Pub Date : 2023-06-30DOI: 10.5423/rpd.2023.29.2.204
Kyoung-Taek Park, Soo-Min Hong, C. Back, Young-je Cho, Seung-Yeol Lee, L. Ten, H. Jung
Kyoung-Taek Park, Soo-Min Hong, Chang-Gi Back, Young-Je Cho, Seung-Yeol Lee, Leonid N. Ten, and Hee-Young Jung* College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea School of Food Science & Biotechnology / Food & Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Korea
Kyoung-Taek Park、Soo-Min Hong、Chang-Gi Back、Young-Je Cho、Seung-Yeol Lee、Leonid N.Ten, and Hee-Young Jung* College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea School of Food Science & Biotechnology / Food & Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Korea
{"title":"Erratum: First Report of Pectobacterium versatile as the Causal Pathogen of Soft Rot in Kimchi Cabbage in Korea","authors":"Kyoung-Taek Park, Soo-Min Hong, C. Back, Young-je Cho, Seung-Yeol Lee, L. Ten, H. Jung","doi":"10.5423/rpd.2023.29.2.204","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.2.204","url":null,"abstract":"Kyoung-Taek Park, Soo-Min Hong, Chang-Gi Back, Young-Je Cho, Seung-Yeol Lee, Leonid N. Ten, and Hee-Young Jung* College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea School of Food Science & Biotechnology / Food & Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Korea","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139366869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.5423/rpd.2023.29.2.145
Jungyeon Kim, Heungtae Kim, Y. Jeon
Apple grower in the Cheongsong region, Korea has reported the increased loss of apple yield due to severe bitter rot incidence. We noticed that this indience is because the Colletotrichum population has developed resistance to commonly used fungicides. We isolated 39 Colletotrichum isolates from 13 orchards in Cheongsong, and all the isolated Colletotrichum species were identified as C. siamense or C. fructicola. These 39 strains were tested for mycelial growth and conidial germination against 12 fungicides. trifloxystrobin (30–55% in recommended concentrations) was shown lower inhibitory effect on mycelial growth. However, the inhibition of conidial germination was shown higher than mycelial growth (62–100%). Kresoxim-methyl was shown lower inhibitory effect on mycelial growth (29–55%). conidial germination inhibitory effect was shown 51% to 96%. dithianon was shown diversity response to inhibition of mycelial growth (43–100%). tebuconazole was shown high inhibitory effect on mycelial growth (84–100%) and conidial germination inhibitory effect was shown to be 64 to 100%. metconazole has been found to display with high inhibitory effect on mycelial growth (79–100%) and conidial germination (70–80%). fluazinam was shown to possess high inhibitory effect on mycelial growth (87–100%) and conidial germination (94–100%). This study provides basic information for the effective management of apple bitter rot.
{"title":"Research to Fungicide Sensitivity of Colletotrichum spp. Isolated from Apple Fruits in Cheongsong, Korea","authors":"Jungyeon Kim, Heungtae Kim, Y. Jeon","doi":"10.5423/rpd.2023.29.2.145","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.2.145","url":null,"abstract":"Apple grower in the Cheongsong region, Korea has reported the increased loss of apple yield due to severe bitter rot incidence. We noticed that this indience is because the Colletotrichum population has developed resistance to commonly used fungicides. We isolated 39 Colletotrichum isolates from 13 orchards in Cheongsong, and all the isolated Colletotrichum species were identified as C. siamense or C. fructicola. These 39 strains were tested for mycelial growth and conidial germination against 12 fungicides. trifloxystrobin (30–55% in recommended concentrations) was shown lower inhibitory effect on mycelial growth. However, the inhibition of conidial germination was shown higher than mycelial growth (62–100%). Kresoxim-methyl was shown lower inhibitory effect on mycelial growth (29–55%). conidial germination inhibitory effect was shown 51% to 96%. dithianon was shown diversity response to inhibition of mycelial growth (43–100%). tebuconazole was shown high inhibitory effect on mycelial growth (84–100%) and conidial germination inhibitory effect was shown to be 64 to 100%. metconazole has been found to display with high inhibitory effect on mycelial growth (79–100%) and conidial germination (70–80%). fluazinam was shown to possess high inhibitory effect on mycelial growth (87–100%) and conidial germination (94–100%). This study provides basic information for the effective management of apple bitter rot.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41407784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.5423/rpd.2023.29.2.118
Yunhee Choi, A. Mageswari, Hyorim Choi, Jisu Lee, Daseul Lee, Seung-Beom Hong
Fusarium sambucinum species complex (FSAMSC) is an important taxonomic group, causing severe plant diseases. Many studies were carried out on FSAMSC plant diseases in Korea, but only 2 species (F. graminearum, F. sambucinum) from 14 host plants were registered in the List of Plant Disease in Korea. To clarify FSAMSC diversity and their pathogenecity, we examined FSAMSC isolates preserved in the Korean Agricultural Culture Collection. Fifty-seven strains were reidentifed as 7 species (F. asiaticum, F. graminearum, F. vorosii, F. meridionalei, F. boothii, F. kyushuense, F. armeniacum) based on multi-locus sequence typing analysis. According to previous reports and result of this study, 5 species (F. asiaticum, F. graminearum, F. vorosii, F. armeniacum, F. sambucinum) were pathogenic on 24 host plants in FSAMSC, while the pathogenicity of 3 species (F. meridionalei, F. boothii, F. kyushuense) were not clear.
桑布西镰刀菌物种复合体(Fusarium sambucinum species complex,FSAMSC)是一个重要的分类学类群,可引起严重的植物病害。韩国对FSAMSC植物病害进行了大量研究,但在《韩国植物病害名录》中仅登记了14种寄主植物中的2个物种(禾谷镰刀菌、桑布西南镰刀菌)。为了阐明FSAMSC的多样性及其致病性,我们检测了保存在韩国农业文化收藏中的FSAMSC分离株。根据多基因座序列分型分析,将57个菌株重新鉴定为7个种(亚洲F.asiaticum、禾谷F.graminearum、沃氏F.vorosii、子午线F.meridionalei、靴形F.boothii、九州F.kyushuense、亚美尼亚F.armeniacum)。根据以往的报道和本研究的结果,在FSAMSC中,有5种(亚洲F.asiaticum、禾谷F.graminearum、沃罗西F.vorosii、亚美尼亚F.armeniacum、桑布西F.sambucinum)对24种寄主植物具有致病性,而3种(美国F.meridionalei、英国F.boothii、日本F.kyushuense)的致病性尚不清楚。
{"title":"Re-identification of Fusarium sambucinum Species Complex Strains in Korea and Their Literature Review","authors":"Yunhee Choi, A. Mageswari, Hyorim Choi, Jisu Lee, Daseul Lee, Seung-Beom Hong","doi":"10.5423/rpd.2023.29.2.118","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.2.118","url":null,"abstract":"<i>Fusarium sambucinum</i> species complex (FSAMSC) is an important taxonomic group, causing severe plant diseases. Many studies were carried out on FSAMSC plant diseases in Korea, but only 2 species (<i>F. graminearum</i>, <i>F. sambucinum</i>) from 14 host plants were registered in the List of Plant Disease in Korea. To clarify FSAMSC diversity and their pathogenecity, we examined FSAMSC isolates preserved in the Korean Agricultural Culture Collection. Fifty-seven strains were reidentifed as 7 species (<i>F. asiaticum</i>, <i>F. graminearum</i>, <i>F. vorosii</i>, <i>F. meridionalei</i>, <i>F. boothii</i>, <i>F. kyushuense</i>, <i>F. armeniacum</i>) based on multi-locus sequence typing analysis. According to previous reports and result of this study, 5 species (<i>F. asiaticum</i>, <i>F. graminearum</i>, <i>F. vorosii</i>, <i>F. armeniacum</i>, <i>F. sambucinum</i>) were pathogenic on 24 host plants in FSAMSC, while the pathogenicity of 3 species (<i>F. meridionalei</i>, <i>F. boothii</i>, <i>F. kyushuense</i>) were not clear.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49231165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.5423/rpd.2023.29.2.158
S. Lee, Jin Ju Lee, Y. Choi, Hun Kim, G. Choi
Black rot of Chinese cabbage caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most severe diseases in crop cultivation. To define the resistance characteristics of Chinese cabbage to Xcc, we tested the virulence of eight Xcc isolates in four susceptible cultivars of Chinese cabbage. The isolates of Xcc showed different the virulence on the cultivars. On the other hand, we selected 22 resistant or moderately resistant cultivars of Chinese cabbage to Xcc and tested the occurrence of black rot on the cultivars caused by the isolates of Xcc. Mean disease severity of black rot on the Chinese cabbage caused by each isolate was also positively correlated with the virulence of Xcc isolates. Furthermore, the development of black rot in each cultivar increased according to virulence of Xcc isolates. The number of resistant cultivars of Chinese cabbage to eight isolates of Xcc decreased according to the virulence increase of bacteria. Taken together, these results suggest that resistance of Chinese cabbage cultivars to Xcc is likely affected by the virulence of Xcc isolates, but not result from race differentiation.
{"title":"Resistance Characteristics of Chinese Cabbage Cultivars to Black Rot","authors":"S. Lee, Jin Ju Lee, Y. Choi, Hun Kim, G. Choi","doi":"10.5423/rpd.2023.29.2.158","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.2.158","url":null,"abstract":"Black rot of Chinese cabbage caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most severe diseases in crop cultivation. To define the resistance characteristics of Chinese cabbage to Xcc, we tested the virulence of eight Xcc isolates in four susceptible cultivars of Chinese cabbage. The isolates of Xcc showed different the virulence on the cultivars. On the other hand, we selected 22 resistant or moderately resistant cultivars of Chinese cabbage to Xcc and tested the occurrence of black rot on the cultivars caused by the isolates of Xcc. Mean disease severity of black rot on the Chinese cabbage caused by each isolate was also positively correlated with the virulence of Xcc isolates. Furthermore, the development of black rot in each cultivar increased according to virulence of Xcc isolates. The number of resistant cultivars of Chinese cabbage to eight isolates of Xcc decreased according to the virulence increase of bacteria. Taken together, these results suggest that resistance of Chinese cabbage cultivars to Xcc is likely affected by the virulence of Xcc isolates, but not result from race differentiation.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41774719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.5423/rpd.2023.29.1.39
Y. Shin, Min Ju Choi, Hyun Su Kang, Y. Jeun
To diagnose lily fasciation, lily bulbs showing fasciation were collected from several greenhouses in Jeju Island, South Korea. Bacteria were isolated from the lily bulbs and amplified with both primers for fasA in plasmid and for putative glycosyltransferase epsH gene in chromosome of Rhodococcus fascians. Three bacterial isolates were detected with the P450 primer set and identified as R. fascians by NCBI blast analysis. Twelve bacterial isolates were identified as R. fascians using RS02785 primer set, including the three bacterial isolates identified as the same pathogen using the P450 primer set. Pathogenicity of these bacterial strains identified as R. fascians was demonstrated. Apparent symptoms were observed on wounded lily leaves after inoculation with each bacterial suspension whereas no symptom was found on lily leaves treated with H2O. Furthermore, bacteria re-isolated from wounded sites were identified as R. fascians. Based on the results, these two sets of primers are recommended for quarantine of R. fascians..
{"title":"Diagnosis of Lily Plant Fasciation Caused by Rhodococcus fascians in Jeju Island","authors":"Y. Shin, Min Ju Choi, Hyun Su Kang, Y. Jeun","doi":"10.5423/rpd.2023.29.1.39","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.1.39","url":null,"abstract":"To diagnose lily fasciation, lily bulbs showing fasciation were collected from several greenhouses in Jeju Island, South Korea. Bacteria were isolated from the lily bulbs and amplified with both primers for fasA in plasmid and for putative glycosyltransferase epsH gene in chromosome of Rhodococcus fascians. Three bacterial isolates were detected with the P450 primer set and identified as R. fascians by NCBI blast analysis. Twelve bacterial isolates were identified as R. fascians using RS02785 primer set, including the three bacterial isolates identified as the same pathogen using the P450 primer set. Pathogenicity of these bacterial strains identified as R. fascians was demonstrated. Apparent symptoms were observed on wounded lily leaves after inoculation with each bacterial suspension whereas no symptom was found on lily leaves treated with H2O. Furthermore, bacteria re-isolated from wounded sites were identified as R. fascians. Based on the results, these two sets of primers are recommended for quarantine of R. fascians..","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46941439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.5423/rpd.2023.29.1.23
In Woong Park, Yu-Rim Song, Eom-Ji Oh, Yoel Kim, I. Hwang, M. Jeon, Chorong Ahn, Jin-Suk Kim, Soonok Kim, C. Oh
The fire blight caused by Erwinia amylovora (Ea) is a devastating disease of Rosaceae plants, including commercially important apple and pear trees. Since the first report in Korea in May 2015, it has been spreading to neighboring regions gradually. Host plants can be infected by pollinators like bees, rainfall accompanied by wind, and cultural practices such as pruning. Many studies have revealed that wild Rosaceae plants such as Cotoneaster spp., Crataegus spp., Pyracantha spp., Prunus spp., and Sorbus spp. can be reservoirs of Ea in nature. However, wild Rosaceae plants in Korea have not been examined yet whether they are susceptible to fire blight. Therefore, the susceptibility to fire blight was examined with 25 species in 10 genera of wild Rosaceae plants, which were collected during 2020–2022, by artificial inoculation. Bacterial suspension (108 cfu/ml) of Ea type strain TS3128 was inoculated artificially in flowers, leaves, stems, and fruits of each plant species, and development of disease symptoms were monitored. Moreover, the presence of Ea bacteria from inoculated samples were checked by conventional polymerase chain reaction. Total 14 species of wild Rosaceae plants showed disease symptoms of fire blight, and Ea bacteria were detected inside of inoculated plant parts. These results suggest that wild Rosaceae plants growing nearby commercial apple and pear orchards in Korea can be Ea reservoirs, and thus they should be monitored regularly to minimize the damage by Ea infection and spreading.
{"title":"Determination of Fire Blight Susceptibility on Wild Rosaceae Plants in Korea by Artificial Inoculation","authors":"In Woong Park, Yu-Rim Song, Eom-Ji Oh, Yoel Kim, I. Hwang, M. Jeon, Chorong Ahn, Jin-Suk Kim, Soonok Kim, C. Oh","doi":"10.5423/rpd.2023.29.1.23","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.1.23","url":null,"abstract":"The fire blight caused by Erwinia amylovora (Ea) is a devastating disease of Rosaceae plants, including commercially important apple and pear trees. Since the first report in Korea in May 2015, it has been spreading to neighboring regions gradually. Host plants can be infected by pollinators like bees, rainfall accompanied by wind, and cultural practices such as pruning. Many studies have revealed that wild Rosaceae plants such as Cotoneaster spp., Crataegus spp., Pyracantha spp., Prunus spp., and Sorbus spp. can be reservoirs of Ea in nature. However, wild Rosaceae plants in Korea have not been examined yet whether they are susceptible to fire blight. Therefore, the susceptibility to fire blight was examined with 25 species in 10 genera of wild Rosaceae plants, which were collected during 2020–2022, by artificial inoculation. Bacterial suspension (108 cfu/ml) of Ea type strain TS3128 was inoculated artificially in flowers, leaves, stems, and fruits of each plant species, and development of disease symptoms were monitored. Moreover, the presence of Ea bacteria from inoculated samples were checked by conventional polymerase chain reaction. Total 14 species of wild Rosaceae plants showed disease symptoms of fire blight, and Ea bacteria were detected inside of inoculated plant parts. These results suggest that wild Rosaceae plants growing nearby commercial apple and pear orchards in Korea can be Ea reservoirs, and thus they should be monitored regularly to minimize the damage by Ea infection and spreading.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42850987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.5423/rpd.2023.29.1.72
Kyoung-Taek Park, Soo-Min Hong, C. Back, Young-Je Cho, Seung-Yeol Lee, L. Ten, Hee-Young Jung
In September 2021, gray-to-brown discoloration and expanding water-soaked lesions were observed on the outer and inner layers and the core of kimchi cabbage (Brassica rapa subsp. pekinensis) in fields located in Samcheok, Gangwondo, Korea. A bacterial strain designated as KNUB-02-21 was isolated from infected cabbage samples. Phylogenetic analysis based on the sequences of the 16S rRNA region and the dnaX, leuS, and recA genes confirmed that the strain was affiliated with Pectobacterium versatile. Additionally, the biochemical and morphological profiles of the isolate were similar to those of P. versatile. Based on these results, the isolate was identified as a novel strain of P. versatile. Healthy kimchi cabbage slices developed soft rot upon inoculation with P. versatile KNUB-02-21 and exhibited symptoms similar to those observed in the diseased plants in fields. The re-isolated strains were similar to those of P. versatile. Prior to our study, P. versatile as the causative pathogen of kimchi cabbage soft rot had not been reported in Korea.
{"title":"First Report of Pectobacterium versatile as the Causal Pathogen of Soft Rot in Kimchi Cabbage in Korea","authors":"Kyoung-Taek Park, Soo-Min Hong, C. Back, Young-Je Cho, Seung-Yeol Lee, L. Ten, Hee-Young Jung","doi":"10.5423/rpd.2023.29.1.72","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.1.72","url":null,"abstract":"In September 2021, gray-to-brown discoloration and expanding water-soaked lesions were observed on the outer and inner layers and the core of kimchi cabbage (Brassica rapa subsp. pekinensis) in fields located in Samcheok, Gangwondo, Korea. A bacterial strain designated as KNUB-02-21 was isolated from infected cabbage samples. Phylogenetic analysis based on the sequences of the 16S rRNA region and the dnaX, leuS, and recA genes confirmed that the strain was affiliated with Pectobacterium versatile. Additionally, the biochemical and morphological profiles of the isolate were similar to those of P. versatile. Based on these results, the isolate was identified as a novel strain of P. versatile. Healthy kimchi cabbage slices developed soft rot upon inoculation with P. versatile KNUB-02-21 and exhibited symptoms similar to those observed in the diseased plants in fields. The re-isolated strains were similar to those of P. versatile. Prior to our study, P. versatile as the causative pathogen of kimchi cabbage soft rot had not been reported in Korea.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42235454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.5423/rpd.2023.29.1.52
T. Jin, H. Kwak, Hongsoo Choi, B. Cha, Jong-Woo Han, Mikyeong Kim
Cucurbit chlorotic yellows virus (CCYV) is a plant virus that causes damage to cucurbit crops such as watermelon and cucumber, and is transmitted by an insect vector known as the whitefly. Since CCYV was first detected on cucumber in Chungbuk in 2018, it has been reported in other areas including Gyeongsang in Korea. In 2020, we performed field surveys of yellowing diseases in the greenhouses growing melon and watermelon in Chungbuk (Jincheon and Eumseong). Reverse transcription-polymerase chain reaction analysis of 79 collected samples including melon, watermelon, and weeds resulted in detection of CCYV in 4 samples: Three samples were singly infected with CCYV and one samples was mixed infected with CCYV, Cucurbit aphid borne yellows virus, and Watermelon mosaic virus. The complete genome sequences of the four collected CCYV melon isolates (ES 1–ES 4) were determined and genetically compared with those of previously reported CCYV isolates retrieved from GenBank. Phylogenetic analyses of RNA 1 and 2 sequences revealed that four ES isolates were clustered in one group and closely related to the CCYV isolates from China. The analysis also revealed very low genetic diversity among the CCYV ES isolates. In general, CCYV isolates showed little genetic diversity, regardless of host or geographic origins. CCYV has the potential to pose a serious threat to melon, watermelon, and cucumber production in Korea. Further studies are needed to examine the pathogenicity and transmissibility of CCYV in weeds and other cucurbits including watermelon.
{"title":"Phylogenetic Analysis of Cucurbit Chlorotic Yellows Virus from Melon in 2020 in Chungbuk, Korea","authors":"T. Jin, H. Kwak, Hongsoo Choi, B. Cha, Jong-Woo Han, Mikyeong Kim","doi":"10.5423/rpd.2023.29.1.52","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.1.52","url":null,"abstract":"Cucurbit chlorotic yellows virus (CCYV) is a plant virus that causes damage to cucurbit crops such as watermelon and cucumber, and is transmitted by an insect vector known as the whitefly. Since CCYV was first detected on cucumber in Chungbuk in 2018, it has been reported in other areas including Gyeongsang in Korea. In 2020, we performed field surveys of yellowing diseases in the greenhouses growing melon and watermelon in Chungbuk (Jincheon and Eumseong). Reverse transcription-polymerase chain reaction analysis of 79 collected samples including melon, watermelon, and weeds resulted in detection of CCYV in 4 samples: Three samples were singly infected with CCYV and one samples was mixed infected with CCYV, Cucurbit aphid borne yellows virus, and Watermelon mosaic virus. The complete genome sequences of the four collected CCYV melon isolates (ES 1–ES 4) were determined and genetically compared with those of previously reported CCYV isolates retrieved from GenBank. Phylogenetic analyses of RNA 1 and 2 sequences revealed that four ES isolates were clustered in one group and closely related to the CCYV isolates from China. The analysis also revealed very low genetic diversity among the CCYV ES isolates. In general, CCYV isolates showed little genetic diversity, regardless of host or geographic origins. CCYV has the potential to pose a serious threat to melon, watermelon, and cucumber production in Korea. Further studies are needed to examine the pathogenicity and transmissibility of CCYV in weeds and other cucurbits including watermelon.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48335685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.5423/rpd.2023.29.1.11
Subin Park, Heungtae Kim
Resazurin-based microtiter assay was used to evaluate the inhibitory effect of fungicides on the respiration of Colletotrichum acutatum s. lat. 20JDS8 sensitive and 20CDJ6 resistant to strobilurin fungicides. The spores of C. acutatum s. lat.. 20JDS8 were inoculated into potato dextrose broth (PDB) at densities of 1x104, 1x105 and 1x106 spores/ml, respectively. The relative fluorescence unit (RFU) of all treatments inoculated at each spore density started to rise after 12 hr of incubation, and were 1,965.5, 5,412.5, and 10,061.0, respectively, after 24 hr of incubation. To evaluate the inhibitory effect of fungicide on the respiration of the pathogen, the spores of the pathogen were inoculated into the PDB and treated with the fungicides 0, 6, 12, and 24 hr after incubation, respectively. After keeping the pathogen culturing for another 24 hr, PrestoBlue reagent was treated into the PDB culturing the pathogen. The RFU of each treatment was examined 1 hr after the reagent was treated. When dithianon, isopyrazam, pyraclostrobin, and fluazinam were treated at high concentrations in the stages of spores (immediately after inoculation [0 hr]), spore germination (after incubation for 6 hr), and hyphal growth (after incubation for 12 hr), the respiration of pathogens was inhibited by 90–100%. When the fungicides were treated after culturing the pathogen for 24 hr, the respiratory inhibitory effects were greatly reduced. With pyraclostrobin-resistant C. acutatum s. lat. 20CDJ6, azxoystrobin, trifloxystrobin and kresoxim-methyl, which have the same mode of action, had very little or no respiratory inhibitory effect in all growth stages of pathogens. Based on the above results, it was thought that the resazurin-based microtiter assay could quickly and accurately evaluate the inhibitory efficacy of the fungicides that inhibited respiration.
{"title":"Evaluation of Acitivity of QoI Fungicide against Colletotrichum acutatum s. lat. Causing Pepper Anthracnose Using Resazurin-Based Respiration Assay","authors":"Subin Park, Heungtae Kim","doi":"10.5423/rpd.2023.29.1.11","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.1.11","url":null,"abstract":"Resazurin-based microtiter assay was used to evaluate the inhibitory effect of fungicides on the respiration of Colletotrichum acutatum s. lat. 20JDS8 sensitive and 20CDJ6 resistant to strobilurin fungicides. The spores of C. acutatum s. lat.. 20JDS8 were inoculated into potato dextrose broth (PDB) at densities of 1x104, 1x105 and 1x106 spores/ml, respectively. The relative fluorescence unit (RFU) of all treatments inoculated at each spore density started to rise after 12 hr of incubation, and were 1,965.5, 5,412.5, and 10,061.0, respectively, after 24 hr of incubation. To evaluate the inhibitory effect of fungicide on the respiration of the pathogen, the spores of the pathogen were inoculated into the PDB and treated with the fungicides 0, 6, 12, and 24 hr after incubation, respectively. After keeping the pathogen culturing for another 24 hr, PrestoBlue reagent was treated into the PDB culturing the pathogen. The RFU of each treatment was examined 1 hr after the reagent was treated. When dithianon, isopyrazam, pyraclostrobin, and fluazinam were treated at high concentrations in the stages of spores (immediately after inoculation [0 hr]), spore germination (after incubation for 6 hr), and hyphal growth (after incubation for 12 hr), the respiration of pathogens was inhibited by 90–100%. When the fungicides were treated after culturing the pathogen for 24 hr, the respiratory inhibitory effects were greatly reduced. With pyraclostrobin-resistant C. acutatum s. lat. 20CDJ6, azxoystrobin, trifloxystrobin and kresoxim-methyl, which have the same mode of action, had very little or no respiratory inhibitory effect in all growth stages of pathogens. Based on the above results, it was thought that the resazurin-based microtiter assay could quickly and accurately evaluate the inhibitory efficacy of the fungicides that inhibited respiration.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44274628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.5423/rpd.2023.29.1.82
Hyeon Ji Kim, S. Kim, Yeon Hwa Kim, J. Park, Dong Ki Kang, J. Yun, R. Shin, J. Hong
Exogenous ferrous chloride (FeCl2) suppressed in vitro growth of Ralstonia pseudosolanacearum, causing bacteria for tomato bacterial wilt. More than 50 μM of FeCl2 reduced the in vitro bacterial growth in dosedependent manners. Two to 200 μM of FeCl2 did not affect the fresh weight of detached tomato leaves at 3 and 5 days after the petiole dipping without the bacterial inoculation. The bacterial wilt of the detached tomato leaves was evaluated by inoculating two different inoculum densities of R. pseudosolanacearum (105 and 107 cfu/ml) in the presence of FeCl2. Bacterial wilt in the detached leaves by 105 cfu/ml was efficiently attenuated by 10–200 μM of FeCl2 at 3 and 5 days post-inoculation (dpi), but bacterial wilt by 107 cfu/ml was only reduced by 200 μM of FeCl2 at 3 and 5 dpi. These results suggest that iron nutrients can be included in the integrated disease management of tomato bacterial wilt.
{"title":"Reduced Tomato Bacterial Wilt by Ferrous Chloride Application","authors":"Hyeon Ji Kim, S. Kim, Yeon Hwa Kim, J. Park, Dong Ki Kang, J. Yun, R. Shin, J. Hong","doi":"10.5423/rpd.2023.29.1.82","DOIUrl":"https://doi.org/10.5423/rpd.2023.29.1.82","url":null,"abstract":"Exogenous ferrous chloride (FeCl<sub>2</sub>) suppressed in vitro growth of Ralstonia pseudosolanacearum, causing bacteria for tomato bacterial wilt. More than 50 μM of FeCl<sub>2</sub> reduced the in vitro bacterial growth in dosedependent manners. Two to 200 μM of FeCl<sub>2</sub> did not affect the fresh weight of detached tomato leaves at 3 and 5 days after the petiole dipping without the bacterial inoculation. The bacterial wilt of the detached tomato leaves was evaluated by inoculating two different inoculum densities of R. pseudosolanacearum (10<sup>5</sup> and 10<sup>7</sup> cfu/ml) in the presence of FeCl<sub>2</sub>. Bacterial wilt in the detached leaves by 10<sup>5</sup> cfu/ml was efficiently attenuated by 10–200 μM of FeCl<sub>2</sub> at 3 and 5 days post-inoculation (dpi), but bacterial wilt by 10<sup>7</sup> cfu/ml was only reduced by 200 μM of FeCl<sub>2</sub> at 3 and 5 dpi. These results suggest that iron nutrients can be included in the integrated disease management of tomato bacterial wilt.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43959430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}