首页 > 最新文献

Cell Stress最新文献

英文 中文
Kynurenine: an oncometabolite in colon cancer. 犬尿氨酸:结肠癌中的一种肿瘤代谢物。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2020-01-03 DOI: 10.15698/cst2020.01.210
Niranjan Venkateswaran, Maralice Conacci-Sorrell

Tryptophan is one of the eight essential amino acids that must be obtained from the diet. Interestingly, tryptophan is the least abundant amino acid in most proteins, a large portion of cellular tryptophan is converted into metabolites of the serotonin and kynurenine pathways. In a recent study, (Venkateswaran, Lafita-Navarro et al., 2019, Genes Dev), we discovered that colon cancer cells display greater uptake and processing of tryptophan than normal colonic cells and tissues. This process is mediated by the oncogenic transcription factor MYC that promotes the expression of the tryptophan importers SLC1A5 and SLC7A5 and the tryptophan metabolizing enzyme AFMID. The metabolism of tryptophan in colon cancer cells generates kynurenine, a biologically active metabolite necessary to maintain continuous cell proliferation. Our results indicate that kynurenine functions as an oncometabolite, at least in part, by activating the transcription factor AHR, which then regulates growth promoting genes in cancer cells. We propose that blocking kynurenine production or activity can be an efficient approach to specifically limit the growth of colon cancer cells. Here, we describe our findings and new questions for future studies targeted at understanding AHR-independent function of kynurenine, as well as interfering with the enzyme AFMID as a new strategy to target the kynurenine pathway.

色氨酸是必须从饮食中获得的八种必需氨基酸之一。有趣的是,色氨酸是大多数蛋白质中含量最少的氨基酸,细胞色氨酸的很大一部分被转化为血清素和犬尿氨酸途径的代谢物。在最近的一项研究中(Venkateswaran, lafata - navarro等人,2019,Genes Dev),我们发现结肠癌细胞比正常的结肠细胞和组织对色氨酸的吸收和处理更多。这一过程是由致癌转录因子MYC介导的,MYC促进色氨酸进口蛋白SLC1A5和SLC7A5以及色氨酸代谢酶AFMID的表达。结肠癌细胞中色氨酸的代谢产生犬尿氨酸,一种维持细胞连续增殖所必需的生物活性代谢物。我们的研究结果表明,犬尿氨酸作为一种肿瘤代谢物,至少在一定程度上是通过激活转录因子AHR发挥作用的,AHR随后调节癌细胞中促进生长的基因。我们提出,阻断犬尿氨酸的产生或活性可能是一种有效的方法,可以特异性地限制结肠癌细胞的生长。在这里,我们描述了我们的发现和未来研究的新问题,旨在了解犬尿氨酸不依赖ahr的功能,以及干扰AFMID酶作为靶向犬尿氨酸途径的新策略。
{"title":"Kynurenine: an oncometabolite in colon cancer.","authors":"Niranjan Venkateswaran,&nbsp;Maralice Conacci-Sorrell","doi":"10.15698/cst2020.01.210","DOIUrl":"https://doi.org/10.15698/cst2020.01.210","url":null,"abstract":"<p><p>Tryptophan is one of the eight essential amino acids that must be obtained from the diet. Interestingly, tryptophan is the least abundant amino acid in most proteins, a large portion of cellular tryptophan is converted into metabolites of the serotonin and kynurenine pathways. In a recent study, (Venkateswaran, Lafita-Navarro et al., 2019, Genes Dev), we discovered that colon cancer cells display greater uptake and processing of tryptophan than normal colonic cells and tissues. This process is mediated by the oncogenic transcription factor MYC that promotes the expression of the tryptophan importers SLC1A5 and SLC7A5 and the tryptophan metabolizing enzyme AFMID. The metabolism of tryptophan in colon cancer cells generates kynurenine, a biologically active metabolite necessary to maintain continuous cell proliferation. Our results indicate that kynurenine functions as an oncometabolite, at least in part, by activating the transcription factor AHR, which then regulates growth promoting genes in cancer cells. We propose that blocking kynurenine production or activity can be an efficient approach to specifically limit the growth of colon cancer cells. Here, we describe our findings and new questions for future studies targeted at understanding AHR-independent function of kynurenine, as well as interfering with the enzyme AFMID as a new strategy to target the kynurenine pathway.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 1","pages":"24-26"},"PeriodicalIF":6.4,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37530150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Necroptosis, tumor necrosis and tumorigenesis. 坏死下垂、肿瘤坏死和肿瘤发生。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-12-19 DOI: 10.15698/cst2020.01.208
Zheng-Gang Liu, Delong Jiao

Necroptosis, known as programmed necrosis, is a form of caspase-independent, finely regulated cell death with necrotic morphology. Tumor necrosis, foci of necrotic cell death, occurs in advanced solid tumors and is often associated with poor prognosis of cancer patients. While it is well documented that apoptosis plays a key role in tumor regression and the inactivation of apoptosis is pivotal to tumor development, the role of necroptosis in tumorigenesis is still not fully understood as recent studies have reported both tumor-promoting and tumor-suppressing effects of necroptosis. In this short review, we will discuss some recent studies about the role of necroptosis in tumorigenesis and speculate the implications of these findings in future research and potential novel cancer therapy targeting necroptosis.

坏死性上睑下垂,被称为程序性坏死,是一种不依赖半胱天酶的、精细调节的细胞死亡形式,具有坏死形态。肿瘤坏死,坏死细胞死亡灶,发生于晚期实体瘤,常与癌症患者预后不良相关。细胞凋亡在肿瘤消退中起着关键作用,细胞凋亡的失活是肿瘤发展的关键,但坏死下垂在肿瘤发生中的作用仍未完全了解,因为最近的研究报道了坏死下垂促进肿瘤和抑制肿瘤的作用。在这篇简短的综述中,我们将讨论一些关于坏死性上睑下垂在肿瘤发生中的作用的最新研究,并推测这些发现对未来研究和潜在的针对坏死性上睑下垂的新型癌症治疗的意义。
{"title":"Necroptosis, tumor necrosis and tumorigenesis.","authors":"Zheng-Gang Liu,&nbsp;Delong Jiao","doi":"10.15698/cst2020.01.208","DOIUrl":"https://doi.org/10.15698/cst2020.01.208","url":null,"abstract":"<p><p>Necroptosis, known as programmed necrosis, is a form of caspase-independent, finely regulated cell death with necrotic morphology. Tumor necrosis, foci of necrotic cell death, occurs in advanced solid tumors and is often associated with poor prognosis of cancer patients. While it is well documented that apoptosis plays a key role in tumor regression and the inactivation of apoptosis is pivotal to tumor development, the role of necroptosis in tumorigenesis is still not fully understood as recent studies have reported both tumor-promoting and tumor-suppressing effects of necroptosis. In this short review, we will discuss some recent studies about the role of necroptosis in tumorigenesis and speculate the implications of these findings in future research and potential novel cancer therapy targeting necroptosis.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 1","pages":"1-8"},"PeriodicalIF":6.4,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37530149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 69
Fatty acids - from energy substrates to key regulators of cell survival, proliferation and effector function. 脂肪酸--从能量底物到细胞存活、增殖和效应功能的关键调节因子。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-12-10 DOI: 10.15698/cst2020.01.209
Danilo Cucchi, Dolores Camacho-Muñoz, Michelangelo Certo, Valentina Pucino, Anna Nicolaou, Claudio Mauro

Recent advances in immunology and cancer research show that fatty acids, their metabolism and their sensing have a crucial role in the biology of many different cell types. Indeed, they are able to affect cellular behaviour with great implications for pathophysiology. Both the catabolic and anabolic pathways of fatty acids present us with a number of enzymes, receptors and agonists/antagonists that are potential therapeutic targets, some of which have already been successfully pursued. Fatty acids can affect the differentiation of immune cells, particularly T cells, as well as their activation and function, with important consequences for the balance between anti- and pro-inflammatory signals in immune diseases, such as rheumatoid arthritis, psoriasis, diabetes, obesity and cardiovascular conditions. In the context of cancer biology, fatty acids mainly provide substrates for energy production, which is of crucial importance to meet the energy demands of these highly proliferating cells. Fatty acids can also be involved in a broader transcriptional programme as they trigger signals necessary for tumorigenesis and can confer to cancer cells the ability to migrate and generate distant metastasis. For these reasons, the study of fatty acids represents a new research direction that can generate detailed insight and provide novel tools for the understanding of immune and cancer cell biology, and, more importantly, support the development of novel, efficient and fine-tuned clinical interventions. Here, we review the recent literature focusing on the involvement of fatty acids in the biology of immune cells, with emphasis on T cells, and cancer cells, from sensing and binding, to metabolism and downstream effects in cell signalling.

免疫学和癌症研究的最新进展表明,脂肪酸及其新陈代谢和感应在许多不同类型细胞的生物学中起着至关重要的作用。事实上,它们能够影响细胞的行为,对病理生理学产生重大影响。脂肪酸的分解代谢和合成代谢途径为我们提供了许多酶、受体和激动剂/拮抗剂,它们都是潜在的治疗目标,其中一些已被成功开发。脂肪酸可影响免疫细胞(尤其是 T 细胞)的分化及其活化和功能,对免疫疾病(如类风湿性关节炎、牛皮癣、糖尿病、肥胖症和心血管疾病)中抗炎和促炎信号之间的平衡产生重要影响。在癌症生物学方面,脂肪酸主要为能量生产提供底物,这对于满足这些高度增殖细胞的能量需求至关重要。脂肪酸还可参与更广泛的转录程序,因为它们会触发肿瘤发生所需的信号,并赋予癌细胞迁移和远处转移的能力。由于这些原因,脂肪酸研究代表了一个新的研究方向,它能为了解免疫和癌细胞生物学提供详细的见解和新的工具,更重要的是,它能支持开发新型、高效和微调的临床干预措施。在此,我们回顾了近期有关脂肪酸参与免疫细胞(重点是 T 细胞)和癌细胞生物学的文献,包括从传感和结合到新陈代谢以及细胞信号的下游效应。
{"title":"Fatty acids - from energy substrates to key regulators of cell survival, proliferation and effector function.","authors":"Danilo Cucchi, Dolores Camacho-Muñoz, Michelangelo Certo, Valentina Pucino, Anna Nicolaou, Claudio Mauro","doi":"10.15698/cst2020.01.209","DOIUrl":"10.15698/cst2020.01.209","url":null,"abstract":"<p><p>Recent advances in immunology and cancer research show that fatty acids, their metabolism and their sensing have a crucial role in the biology of many different cell types. Indeed, they are able to affect cellular behaviour with great implications for pathophysiology. Both the catabolic and anabolic pathways of fatty acids present us with a number of enzymes, receptors and agonists/antagonists that are potential therapeutic targets, some of which have already been successfully pursued. Fatty acids can affect the differentiation of immune cells, particularly T cells, as well as their activation and function, with important consequences for the balance between anti- and pro-inflammatory signals in immune diseases, such as rheumatoid arthritis, psoriasis, diabetes, obesity and cardiovascular conditions. In the context of cancer biology, fatty acids mainly provide substrates for energy production, which is of crucial importance to meet the energy demands of these highly proliferating cells. Fatty acids can also be involved in a broader transcriptional programme as they trigger signals necessary for tumorigenesis and can confer to cancer cells the ability to migrate and generate distant metastasis. For these reasons, the study of fatty acids represents a new research direction that can generate detailed insight and provide novel tools for the understanding of immune and cancer cell biology, and, more importantly, support the development of novel, efficient and fine-tuned clinical interventions. Here, we review the recent literature focusing on the involvement of fatty acids in the biology of immune cells, with emphasis on T cells, and cancer cells, from sensing and binding, to metabolism and downstream effects in cell signalling.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"4 1","pages":"9-23"},"PeriodicalIF":6.4,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37530151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress granules regulate paraspeckles: RNP granule continuum at work. 应力颗粒调节副斑:RNP颗粒连续体在工作。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-11-21 DOI: 10.15698/cst2019.12.207
Haiyan An, Tatyana A Shelkovnikova

Eukaryotic cells contain several types of RNA-protein membraneless macro-complexes - ribonucleoprotein (RNP) granules that form by liquid-liquid phase separation. These structures represent biochemical microreactors for a variety of cellular processes and also act as highly accurate sensors of changes in the cellular environment. RNP granules share multiple protein components, however, the connection between spatially separated granules remains surprisingly understudied. Paraspeckles are constitutive nuclear RNP granules whose numbers significantly increase in stressed cells. Our recent work using affinity-purified paraspeckles revealed that another type of RNP granule, cytoplasmic stress granule (SG), acts as an important regulator of stress-induced paraspeckle assembly. Our study demonstrates that despite their residency in different cellular compartments, the two RNP granules are closely connected. This study suggests that nuclear and cytoplasmic RNP granules are integral parts of the intracellular "RNP granule continuum" and that rapid exchange of protein components within this continuum is important for the temporal control of cellular stress responses. It also suggests that cells can tolerate and efficiently handle a certain level of phase separation, which is reflected in the existence of "bursts", or "waves", of RNP granule formation. Our study triggers a number of important questions related to the mechanisms controlling the flow of RNP granule components within the continuum and to the possibility of targeting these mechanisms in human disease.

真核细胞含有多种类型的rna -蛋白无膜大复合物-核糖核蛋白(RNP)颗粒,它们是通过液-液相分离形成的。这些结构代表了各种细胞过程的生化微反应器,也作为细胞环境变化的高精度传感器。然而,RNP颗粒共享多种蛋白质成分,但空间分离颗粒之间的联系仍未得到充分研究。副斑是组成核RNP颗粒,其数量在应激细胞中显著增加。我们最近使用亲和纯化的副斑的工作表明,另一种类型的RNP颗粒,细胞质应激颗粒(SG),在应力诱导的副斑组装中起着重要的调节作用。我们的研究表明,尽管它们驻留在不同的细胞室中,但两种RNP颗粒紧密相连。该研究表明,细胞核和细胞质RNP颗粒是细胞内“RNP颗粒连续体”的组成部分,该连续体内蛋白质成分的快速交换对细胞应激反应的时间控制很重要。这也表明细胞可以容忍并有效地处理一定程度的相分离,这反映在RNP颗粒形成的“爆发”或“波”的存在上。我们的研究引发了一些重要的问题,这些问题涉及到控制RNP颗粒成分在连续体内流动的机制,以及在人类疾病中靶向这些机制的可能性。
{"title":"Stress granules regulate paraspeckles: RNP granule continuum at work.","authors":"Haiyan An,&nbsp;Tatyana A Shelkovnikova","doi":"10.15698/cst2019.12.207","DOIUrl":"https://doi.org/10.15698/cst2019.12.207","url":null,"abstract":"<p><p>Eukaryotic cells contain several types of RNA-protein membraneless macro-complexes - ribonucleoprotein (RNP) granules that form by liquid-liquid phase separation. These structures represent biochemical microreactors for a variety of cellular processes and also act as highly accurate sensors of changes in the cellular environment. RNP granules share multiple protein components, however, the connection between spatially separated granules remains surprisingly understudied. Paraspeckles are constitutive nuclear RNP granules whose numbers significantly increase in stressed cells. Our recent work using affinity-purified paraspeckles revealed that another type of RNP granule, cytoplasmic stress granule (SG), acts as an important regulator of stress-induced paraspeckle assembly. Our study demonstrates that despite their residency in different cellular compartments, the two RNP granules are closely connected. This study suggests that nuclear and cytoplasmic RNP granules are integral parts of the intracellular \"RNP granule continuum\" and that rapid exchange of protein components within this continuum is important for the temporal control of cellular stress responses. It also suggests that cells can tolerate and efficiently handle a certain level of phase separation, which is reflected in the existence of \"bursts\", or \"waves\", of RNP granule formation. Our study triggers a number of important questions related to the mechanisms controlling the flow of RNP granule components within the continuum and to the possibility of targeting these mechanisms in human disease.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"3 12","pages":"385-387"},"PeriodicalIF":6.4,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37453675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Metabolism remodeling in pancreatic ductal adenocarcinoma. 胰腺导管腺癌的代谢重塑。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-11-04 DOI: 10.15698/cst2019.12.205
Jin-Tao Li, Yi-Ping Wang, Miao Yin, Qun-Ying Lei

Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of death of patients with malignant cancers by 2030. Current options of PDAC treatment are limited and the five-year survival rate is less than 8%, leading to an urgent need to explore innovatively therapeutic strategies. PDAC cells exhibit extensively reprogrammed metabolism to meet their energetic and biomass demands under extremely harsh conditions. The metabolic changes are closely linked to signaling triggered by activation of oncogenes like KRAS as well as inactivation of tumor suppressors. Furthermore, tumor microenvironmental factors including extensive desmoplastic stroma reaction result in series of metabolism remodeling to facilitate PDAC development. In this review, we focus on the dysregulation of metabolism in PDAC and its surrounding microenvironment to explore potential metabolic targets in PDAC therapy.

据预测,到2030年,胰腺导管腺癌(PDAC)将成为恶性癌症患者的第二大死因。目前PDAC治疗的选择有限,5年生存率低于8%,因此迫切需要探索创新的治疗策略。PDAC细胞表现出广泛的重编程代谢,以满足其在极端恶劣条件下的能量和生物量需求。代谢变化与KRAS等癌基因的激活以及抑癌基因的失活所触发的信号密切相关。此外,肿瘤微环境因素包括广泛的结缔组织增生间质反应,导致一系列代谢重塑,促进PDAC的发展。在这篇综述中,我们将重点关注PDAC及其周围微环境的代谢失调,以探索PDAC治疗中潜在的代谢靶点。
{"title":"Metabolism remodeling in pancreatic ductal adenocarcinoma.","authors":"Jin-Tao Li,&nbsp;Yi-Ping Wang,&nbsp;Miao Yin,&nbsp;Qun-Ying Lei","doi":"10.15698/cst2019.12.205","DOIUrl":"https://doi.org/10.15698/cst2019.12.205","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of death of patients with malignant cancers by 2030. Current options of PDAC treatment are limited and the five-year survival rate is less than 8%, leading to an urgent need to explore innovatively therapeutic strategies. PDAC cells exhibit extensively reprogrammed metabolism to meet their energetic and biomass demands under extremely harsh conditions. The metabolic changes are closely linked to signaling triggered by activation of oncogenes like <i>KRAS</i> as well as inactivation of tumor suppressors. Furthermore, tumor microenvironmental factors including extensive desmoplastic stroma reaction result in series of metabolism remodeling to facilitate PDAC development. In this review, we focus on the dysregulation of metabolism in PDAC and its surrounding microenvironment to explore potential metabolic targets in PDAC therapy.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"3 12","pages":"361-368"},"PeriodicalIF":6.4,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37453674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
LTX-315 – a promising novel antitumor peptide and immunotherapeutic agent LTX-315——一种有前景的新型抗肿瘤肽和免疫治疗剂
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-11-01 DOI: 10.15698/cst2019.11.202
Dagmar Zweytick
Host defense in mammals, as provided by the innate immune system, comprises proteins such as lactoferrin (LF), a multifunctional iron-binding glycoprotein originally discovered in bovine milk. LF is further pepsin-cleaved to a cationic amphipathic peptide, lactoferricin (LFcin; amino acid 1-45 of LF), which is known for its antimicrobial, antiseptic, antiviral, antitumor and immunomodulatory activities [13]. Bovine LFcin has been shown to inhibit liver and lung metastasis of both murine melanomas and lymphomas [4] and to induce apoptosis in human leukemic and carcinoma cell lines [5, 6]. LTX-315 [7] and LTX-302 [8], which derived of bovine LFcin by structural optimization, contain amongst others the non-coded residue β-diphenylalanine and show increased activity in vivo by peptide induced tumor regression and infiltration of the tumor by immune cells. LTX-315 is effective against multiple tumor types, and is therefore studied as novel immunotherapeutic agent in phase I/II clinical trials in combination with checkpoint inhibitors for treatment of advanced solid tumors, using the ability to reduce tumor growth and to induce de novo T-cell responses [9]. In the current issue of Cell Stress, Pittet and colleagues evaluated LTX-315 in conditional genetic mouse models of melanoma and sarcoma that are so far mainly resistant to standard treatment. Therefore, syngeneic grafts of murine melanoma B16F10, Brafand Pten-driven melanoma as well as Krasand P53-driven soft tissue sarcoma were studied in mice regarding their sensitivity towards LTX-315. These mutations are an ideal model, since they are often found in human patients suffering of these cancer types, as well are these tumor models, as also murine melanoma B16F10, poorly infiltrated by T cells and resistant to immune checkpoint therapy. The authors show a two-phase response in the tumor models triggered by the intratumoral injection with the peptide. The first phase of response is a rapid (within minutes) disruption of tumor vasculature and decrease of tumor burden. This direct antitumor effect seems to occur by induced cell lysis blocking the oxygen and nutrients supply by the tumor vasculature without the help of antitumor lymphocytes. The second phase of response is however as important for the antitumor (longterm) effect of the peptide. It endures over several weeks and is characterized by a tumor infiltration with CD8+ T cells that is normally very poor in the described tumor models and can display antitumor functions. Further, immune cells such as CD4+ T cells and natural killer (NK) cells were shown to migrate into the tumor environment upon treatment with LTX-315. This effect of triggering an antitumor immune response was more pronounced in the melanoma than in the sarcoma models, which might be due to the lower mutational load of the latter. However, this long-term conversion of a poorly to a highly immunogenic tumor promises a long-term antitumor immunity by prevention of tumor regrowth af
哺乳动物的宿主防御由先天免疫系统提供,包括乳铁蛋白(LF)等蛋白质,这是一种最初在牛奶中发现的多功能铁结合糖蛋白。LF是进一步切割成阳离子两亲性肽乳铁蛋白(LFcin;LF的氨基酸1-45)的胃蛋白酶,其以其抗菌、防腐、抗病毒、抗肿瘤和免疫调节活性而闻名[13]。牛LFcin已被证明可抑制小鼠黑色素瘤和淋巴瘤的肝和肺转移[4],并诱导人类白血病和癌细胞系的凋亡[5,6]。LTX-315[7]和LTX-302[8]通过结构优化衍生自牛LFcin,其中含有非编码残基β-二苯基丙氨酸,并通过肽诱导的肿瘤消退和免疫细胞对肿瘤的浸润而在体内显示出增加的活性。LTX-315对多种肿瘤类型有效,因此在I/II期临床试验中被研究为一种新型免疫治疗剂,与检查点抑制剂联合治疗晚期实体瘤,利用其减少肿瘤生长和诱导新生T细胞反应的能力[9]。在最新一期的《细胞应激》杂志上,Pittet及其同事在黑色素瘤和肉瘤的条件遗传小鼠模型中评估了LTX-315,这些模型迄今为止主要对标准治疗具有耐药性。因此,在小鼠中研究了小鼠黑色素瘤B16F10、Brafand Pten驱动的黑色素瘤以及Krasand P53驱动的软组织肉瘤的同基因移植物对LTX-315的敏感性。这些突变是一种理想的模型,因为它们经常在患有这些癌症类型的人类患者中发现,这些肿瘤模型也是如此,小鼠黑色素瘤B16F10也是如此,T细胞浸润不良,对免疫检查点疗法有抵抗力。作者在肿瘤模型中显示了由肽的肿瘤内注射触发的两阶段反应。反应的第一阶段是肿瘤血管系统的快速(几分钟内)破坏和肿瘤负担的减少。这种直接的抗肿瘤作用似乎是在没有抗肿瘤淋巴细胞帮助的情况下,通过诱导的细胞裂解阻断肿瘤血管系统的氧气和营养供应而发生的。然而,反应的第二阶段对于肽的抗肿瘤(长期)作用同样重要。它持续数周,其特征是CD8+T细胞的肿瘤浸润,在所描述的肿瘤模型中通常非常差,并且可以显示抗肿瘤功能。此外,显示免疫细胞如CD4+T细胞和自然杀伤(NK)细胞在用LTX-315治疗时迁移到肿瘤环境中。这种触发抗肿瘤免疫反应的作用在黑色素瘤中比在肉瘤模型中更明显,这可能是由于后者的突变负荷较低。然而,这种从免疫原性差的肿瘤到高免疫原性肿瘤的长期转化,通过预防治疗后肿瘤的再生,有望获得长期的抗肿瘤免疫。恶性黑色素瘤和纤维肉瘤都表现出较差的可治疗性和预后,因此需要新的治疗方法,如Pittet及其同事在本期杂志中研究的LTX-315。根据进展情况,手术、经典放疗和化疗可用于治疗恶性黑色素瘤,但由于转移和化疗耐药性,治疗选择有限[10]。在过去的几年里,靶向和免疫疗法(如CTLA4-、PDL1/2和BRAF抑制剂)已经被开发出来,有望具有更高的特异性和更少的副作用[11]。然而,这些疗法也只能有限地提高生存率,甚至在这里也观察到对MAPK抑制剂(BRAF和MEK抑制剂)和免疫治疗的耐药性
{"title":"LTX-315 – a promising novel antitumor peptide and immunotherapeutic agent","authors":"Dagmar Zweytick","doi":"10.15698/cst2019.11.202","DOIUrl":"https://doi.org/10.15698/cst2019.11.202","url":null,"abstract":"Host defense in mammals, as provided by the innate immune system, comprises proteins such as lactoferrin (LF), a multifunctional iron-binding glycoprotein originally discovered in bovine milk. LF is further pepsin-cleaved to a cationic amphipathic peptide, lactoferricin (LFcin; amino acid 1-45 of LF), which is known for its antimicrobial, antiseptic, antiviral, antitumor and immunomodulatory activities [13]. Bovine LFcin has been shown to inhibit liver and lung metastasis of both murine melanomas and lymphomas [4] and to induce apoptosis in human leukemic and carcinoma cell lines [5, 6]. LTX-315 [7] and LTX-302 [8], which derived of bovine LFcin by structural optimization, contain amongst others the non-coded residue β-diphenylalanine and show increased activity in vivo by peptide induced tumor regression and infiltration of the tumor by immune cells. LTX-315 is effective against multiple tumor types, and is therefore studied as novel immunotherapeutic agent in phase I/II clinical trials in combination with checkpoint inhibitors for treatment of advanced solid tumors, using the ability to reduce tumor growth and to induce de novo T-cell responses [9]. In the current issue of Cell Stress, Pittet and colleagues evaluated LTX-315 in conditional genetic mouse models of melanoma and sarcoma that are so far mainly resistant to standard treatment. Therefore, syngeneic grafts of murine melanoma B16F10, Brafand Pten-driven melanoma as well as Krasand P53-driven soft tissue sarcoma were studied in mice regarding their sensitivity towards LTX-315. These mutations are an ideal model, since they are often found in human patients suffering of these cancer types, as well are these tumor models, as also murine melanoma B16F10, poorly infiltrated by T cells and resistant to immune checkpoint therapy. The authors show a two-phase response in the tumor models triggered by the intratumoral injection with the peptide. The first phase of response is a rapid (within minutes) disruption of tumor vasculature and decrease of tumor burden. This direct antitumor effect seems to occur by induced cell lysis blocking the oxygen and nutrients supply by the tumor vasculature without the help of antitumor lymphocytes. The second phase of response is however as important for the antitumor (longterm) effect of the peptide. It endures over several weeks and is characterized by a tumor infiltration with CD8+ T cells that is normally very poor in the described tumor models and can display antitumor functions. Further, immune cells such as CD4+ T cells and natural killer (NK) cells were shown to migrate into the tumor environment upon treatment with LTX-315. This effect of triggering an antitumor immune response was more pronounced in the melanoma than in the sarcoma models, which might be due to the lower mutational load of the latter. However, this long-term conversion of a poorly to a highly immunogenic tumor promises a long-term antitumor immunity by prevention of tumor regrowth af","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"3 1","pages":"328 - 329"},"PeriodicalIF":6.4,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43874510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Endoplasmic reticulum and Golgi stress in microcephaly. 小头畸形的内质网和高尔基应激。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-10-30 DOI: 10.15698/cst2019.12.206
Sandrine Passemard, Franck Perez, Pierre Gressens, Vincent El Ghouzzi

Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.

小头畸形是一种神经发育疾病,其特征是大脑体积小,在大多数情况下伴有智力缺陷,是神经发育障碍中最常见的临床症状之一。它可以由怀孕期间或产后发生的各种环境损害以及各种遗传原因引起,并且是一种高度异质性的疾病。然而,一些证据表明,在神经发生过程中,皮质前体细胞的分裂模式受损,影响神经的承诺或存活,这是导致神经元产生有限的常见机制之一,并与最严重的先天性小头畸形有关。在这种背景下,内质网(ER)和高尔基体作为细胞内稳态的关键守护者的出现,特别是通过调节蛋白质平衡,提出了一种假设,即病理性内质网和/或高尔基体应激可能对引起小头畸形的皮质损伤有显著贡献。在这篇综述中,我们讨论了在早期大脑发育中涉及内质网和高尔基应激反应的最新发现,并概述了参与这些途径的小头症相关基因。
{"title":"Endoplasmic reticulum and Golgi stress in microcephaly.","authors":"Sandrine Passemard,&nbsp;Franck Perez,&nbsp;Pierre Gressens,&nbsp;Vincent El Ghouzzi","doi":"10.15698/cst2019.12.206","DOIUrl":"https://doi.org/10.15698/cst2019.12.206","url":null,"abstract":"<p><p>Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"3 12","pages":"369-384"},"PeriodicalIF":6.4,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37453676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
LTX-315 sequentially promotes lymphocyte-independent and lymphocyte-dependent antitumor effects. LTX-315依次促进淋巴细胞非依赖性和淋巴细胞依赖性的抗肿瘤作用
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-10-14 DOI: 10.15698/cst2019.11.204
Hsin-Wei Liao, Christopher Garris, Christina Pfirschke, Steffen Rickelt, Sean Arlauckas, Marie Siwicki, Rainer H Kohler, Ralph Weissleder, Vibeke Sundvold-Gjerstad, Baldur Sveinbjørnsson, Øystein Rekdal, Mikael J Pittet

LTX-315 is an oncolytic peptide that has antitumor efficacy in mice grafted with various tumor cell lines and is currently being tested in phase II clinical trials. Here we aimed to further evaluate LTX-315 in conditional genetic mouse models of cancer that typically resist current treatment options and to better understand the drug's mode of action in vivo. We report LTX-315 mediates profound antitumor effects against Braf- and Pten-driven melanoma and delays the progression of Kras- and P53-driven soft tissue sarcoma in mice. Additionally, we show in melanoma that LTX-315 triggers two sequential phases of antitumor response. The first phase of response, which begins within minutes of drug delivery into tumors, is defined by disrupted tumor vasculature and decreased tumor burden and occurs independently of lymphocytes. The second phase of response, which continues over weeks, is defined by long-term alteration of the tumor microenvironment; the changes induced by LTX-315 are most notably characterized by CD8+ T cell infiltration. We further show that these CD8+ T cells are involved in suppressing melanoma outgrowth in mice and report similar CD8+ T cell infiltration following LTX-315 treatment in melanoma and sarcoma patients. Taken together, these findings reveal LTX-315's multiple antitumor effects, including disrupting the tumor vasculature and promoting the conversion of poorly immunogenic tumors into ones that display antitumor T cell immunity.

LTX-315是一种溶瘤肽,对移植了多种肿瘤细胞系的小鼠具有抗肿瘤功效,目前正在进行II期临床试验。在这里,我们的目标是进一步评估LTX-315在条件遗传癌症小鼠模型中的作用,这些模型通常对当前的治疗方案产生抵抗,并更好地了解该药物在体内的作用模式。我们报道LTX-315对Braf和pten驱动的黑色素瘤具有深远的抗肿瘤作用,并延缓Kras和p53驱动的小鼠软组织肉瘤的进展。此外,我们发现LTX-315在黑色素瘤中触发两个连续的抗肿瘤反应阶段。第一反应阶段在药物进入肿瘤几分钟内开始,定义为肿瘤脉管系统被破坏和肿瘤负荷减少,并且独立于淋巴细胞发生。第二阶段反应持续数周,定义为肿瘤微环境的长期改变;LTX-315诱导的变化以CD8+ T细胞浸润最为显著。我们进一步证明这些CD8+ T细胞参与抑制小鼠黑色素瘤的生长,并报告了LTX-315治疗后黑色素瘤和肉瘤患者中类似的CD8+ T细胞浸润。综上所述,这些发现揭示了LTX-315的多种抗肿瘤作用,包括破坏肿瘤血管和促进免疫原性差的肿瘤转化为具有抗肿瘤T细胞免疫的肿瘤。
{"title":"LTX-315 sequentially promotes lymphocyte-independent and lymphocyte-dependent antitumor effects.","authors":"Hsin-Wei Liao, Christopher Garris, Christina Pfirschke, Steffen Rickelt, Sean Arlauckas, Marie Siwicki, Rainer H Kohler, Ralph Weissleder, Vibeke Sundvold-Gjerstad, Baldur Sveinbjørnsson, Øystein Rekdal, Mikael J Pittet","doi":"10.15698/cst2019.11.204","DOIUrl":"10.15698/cst2019.11.204","url":null,"abstract":"<p><p>LTX-315 is an oncolytic peptide that has antitumor efficacy in mice grafted with various tumor cell lines and is currently being tested in phase II clinical trials. Here we aimed to further evaluate LTX-315 in conditional genetic mouse models of cancer that typically resist current treatment options and to better understand the drug's mode of action <i>in vivo</i>. We report LTX-315 mediates profound antitumor effects against <i>Braf-</i> and <i>Pten</i>-driven melanoma and delays the progression of <i>Kras-</i> and <i>P53-</i>driven soft tissue sarcoma in mice. Additionally, we show in melanoma that LTX-315 triggers two sequential phases of antitumor response. The first phase of response, which begins within minutes of drug delivery into tumors, is defined by disrupted tumor vasculature and decreased tumor burden and occurs independently of lymphocytes. The second phase of response, which continues over weeks, is defined by long-term alteration of the tumor microenvironment; the changes induced by LTX-315 are most notably characterized by CD8+ T cell infiltration. We further show that these CD8+ T cells are involved in suppressing melanoma outgrowth in mice and report similar CD8+ T cell infiltration following LTX-315 treatment in melanoma and sarcoma patients. Taken together, these findings reveal LTX-315's multiple antitumor effects, including disrupting the tumor vasculature and promoting the conversion of poorly immunogenic tumors into ones that display antitumor T cell immunity.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"3 1","pages":"348-360"},"PeriodicalIF":6.4,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46533893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-regulatory T cells are natural regulatory effector T cells. 抗调节性T细胞是天然的调节性效应T细胞。
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-10-08 DOI: 10.15698/cst2019.10.199
Niels Ødum
It is well established that the immune system uses regulatory immune-suppressive cells to inhibit and terminate immune reactions and maintain immune balance. In the last decade, Andersen and colleagues have discovered that regulatory cells also can have effector capabilities that counteract the many immune-suppressive feedback mechanisms that regulatory cells mediate. These authors have described pro-inflammatory antigen-specific T cells that react towards immune-suppressive cells [1,2]. Indeed, because of their reactive ability against regulatory immune cells, these effector T cells have been designated as antiregulatory T cells or anti-Tregs [3]. Anti-Tregs recognize proteins that regulatory cells express, including PD-L1 [47]. Spontaneous CD8+ and CD4+ T-cell reactivity against PD-L1 has been described in patients with cancer and in healthy individuals. Naturally occurring PD-L1–specific T cells can recognize PD-L1–expressing immune cells and malignant cells [8]. Activation of PD-L1–specific T cells has been described as modulating adaptive immune reactions directly and indirectly. The addition of PD-L1–specific T cells to cultured peripheral blood mononuclear cells (PBMCs) one week after viral antigen stimulation results in an immense increase in virus-specific T cells. Likewise, the co-stimulation of PD-L1 epitopes with viral epitopes results in expansion of virus-specific T cells. Thus, activation of PDL1–specific T cells enhances the effector phase of an ongoing immune response. In the current issue of Cell Stress, Andersen and colleagues further characterize the natural function of PD-L1– specific T cells, showing a direct link between inflammation and expansion of this cell population [9]. PD-L1 is expressed even in very potent antigen-presenting cells early during the inflammatory process. This expression occurs because of induction by both type I and II interferons (IFNs), which are present at the inflammation site. PD-L1 thus plays a central role in the counter-regulation of immune responses. Andersen and colleagues also show that circulating PDL1–specific T cells expand in response to pro-inflammatory mediators, such as IFN- and interleukin-2, in the absence of antigen-specific stimulation. PD-L1–specific T cells therefore expand as a first response to inflammation and can function as helper cells at the inflammation site, where they also can aid in the response to infected cells. Further evidence for these roles is the increased susceptibility of target cells to PD-L1–specific T-cell recognition in the presence of IFN- [4]. In their current work in Cell Stress, Andersen et al. provide further support for the natural regulatory role of PD-L1–specific anti-Tregs, showing that addition of inflammation-induced PD-L1–specific T cells to unstimulated PBMC cultures indeed influences Treg numbers [9]. PD-L1 is not the only target that regulatory immune cells express and that anti-Tregs can recognize. The metabolic enzymes indoleamine-pyrr
{"title":"Anti-regulatory T cells are natural regulatory effector T cells.","authors":"Niels Ødum","doi":"10.15698/cst2019.10.199","DOIUrl":"https://doi.org/10.15698/cst2019.10.199","url":null,"abstract":"It is well established that the immune system uses regulatory immune-suppressive cells to inhibit and terminate immune reactions and maintain immune balance. In the last decade, Andersen and colleagues have discovered that regulatory cells also can have effector capabilities that counteract the many immune-suppressive feedback mechanisms that regulatory cells mediate. These authors have described pro-inflammatory antigen-specific T cells that react towards immune-suppressive cells [1,2]. Indeed, because of their reactive ability against regulatory immune cells, these effector T cells have been designated as antiregulatory T cells or anti-Tregs [3]. Anti-Tregs recognize proteins that regulatory cells express, including PD-L1 [47]. Spontaneous CD8+ and CD4+ T-cell reactivity against PD-L1 has been described in patients with cancer and in healthy individuals. Naturally occurring PD-L1–specific T cells can recognize PD-L1–expressing immune cells and malignant cells [8]. Activation of PD-L1–specific T cells has been described as modulating adaptive immune reactions directly and indirectly. The addition of PD-L1–specific T cells to cultured peripheral blood mononuclear cells (PBMCs) one week after viral antigen stimulation results in an immense increase in virus-specific T cells. Likewise, the co-stimulation of PD-L1 epitopes with viral epitopes results in expansion of virus-specific T cells. Thus, activation of PDL1–specific T cells enhances the effector phase of an ongoing immune response. In the current issue of Cell Stress, Andersen and colleagues further characterize the natural function of PD-L1– specific T cells, showing a direct link between inflammation and expansion of this cell population [9]. PD-L1 is expressed even in very potent antigen-presenting cells early during the inflammatory process. This expression occurs because of induction by both type I and II interferons (IFNs), which are present at the inflammation site. PD-L1 thus plays a central role in the counter-regulation of immune responses. Andersen and colleagues also show that circulating PDL1–specific T cells expand in response to pro-inflammatory mediators, such as IFN- and interleukin-2, in the absence of antigen-specific stimulation. PD-L1–specific T cells therefore expand as a first response to inflammation and can function as helper cells at the inflammation site, where they also can aid in the response to infected cells. Further evidence for these roles is the increased susceptibility of target cells to PD-L1–specific T-cell recognition in the presence of IFN- [4]. In their current work in Cell Stress, Andersen et al. provide further support for the natural regulatory role of PD-L1–specific anti-Tregs, showing that addition of inflammation-induced PD-L1–specific T cells to unstimulated PBMC cultures indeed influences Treg numbers [9]. PD-L1 is not the only target that regulatory immune cells express and that anti-Tregs can recognize. The metabolic enzymes indoleamine-pyrr","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"3 10","pages":"310-311"},"PeriodicalIF":6.4,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41214971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The impact of endothelial cell death in the brain and its role after stroke: A systematic review 脑内皮细胞死亡的影响及其在脑卒中后的作用:一项系统综述
IF 6.4 Q2 CELL BIOLOGY Pub Date : 2019-09-25 DOI: 10.15698/cst2019.11.203
M. Zille, Maulana Ikhsan, Yun Jiang, J. Lampe, Jan Wenzel, M. Schwaninger
The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.
向大脑提供氧气和营养物质对其功能至关重要,需要一个复杂的血管网络,一旦受到干扰,就会导致严重的神经功能障碍。作为中风病理的一部分,内皮细胞死亡。由于内皮细胞死亡影响周围细胞环境,是治疗和预防神经系统疾病的潜在靶点,我们系统地回顾了内皮细胞死亡的重要方面,特别关注中风。在筛选了2010年1月1日至2019年8月7日期间发表的2876份出版物后,我们确定了154份记录。我们发现内皮细胞的死亡发生得很快,并且在中风发作后发生得更晚。在不同的细胞死亡机制中,细胞凋亡是研究最广泛的(92条记录),其次是自噬(20条记录),而其他最近定义的机制受到的关注较少,如溶酶体依赖性细胞死亡(2条记录)和坏死下垂(2条记录)。我们还讨论了脑卒中后脑细胞对损伤的不同脆弱性,以及内皮细胞死亡在无血流现象中的作用,特别关注微血管。使用新的工具和生物标志物进一步研究不同的细胞死亡机制将大大提高我们对内皮细胞死亡的理解。对于这项任务,根据细胞死亡命名委员会的建议,至少需要两个标记/标准来确定细胞死亡子程序。
{"title":"The impact of endothelial cell death in the brain and its role after stroke: A systematic review","authors":"M. Zille, Maulana Ikhsan, Yun Jiang, J. Lampe, Jan Wenzel, M. Schwaninger","doi":"10.15698/cst2019.11.203","DOIUrl":"https://doi.org/10.15698/cst2019.11.203","url":null,"abstract":"The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"3 1","pages":"330 - 347"},"PeriodicalIF":6.4,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46544959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
期刊
Cell Stress
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1