise, to seamlessly apply these workflows to their datasets, democratizing the utilization of AI by the broader research community.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"1 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy preservation for federated learning in health care 医疗保健联合学习的隐私保护
IF 6.5 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-12 DOI: 10.1016/j.patter.2024.100974
Sarthak Pati, Sourav Kumar, Amokh Varma, Brandon Edwards, Charles Lu, Liangqiong Qu, Justin J. Wang, Anantharaman Lakshminarayanan, Shih-han Wang, Micah J. Sheller, Ken Chang, Praveer Singh, Daniel L. Rubin, Jayashree Kalpathy-Cramer, Spyridon Bakas

Artificial intelligence (AI) shows potential to improve health care by leveraging data to build models that can inform clinical workflows. However, access to large quantities of diverse data is needed to develop robust generalizable models. Data sharing across institutions is not always feasible due to legal, security, and privacy concerns. Federated learning (FL) allows for multi-institutional training of AI models, obviating data sharing, albeit with different security and privacy concerns. Specifically, insights exchanged during FL can leak information about institutional data. In addition, FL can introduce issues when there is limited trust among the entities performing the compute. With the growing adoption of FL in health care, it is imperative to elucidate the potential risks. We thus summarize privacy-preserving FL literature in this work with special regard to health care. We draw attention to threats and review mitigation approaches. We anticipate this review to become a health-care researcher’s guide to security and privacy in FL.

人工智能(AI)通过利用数据建立模型,为临床工作流程提供信息,从而显示出改善医疗保健的潜力。然而,要开发强大的通用模型,需要获取大量不同的数据。出于法律、安全和隐私方面的考虑,跨机构共享数据并不总是可行的。联合学习(FL)允许对人工智能模型进行多机构训练,从而避免了数据共享,但却存在不同的安全和隐私问题。具体来说,在联合学习过程中交换的见解可能会泄露有关机构数据的信息。此外,当执行计算的实体之间信任度有限时,FL 可能会带来一些问题。随着 FL 在医疗保健领域的应用越来越广泛,阐明其潜在风险势在必行。因此,我们在这项工作中总结了保护隐私的 FL 文献,并特别关注医疗保健领域。我们提醒大家注意威胁,并回顾了缓解方法。我们希望这篇综述能成为医疗保健研究人员在 FL 安全和隐私方面的指南。
{"title":"Privacy preservation for federated learning in health care","authors":"Sarthak Pati, Sourav Kumar, Amokh Varma, Brandon Edwards, Charles Lu, Liangqiong Qu, Justin J. Wang, Anantharaman Lakshminarayanan, Shih-han Wang, Micah J. Sheller, Ken Chang, Praveer Singh, Daniel L. Rubin, Jayashree Kalpathy-Cramer, Spyridon Bakas","doi":"10.1016/j.patter.2024.100974","DOIUrl":"https://doi.org/10.1016/j.patter.2024.100974","url":null,"abstract":"<p>Artificial intelligence (AI) shows potential to improve health care by leveraging data to build models that can inform clinical workflows. However, access to large quantities of diverse data is needed to develop robust generalizable models. Data sharing across institutions is not always feasible due to legal, security, and privacy concerns. Federated learning (FL) allows for multi-institutional training of AI models, obviating data sharing, albeit with different security and privacy concerns. Specifically, insights exchanged during FL can leak information about institutional data. In addition, FL can introduce issues when there is limited trust among the entities performing the compute. With the growing adoption of FL in health care, it is imperative to elucidate the potential risks. We thus summarize privacy-preserving FL literature in this work with special regard to health care. We draw attention to threats and review mitigation approaches. We anticipate this review to become a health-care researcher’s guide to security and privacy in FL.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Patterns
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1