Immune checkpoint blockade (ICB) has emerged as a promising therapeutic strategy because of its potential to induce durable therapeutic responses in cancer patients. However, in the case of breast cancer, its application and efficacy has been limited. As such, combinatorial therapeutic strategies that can unlock the potential of ICB in breast cancer are of urgent need. In view of that, autophagy-related proteins that play a role in the autophagic cell recycling process have been implicated in the regulation of inflammatory and anti-tumor immune responses. Accordingly, autophagy-related proteins represent a group of prospective therapeutic targets in conjunction with ICB. In our recent study (Okamoto T et al. (2020), Cancer Res), we developed immune-competent mouse models of breast cancer which were deficient for the autophagic function of FIP200 or had FIP200 completely ablated to test the efficacy of ICB. We showed that although FIP200's autophagy function was required for progression of PyMT-driven mammary tumors, FIP200's canonical-autophagy-independent function was responsible for increased T-cell infiltration, IFN-signaling and ICB efficacy. These findings provide genetic proof of principle for a combinatorial therapeutic strategy that involves ablation of FIP200 to improve ICB efficacy in non-responsive breast cancers.
免疫检查点阻断(ICB)已成为一种有前途的治疗策略,因为它有可能在癌症患者中诱导持久的治疗反应。然而,在乳腺癌的情况下,它的应用和疗效是有限的。因此,迫切需要能够释放ICB在乳腺癌中的潜力的组合治疗策略。因此,在自噬细胞循环过程中发挥作用的自噬相关蛋白参与了炎症和抗肿瘤免疫反应的调节。因此,自噬相关蛋白与ICB一起代表了一组潜在的治疗靶点。在我们最近的研究中(Okamoto T et al. (2020), Cancer Res),我们建立了缺乏FIP200自噬功能或完全消融FIP200的乳腺癌免疫能力小鼠模型,以测试ICB的疗效。我们发现,尽管FIP200的自噬功能是pymt驱动的乳腺肿瘤进展所必需的,但FIP200的常规自噬独立功能是t细胞浸润、ifn信号传导和ICB疗效增加的原因。这些发现为包括消融FIP200以提高ICB在无反应性乳腺癌中的疗效的组合治疗策略提供了遗传学原理证明。
{"title":"Regulation of immune checkpoint blockade efficacy in breast cancer by FIP200: A canonical-autophagy-independent function.","authors":"Syn Kok Yeo, Jun-Lin Guan","doi":"10.15698/cst2020.08.229","DOIUrl":"https://doi.org/10.15698/cst2020.08.229","url":null,"abstract":"<p><p>Immune checkpoint blockade (ICB) has emerged as a promising therapeutic strategy because of its potential to induce durable therapeutic responses in cancer patients. However, in the case of breast cancer, its application and efficacy has been limited. As such, combinatorial therapeutic strategies that can unlock the potential of ICB in breast cancer are of urgent need. In view of that, autophagy-related proteins that play a role in the autophagic cell recycling process have been implicated in the regulation of inflammatory and anti-tumor immune responses. Accordingly, autophagy-related proteins represent a group of prospective therapeutic targets in conjunction with ICB. In our recent study (Okamoto T <i>et al.</i> (2020), Cancer Res), we developed immune-competent mouse models of breast cancer which were deficient for the autophagic function of FIP200 or had FIP200 completely ablated to test the efficacy of ICB. We showed that although FIP200's autophagy function was required for progression of PyMT-driven mammary tumors, FIP200's canonical-autophagy-independent function was responsible for increased T-cell infiltration, IFN-signaling and ICB efficacy. These findings provide genetic proof of principle for a combinatorial therapeutic strategy that involves ablation of FIP200 to improve ICB efficacy in non-responsive breast cancers.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 8","pages":"216-217"},"PeriodicalIF":6.4,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38228743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The incessant interactions between susceptible humans and their respective macro/microenvironments registered throughout their lifetime result in the ultimate manifestation of individual cancers. With the average lifespan exceeding 50 years of age in humans since the beginning of 20th century, aging - the "time" factor - has played an ever-increasing role alongside host and environmental factors in cancer incidences. Cancer is a genetic/epigenetic disease due to gain-of-function mutations in cancer-causing genes (oncogene; OG) and/or loss-of-function mutations in tumor-suppressing genes (tumor suppressor genes; TSG). In addition to their integral relationship with cancer, a timely deployment of specific OG and/or TSG is in fact needed for higher organisms like human to cope with respective physiological and pathological conditions. Over the past decade, extensive human kidney cancer genomics have been performed and novel mouse models recapitulating human kidney cancer pathobiology have been generated. With new genomic, genetic, mechanistic, clinical and therapeutic insights accumulated from studying clear cell renal cell carcinoma (ccRCC)-the most common type of kidney cancer, we conceived a cancer evolution model built upon the OG-TSG signaling pair analogous to the electrical circuit breaker (CB) that permits necessary signaling output and at the same time prevent detrimental signaling overdrive. Hence, this viewpoint aims at providing a step-by-step mechanistic explanation/illustration concerning how inherent OG-TSG CBs intricately operate in concert for the organism's wellbeing; and how somatic mutations, the essential component for genetic adaptability, inadvertently triggers a sequential outage of specific sets of CBs that normally function to maintain and protect and individual tissue homeostasis.
{"title":"Exploiting the circuit breaker cancer evolution model in human clear cell renal cell carcinoma.","authors":"James J Hsieh, Emily H Cheng","doi":"10.15698/cst2020.08.227","DOIUrl":"10.15698/cst2020.08.227","url":null,"abstract":"<p><p>The incessant interactions between susceptible humans and their respective macro/microenvironments registered throughout their lifetime result in the ultimate manifestation of individual cancers. With the average lifespan exceeding 50 years of age in humans since the beginning of 20<sup>th</sup> century, aging - the \"time\" factor - has played an ever-increasing role alongside host and environmental factors in cancer incidences. Cancer is a genetic/epigenetic disease due to gain-of-function mutations in cancer-causing genes (oncogene; OG) and/or loss-of-function mutations in tumor-suppressing genes (tumor suppressor genes; TSG). In addition to their integral relationship with cancer, a timely deployment of specific OG and/or TSG is in fact needed for higher organisms like human to cope with respective physiological and pathological conditions. Over the past decade, extensive human kidney cancer genomics have been performed and novel mouse models recapitulating human kidney cancer pathobiology have been generated. With new genomic, genetic, mechanistic, clinical and therapeutic insights accumulated from studying clear cell renal cell carcinoma (ccRCC)-the most common type of kidney cancer, we conceived a cancer evolution model built upon the OG-TSG signaling pair analogous to the electrical circuit breaker (CB) that permits necessary signaling output and at the same time prevent detrimental signaling overdrive. Hence, this viewpoint aims at providing a step-by-step mechanistic explanation/illustration concerning how inherent OG-TSG CBs intricately operate in concert for the organism's wellbeing; and how somatic mutations, the essential component for genetic adaptability, inadvertently triggers a sequential outage of specific sets of CBs that normally function to maintain and protect and individual tissue homeostasis.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 8","pages":"191-198"},"PeriodicalIF":6.4,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38228742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD), the most common cause of dementia, affects millions of people worldwide. Suggested mechanisms of neurotoxicity in AD include impaired calcium (Ca2+) homeostasis and mitochondrial dysfunction, both contributing to neuronal damage. Little was known about the exact mitochondrial Ca2+ homeostasis in the living brain, particularly in AD. Only now, with the development of intravital imaging techniques and transgenic mouse models of the disease, we are able to directly observe Ca2+ levels in specific regions or particular subcellular compartments of cells, such as mitochondria. Using multiphoton microscopy, a Ca2+ reporter targeted to mitochondria and a mouse model of cerebral β amyloidosis (APP/PS1), our recent study (Nat Comms 2020, 11:2146) found elevated mitochondrial Ca2+ concentration in the transgenic mouse after plaque deposition, and after topical application of natural soluble amyloid beta (Aβ) oligomers to the healthy mouse brain at concentrations similar to those found in the human brain. Elevated Ca2+ in mitochondria preceded neuronal death and could be targeted for neuroprotective therapies in AD. Here, we describe our main findings and pose new questions for future studies aimed at better understanding mitochondrial Ca2+ dyshomeostasis in AD.
{"title":"High mitochondrial calcium levels precede neuronal death <i>in vivo</i> in Alzheimer's disease.","authors":"Maria Calvo-Rodriguez, Brian J Bacskai","doi":"10.15698/cst2020.07.226","DOIUrl":"https://doi.org/10.15698/cst2020.07.226","url":null,"abstract":"<p><p>Alzheimer's disease (AD), the most common cause of dementia, affects millions of people worldwide. Suggested mechanisms of neurotoxicity in AD include impaired calcium (Ca<sup>2+</sup>) homeostasis and mitochondrial dysfunction, both contributing to neuronal damage. Little was known about the exact mitochondrial Ca<sup>2+</sup> homeostasis in the living brain, particularly in AD. Only now, with the development of intravital imaging techniques and transgenic mouse models of the disease, we are able to directly observe Ca<sup>2+</sup> levels in specific regions or particular subcellular compartments of cells, such as mitochondria. Using multiphoton microscopy, a Ca<sup>2+</sup> reporter targeted to mitochondria and a mouse model of cerebral β amyloidosis (APP/PS1), our recent study (Nat Comms 2020, 11:2146) found elevated mitochondrial Ca<sup>2+</sup> concentration in the transgenic mouse after plaque deposition, and after topical application of natural soluble amyloid beta (Aβ) oligomers to the healthy mouse brain at concentrations similar to those found in the human brain. Elevated Ca<sup>2+</sup> in mitochondria preceded neuronal death and could be targeted for neuroprotective therapies in AD. Here, we describe our main findings and pose new questions for future studies aimed at better understanding mitochondrial Ca<sup>2+</sup> dyshomeostasis in AD.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 7","pages":"187-190"},"PeriodicalIF":6.4,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38144967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurodegenerative diseases are, at present, major socio-economic burdens without effective treatments and their increasing prevalence means that these diseases will be a challenge for future generations. Neurodegenerative diseases may differ in etiology and pathology but are often caused by the accumulation of dysfunctional and aggregation-prone proteins. Autophagy, a conserved cellular mechanism, deals with cellular stress and waste product build-up and has been shown to reduce the accumulation of dysfunctional proteins in animal models of neurodegenerative diseases. Historically, progress in understanding the precise function of lipids has traditionally been far behind other biological molecules (like proteins) but emerging works demonstrate the importance of lipids in the autophagy pathway and how the disturbance of lipid metabolism is connected to neurodegeneration. Here we review how altered autophagy and the disturbance of lipid metabolism, particularly of phosphoinositols and sphingolipids, feature in neurodegenerative diseases and address work from the field that suggests that these potentially offer an opportunity of therapeutic intervention.
{"title":"The role of lipids in autophagy and its implication in neurodegeneration.","authors":"Sergio Hernandez-Diaz, Sandra-Fausia Soukup","doi":"10.15698/cst2020.07.225","DOIUrl":"https://doi.org/10.15698/cst2020.07.225","url":null,"abstract":"<p><p>Neurodegenerative diseases are, at present, major socio-economic burdens without effective treatments and their increasing prevalence means that these diseases will be a challenge for future generations. Neurodegenerative diseases may differ in etiology and pathology but are often caused by the accumulation of dysfunctional and aggregation-prone proteins. Autophagy, a conserved cellular mechanism, deals with cellular stress and waste product build-up and has been shown to reduce the accumulation of dysfunctional proteins in animal models of neurodegenerative diseases. Historically, progress in understanding the precise function of lipids has traditionally been far behind other biological molecules (like proteins) but emerging works demonstrate the importance of lipids in the autophagy pathway and how the disturbance of lipid metabolism is connected to neurodegeneration. Here we review how altered autophagy and the disturbance of lipid metabolism, particularly of phosphoinositols and sphingolipids, feature in neurodegenerative diseases and address work from the field that suggests that these potentially offer an opportunity of therapeutic intervention.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 7","pages":"167-186"},"PeriodicalIF":6.4,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38144969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandra Gomez-Cadena, Alfonso Barreto, Susana Fioretino, Camilla Jandus
Natural products and traditional herbal medicine are an important source of alternative bioactive compounds but very few plant-based preparations have been scientifically evaluated and validated for their potential as medical treatments. However, a promising field in the current therapies based on plant-derived compounds is the study of their immunomodulation properties and their capacity to activate the immune system to fight against multifactorial diseases like cancer. In this review we discuss how network pharmacology could help to characterize and validate natural single molecules or more complex preparations as promising cancer therapies based on their multitarget capacities.
{"title":"Immune system activation by natural products and complex fractions: a network pharmacology approach in cancer treatment.","authors":"Alejandra Gomez-Cadena, Alfonso Barreto, Susana Fioretino, Camilla Jandus","doi":"10.15698/cst2020.07.224","DOIUrl":"https://doi.org/10.15698/cst2020.07.224","url":null,"abstract":"<p><p>Natural products and traditional herbal medicine are an important source of alternative bioactive compounds but very few plant-based preparations have been scientifically evaluated and validated for their potential as medical treatments. However, a promising field in the current therapies based on plant-derived compounds is the study of their immunomodulation properties and their capacity to activate the immune system to fight against multifactorial diseases like cancer. In this review we discuss how network pharmacology could help to characterize and validate natural single molecules or more complex preparations as promising cancer therapies based on their multitarget capacities.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 7","pages":"154-166"},"PeriodicalIF":6.4,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38144966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dysregulation of the mitochondrial network in terminally differentiated cells contributes to a broad spectrum of disorders. Methylmalonic acidemia (MMA) is an autosomal recessive inborn error of intermediary metabolism caused by the deficiency of methylmalonyl-CoA mutase (MMUT) - a mitochondrial enzyme that mediates the degradation of certain amino acids and lipids. The loss of MMUT activity triggers an accumulation of toxic endogenous metabolites causing severe organ dysfunctions and life-threatening complications. How MMUT deficiency instigates mitochondrial distress and tissue damage remains poorly understood. Using cell and animal-based models, we recently discovered that MMUT deficiency disables the PINK1-induced translocation of PRKN/Parkin to MMA-damaged mitochondria, impeding their delivery and subsequent dismantling by macroautophagy/autophagy-lysosome degradation systems (Luciani et al. Nat Commun. 11(1):970). This promotes an accumulation of damaged and/or dysfunctional mitochondria that spark epithelial distress and tissue damage. Using a systems biology approach based on drug-disease network perturbation modeling, we predicted targetable pathways, whose modulation repairs mitochondrial dysfunctions in patient-derived kidney cells and ameliorates disease-relevant phenotypes in mmut-deficient zebrafish. These results unveil a link between primary MMUT deficiency, defective mitophagy, and cell distress, offering promising therapeutic avenues for MMA and other mitochondria-related diseases.
{"title":"Mitochondria, mitophagy, and metabolic disease: towards assembling the puzzle.","authors":"Zhiyong Chen, Marine Berquez, Alessandro Luciani","doi":"10.15698/cst2020.06.222","DOIUrl":"https://doi.org/10.15698/cst2020.06.222","url":null,"abstract":"<p><p>Dysregulation of the mitochondrial network in terminally differentiated cells contributes to a broad spectrum of disorders. Methylmalonic acidemia (MMA) is an autosomal recessive inborn error of intermediary metabolism caused by the deficiency of methylmalonyl-CoA mutase (MMUT) - a mitochondrial enzyme that mediates the degradation of certain amino acids and lipids. The loss of MMUT activity triggers an accumulation of toxic endogenous metabolites causing severe organ dysfunctions and life-threatening complications. How MMUT deficiency instigates mitochondrial distress and tissue damage remains poorly understood. Using cell and animal-based models, we recently discovered that MMUT deficiency disables the PINK1-induced translocation of PRKN/Parkin to MMA-damaged mitochondria, impeding their delivery and subsequent dismantling by macroautophagy/autophagy-lysosome degradation systems (Luciani et al. <i>Nat Commun</i>. 11(1):970). This promotes an accumulation of damaged and/or dysfunctional mitochondria that spark epithelial distress and tissue damage. Using a systems biology approach based on drug-disease network perturbation modeling, we predicted targetable pathways, whose modulation repairs mitochondrial dysfunctions in patient-derived kidney cells and ameliorates disease-relevant phenotypes in <i>mmut</i>-deficient zebrafish. These results unveil a link between primary MMUT deficiency, defective mitophagy, and cell distress, offering promising therapeutic avenues for MMA and other mitochondria-related diseases.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 6","pages":"147-150"},"PeriodicalIF":6.4,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38055233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debora Grasso, Luca X Zampieri, Tânia Capelôa, Justine A Van de Velde, Pierre Sonveaux
The rediscovery and reinterpretation of the Warburg effect in the year 2000 occulted for almost a decade the key functions exerted by mitochondria in cancer cells. Until recent times, the scientific community indeed focused on constitutive glycolysis as a hallmark of cancer cells, which it is not, largely ignoring the contribution of mitochondria to the malignancy of oxidative and glycolytic cancer cells, being Warburgian or merely adapted to hypoxia. In this review, we highlight that mitochondria are not only powerhouses in some cancer cells, but also dynamic regulators of life, death, proliferation, motion and stemness in other types of cancer cells. Similar to the cells that host them, mitochondria are capable to adapt to tumoral conditions, and probably to evolve to 'oncogenic mitochondria' capable of transferring malignant capacities to recipient cells. In the wider quest of metabolic modulators of cancer, treatments have already been identified targeting mitochondria in cancer cells, but the field is still in infancy.
{"title":"Mitochondria in cancer.","authors":"Debora Grasso, Luca X Zampieri, Tânia Capelôa, Justine A Van de Velde, Pierre Sonveaux","doi":"10.15698/cst2020.06.221","DOIUrl":"https://doi.org/10.15698/cst2020.06.221","url":null,"abstract":"<p><p>The rediscovery and reinterpretation of the Warburg effect in the year 2000 occulted for almost a decade the key functions exerted by mitochondria in cancer cells. Until recent times, the scientific community indeed focused on constitutive glycolysis as a hallmark of cancer cells, which it is not, largely ignoring the contribution of mitochondria to the malignancy of oxidative and glycolytic cancer cells, being Warburgian or merely adapted to hypoxia. In this review, we highlight that mitochondria are not only powerhouses in some cancer cells, but also dynamic regulators of life, death, proliferation, motion and stemness in other types of cancer cells. Similar to the cells that host them, mitochondria are capable to adapt to tumoral conditions, and probably to evolve to 'oncogenic mitochondria' capable of transferring malignant capacities to recipient cells. In the wider quest of metabolic modulators of cancer, treatments have already been identified targeting mitochondria in cancer cells, but the field is still in infancy.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 6","pages":"114-146"},"PeriodicalIF":6.4,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38055237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxic copper accumulation causes Wilson disease, but trace amounts of copper are required for cellular and organismal survival. In a recent paper Tsang et al. (Nat Cell Biol, doi: 10.1038/s41556-020-0481-4) demonstrate that copper binds with high affinity to a designated interaction site in the pro-autophagic kinases ULK1 and ULK2. Chelation of copper or genetic deletion of this copper-binding site inhibits autophagy and hence reduces the fitness of KRAS-induced cancers. These findings suggest that copper chelation might constitute a novel therapeutic intervention on autophagy-dependent malignancies.
{"title":"Copper - a novel stimulator of autophagy.","authors":"Hans Zischka, Guido Kroemer","doi":"10.15698/cst2020.05.218","DOIUrl":"https://doi.org/10.15698/cst2020.05.218","url":null,"abstract":"<p><p>Toxic copper accumulation causes Wilson disease, but trace amounts of copper are required for cellular and organismal survival. In a recent paper Tsang <i>et al.</i> (Nat Cell Biol, doi: 10.1038/s41556-020-0481-4) demonstrate that copper binds with high affinity to a designated interaction site in the pro-autophagic kinases ULK1 and ULK2. Chelation of copper or genetic deletion of this copper-binding site inhibits autophagy and hence reduces the fitness of KRAS-induced cancers. These findings suggest that copper chelation might constitute a novel therapeutic intervention on autophagy-dependent malignancies.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 5","pages":"92-94"},"PeriodicalIF":6.4,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37947147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shin-Haw Lee, Sina Hadipour-Lakmehsari, Anthony O Gramolini
The sarco-endoplasmic reticulum (SR/ER) is the largest membrane-bound organelle in eukaryotic cells and plays important roles in essential cellular processes, and in development and progression of many cardiac diseases. However, many aspects of its structural organization remain largely unknown, particularly in cells with a highly differentiated SR/ER network. In a recently published study led by Lee et al. (Nat Commun 11(1):965), we reported a cardiac enriched SR/ER membrane protein REEP5 that is centrally involved in regulating SR/ER organization and cellular stress responses in cardiac myocytes. In vitro REEP5 depletion in mouse cardiac myocytes resulted in SR/ER membrane destabilization and luminal vacuolization along with decreased myocyte contractility and disrupted Ca2+ cycling. Further, in vivo CRISPR/Cas9-mediated REEP5 loss-of-function zebrafish mutants showed sensitized cardiac dysfunction to heart failure induction upon short-term verapamil treatment. Additionally, in vivo adeno-associated viral (AAV9)-induced REEP5 depletion in the mouse demonstrated cardiac dysfunction with dilated cardiac chambers, increased cardiac fibrosis, and reduced ejection fraction. These results demonstrate the critical role of REEP5 in SR/ER organization and function.
肌内质网(sarco-endoplasmic reticulum, SR/ER)是真核细胞中最大的膜结合细胞器,在细胞基本过程和许多心脏疾病的发生进展中起着重要作用。然而,其结构组织的许多方面在很大程度上仍然未知,特别是在具有高度分化的SR/ER网络的细胞中。在Lee等人最近发表的一项研究中(Nat comm 11(1):965),我们报道了心脏富集的SR/ER膜蛋白REEP5,该蛋白主要参与调节心肌细胞SR/ER组织和细胞应激反应。在体外小鼠心肌细胞中,REEP5缺失导致SR/ER膜不稳定和腔内空泡化,同时心肌细胞收缩性降低和Ca2+循环中断。此外,在体内,CRISPR/ cas9介导的REEP5功能丧失斑马鱼突变体在短期维拉帕米治疗后对心力衰竭诱导表现出敏感的心功能障碍。此外,体内腺相关病毒(AAV9)诱导的小鼠REEP5耗竭表现为心功能障碍,心室扩张,心脏纤维化增加,射血分数降低。这些结果证明了REEP5在SR/ER组织和功能中的关键作用。
{"title":"Towards understanding the role of Receptor Expression Enhancing Protein 5 (REEP5) in cardiac muscle and beyond.","authors":"Shin-Haw Lee, Sina Hadipour-Lakmehsari, Anthony O Gramolini","doi":"10.15698/cst2020.06.223","DOIUrl":"https://doi.org/10.15698/cst2020.06.223","url":null,"abstract":"<p><p>The sarco-endoplasmic reticulum (SR/ER) is the largest membrane-bound organelle in eukaryotic cells and plays important roles in essential cellular processes, and in development and progression of many cardiac diseases. However, many aspects of its structural organization remain largely unknown, particularly in cells with a highly differentiated SR/ER network. In a recently published study led by Lee <i>et al.</i> (Nat Commun 11(1):965), we reported a cardiac enriched SR/ER membrane protein REEP5 that is centrally involved in regulating SR/ER organization and cellular stress responses in cardiac myocytes. <i>In vitro</i> REEP5 depletion in mouse cardiac myocytes resulted in SR/ER membrane destabilization and luminal vacuolization along with decreased myocyte contractility and disrupted Ca<sup>2+</sup> cycling. Further, <i>in vivo</i> CRISPR/Cas9-mediated REEP5 loss-of-function zebrafish mutants showed sensitized cardiac dysfunction to heart failure induction upon short-term verapamil treatment. Additionally, <i>in vivo</i> adeno-associated viral (AAV9)-induced REEP5 depletion in the mouse demonstrated cardiac dysfunction with dilated cardiac chambers, increased cardiac fibrosis, and reduced ejection fraction. These results demonstrate the critical role of REEP5 in SR/ER organization and function.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 6","pages":"151-153"},"PeriodicalIF":6.4,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38055234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}