The layout of a city is complex, and indoor spaces have thousands of aspects that make them susceptible to fire. If a fire breaks out, it is difficult to quell, so a fire in the city will cause great harm. However, the traditional fire detection algorithm has a low detection efficiency and high detection rate of small targets, and disasters have occurred during detection. Therefore, this paper proposes a fire safety detection algorithm based on CAGSA-YOLO and constructs a fire safety dataset to integrate common fire safety tools into fire detection, which has a preventive detection effect before a fire occurs. In the improved algorithm, the upsampling in the original YOLOv5 is replaced with the CARAFE module. By adjusting its internal Parameter contrast, the algorithm pays more attention to local regional information and obtains stronger feature maps. Secondly, a new scale detection layer is added to detect objects larger than 4 × 4. Furthermore, the sampling Ghost lightweight design replaces C3 with the C3Ghost module without reducing the mAP. Finally, a lighter SA mechanism is introduced to optimize visual information processing resources. Using the fire safety dataset, the precision, recall, and mAP of the improved model increase to 89.7%, 80.1%, and 85.1%, respectively. At the same time, the size of the improved model is reduced by 0.6 M to 13.8 M, and the Param is reduced from 7.1 M to 6.6 M.
{"title":"Fire Safety Detection Based on CAGSA-YOLO Network","authors":"Xinjie Wang, Lecai Cai, Shunyong Zhou, Yuxin Jin, Lin Tang, Yunlong Zhao","doi":"10.3390/fire6080297","DOIUrl":"https://doi.org/10.3390/fire6080297","url":null,"abstract":"The layout of a city is complex, and indoor spaces have thousands of aspects that make them susceptible to fire. If a fire breaks out, it is difficult to quell, so a fire in the city will cause great harm. However, the traditional fire detection algorithm has a low detection efficiency and high detection rate of small targets, and disasters have occurred during detection. Therefore, this paper proposes a fire safety detection algorithm based on CAGSA-YOLO and constructs a fire safety dataset to integrate common fire safety tools into fire detection, which has a preventive detection effect before a fire occurs. In the improved algorithm, the upsampling in the original YOLOv5 is replaced with the CARAFE module. By adjusting its internal Parameter contrast, the algorithm pays more attention to local regional information and obtains stronger feature maps. Secondly, a new scale detection layer is added to detect objects larger than 4 × 4. Furthermore, the sampling Ghost lightweight design replaces C3 with the C3Ghost module without reducing the mAP. Finally, a lighter SA mechanism is introduced to optimize visual information processing resources. Using the fire safety dataset, the precision, recall, and mAP of the improved model increase to 89.7%, 80.1%, and 85.1%, respectively. At the same time, the size of the improved model is reduced by 0.6 M to 13.8 M, and the Param is reduced from 7.1 M to 6.6 M.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46314758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper aims to provide a better understanding of the transition towards a new paradigm of wildfire risk management in Victoria that incorporates Aboriginal fire knowledge. We show the suitability of cultural burning in the transformed landscapes, and the challenges associated with its reintroduction for land management and bushfire risk reduction after the traumatic disruption of invasion and colonization. Methods of Environmental History and Regional Geography were combined with Traditional Ecological Knowledge to unravel the connections between past, present and future fire and land management practices. Our study area consists of Dja Dja Wurrung and Bangarang/Yorta Yorta Country in north-central Victoria. The results show (i) the ongoing socio-political process for building a renewed integrated fire and land management approach including cultural burning, and (ii) the opportunities of Aboriginal fire culture for restoring landscape resilience to wildfires. We conclude that both wildfire risk management and cultural burning need to change together to adapt to the new environmental context and collaborate for mutual and common benefit.
{"title":"Reconnecting Fire Culture of Aboriginal Communities with Contemporary Wildfire Risk Management","authors":"A. Atkinson, C. Montiel-Molina","doi":"10.3390/fire6080296","DOIUrl":"https://doi.org/10.3390/fire6080296","url":null,"abstract":"This paper aims to provide a better understanding of the transition towards a new paradigm of wildfire risk management in Victoria that incorporates Aboriginal fire knowledge. We show the suitability of cultural burning in the transformed landscapes, and the challenges associated with its reintroduction for land management and bushfire risk reduction after the traumatic disruption of invasion and colonization. Methods of Environmental History and Regional Geography were combined with Traditional Ecological Knowledge to unravel the connections between past, present and future fire and land management practices. Our study area consists of Dja Dja Wurrung and Bangarang/Yorta Yorta Country in north-central Victoria. The results show (i) the ongoing socio-political process for building a renewed integrated fire and land management approach including cultural burning, and (ii) the opportunities of Aboriginal fire culture for restoring landscape resilience to wildfires. We conclude that both wildfire risk management and cultural burning need to change together to adapt to the new environmental context and collaborate for mutual and common benefit.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42578860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper presents the results of the development of a multi-layer protective product, which is a transformable fire barrier, installed in buildings and structures to limit the spread of flame, heat flow and smoke. Based on the results of the simulation of eight samples of fire curtains, three promising samples of different compositions were selected, demonstrating a fire resistance limit on the loss of thermal insulating capacity (I) of 30 min. During the small-scale tests, it was found that the multilayer fabric of the following composition was promising: heat-treated silica fabric, aluminum foil, mineral fiber heat insulation material, stitched by needle-punching with silica thread, fabric reinforced with fiberglass mesh and stitched through with basalt thread, with seams treated with a fire-resistant elastic sealant. According to the results of a standard large-scale experimental study, a fire curtain with a loss of integrity not less than 60 min, and a loss of thermal insulating ability not less than 15 min were obtained. The results of the study assess the impact of the scale factor on the fire resistance limit of fire curtains in a fire.
{"title":"The Fire Resistance of Transformable Barriers: Influence of the Large-Scale Factor","authors":"M. Gravit, Daria Shabunina, O. Nedryshkin","doi":"10.3390/fire6080294","DOIUrl":"https://doi.org/10.3390/fire6080294","url":null,"abstract":"The paper presents the results of the development of a multi-layer protective product, which is a transformable fire barrier, installed in buildings and structures to limit the spread of flame, heat flow and smoke. Based on the results of the simulation of eight samples of fire curtains, three promising samples of different compositions were selected, demonstrating a fire resistance limit on the loss of thermal insulating capacity (I) of 30 min. During the small-scale tests, it was found that the multilayer fabric of the following composition was promising: heat-treated silica fabric, aluminum foil, mineral fiber heat insulation material, stitched by needle-punching with silica thread, fabric reinforced with fiberglass mesh and stitched through with basalt thread, with seams treated with a fire-resistant elastic sealant. According to the results of a standard large-scale experimental study, a fire curtain with a loss of integrity not less than 60 min, and a loss of thermal insulating ability not less than 15 min were obtained. The results of the study assess the impact of the scale factor on the fire resistance limit of fire curtains in a fire.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43585607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To tackle the problem of missed detections in long-range detection scenarios caused by the small size of forest fire targets, initiatives have been undertaken to enhance the feature extraction and detection precision of models designed for forest fire imagery. In this study, two algorithms, DenseM-YOLOv5 and SimAM-YOLOv5, were proposed by modifying the backbone network of You Only Look Once version 5 (YOLOv5). From the perspective of lightweight models, compared to YOLOv5, SimAM-YOLOv5 reduced the parameter size by 28.57%. Additionally, although SimAM-YOLOv5 showed a slight decrease in recall rate, it achieved improvements in precision and average precision (AP) to varying degrees. The DenseM-YOLOv5 algorithm achieved a 2.24% increase in precision, as well as improvements of 1.2% in recall rate and 1.52% in AP compared to the YOLOv5 algorithm. Despite having a higher parameter size, the DenseM-YOLOv5 algorithm outperformed the SimAM-YOLOv5 algorithm in terms of precision and AP for forest fire detection.
{"title":"An Efficient Forest Fire Target Detection Model Based on Improved YOLOv5","authors":"Long Zhang, Jiaming Li, Fuquan Zhang","doi":"10.3390/fire6080291","DOIUrl":"https://doi.org/10.3390/fire6080291","url":null,"abstract":"To tackle the problem of missed detections in long-range detection scenarios caused by the small size of forest fire targets, initiatives have been undertaken to enhance the feature extraction and detection precision of models designed for forest fire imagery. In this study, two algorithms, DenseM-YOLOv5 and SimAM-YOLOv5, were proposed by modifying the backbone network of You Only Look Once version 5 (YOLOv5). From the perspective of lightweight models, compared to YOLOv5, SimAM-YOLOv5 reduced the parameter size by 28.57%. Additionally, although SimAM-YOLOv5 showed a slight decrease in recall rate, it achieved improvements in precision and average precision (AP) to varying degrees. The DenseM-YOLOv5 algorithm achieved a 2.24% increase in precision, as well as improvements of 1.2% in recall rate and 1.52% in AP compared to the YOLOv5 algorithm. Despite having a higher parameter size, the DenseM-YOLOv5 algorithm outperformed the SimAM-YOLOv5 algorithm in terms of precision and AP for forest fire detection.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43632360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recent expansion of logistics capacities entails the installation of chemical warehouses, which operations increase the occurrence of compartment fires involving flammable dangerous substances. The aim of this research was to compare and analyze the fire behavior of beams made of different structural materials but with the same load capacity. It is assumed that wooden beams, which are less commonly used in industrial facilities, may have a similar or even better load-bearing capacity in case of a fire than the generally used steel beams. The authors—based on the relevant EU standards—performed load capacity calculations of three beams prepared from different materials under the influence of fire and analyzed the changes in the material properties. Then, they examined the possibility of reinforcing the beams with carbon fiber lamellae and proposed additional fire protection requirements. The test results not only proved the different degrees of fire resistance of various building materials in the event of a fire and after their reinforcement but also suggested the application of special technical, prevention and response measures for the safe storage of dangerous substances. The study outputs enable warehouse designers, operators and safety experts to ensure a higher fire safety level for chemical warehouses.
{"title":"Examination of the Fire Resistance of Construction Materials from Beams in Chemical Warehouses Dealing with Flammable Dangerous Substances","authors":"L. Kátai-Urbán, Zsolt Cimer, É. Lublóy","doi":"10.3390/fire6080293","DOIUrl":"https://doi.org/10.3390/fire6080293","url":null,"abstract":"The recent expansion of logistics capacities entails the installation of chemical warehouses, which operations increase the occurrence of compartment fires involving flammable dangerous substances. The aim of this research was to compare and analyze the fire behavior of beams made of different structural materials but with the same load capacity. It is assumed that wooden beams, which are less commonly used in industrial facilities, may have a similar or even better load-bearing capacity in case of a fire than the generally used steel beams. The authors—based on the relevant EU standards—performed load capacity calculations of three beams prepared from different materials under the influence of fire and analyzed the changes in the material properties. Then, they examined the possibility of reinforcing the beams with carbon fiber lamellae and proposed additional fire protection requirements. The test results not only proved the different degrees of fire resistance of various building materials in the event of a fire and after their reinforcement but also suggested the application of special technical, prevention and response measures for the safe storage of dangerous substances. The study outputs enable warehouse designers, operators and safety experts to ensure a higher fire safety level for chemical warehouses.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44076896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Papadogianni, A. Romeos, A. Giannadakis, K. Perrakis, T. Panidis
This research investigated potential fire hazards originating in hidden areas of pressurized sections of aircrafts. The objective was to establish a laboratory-scale flammability test method to predict the behavior of fire propagation under real fire conditions. A confined fire apparatus (CFA) was designed and constructed, and several tests were conducted to better understand the involved mechanisms and their consequences and to estimate flame spreading in hidden-zone fires. The experimental facility and flame-spreading results obtained for a typical material involved in hidden fires, specifically a ceiling panel, were presented and discussed. The experimental facility consisted of a narrow passage where a fire was initiated using a burner on a specimen exposed to a controlled heat flux. Experiments were conducted in the absence of forced airflow. Flame spreading was estimated through visual monitoring of fire development or temperature measurements at specific locations in the specimen. Both methods yielded similar results. The flame spread velocity in relation to the imposed heat flux allowed for the estimation of the critical heat flux for spreading q˙sp,cr″ and for ignition q˙ig,cr″; the corresponding temperatures, Ts,min and Tig; and the flame spread parameter Φ.
{"title":"Fire Ignition and Propagation in Hidden Zones of Aircrafts: A Novel Confined Fire Apparatus (CFA) for Flame Spreading Investigation","authors":"V. Papadogianni, A. Romeos, A. Giannadakis, K. Perrakis, T. Panidis","doi":"10.3390/fire6080292","DOIUrl":"https://doi.org/10.3390/fire6080292","url":null,"abstract":"This research investigated potential fire hazards originating in hidden areas of pressurized sections of aircrafts. The objective was to establish a laboratory-scale flammability test method to predict the behavior of fire propagation under real fire conditions. A confined fire apparatus (CFA) was designed and constructed, and several tests were conducted to better understand the involved mechanisms and their consequences and to estimate flame spreading in hidden-zone fires. The experimental facility and flame-spreading results obtained for a typical material involved in hidden fires, specifically a ceiling panel, were presented and discussed. The experimental facility consisted of a narrow passage where a fire was initiated using a burner on a specimen exposed to a controlled heat flux. Experiments were conducted in the absence of forced airflow. Flame spreading was estimated through visual monitoring of fire development or temperature measurements at specific locations in the specimen. Both methods yielded similar results. The flame spread velocity in relation to the imposed heat flux allowed for the estimation of the critical heat flux for spreading q˙sp,cr″ and for ignition q˙ig,cr″; the corresponding temperatures, Ts,min and Tig; and the flame spread parameter Φ.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42409684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the most effective methods of preventing large-scale wildfires is creating fuelbreaks, buffer zones whose purpose is to stop or delay the spread of the fire, providing firefighters an opportunity to control the fire. Fuelbreaks are already applied in several countries and have proven their effectiveness. However, creating fuelbreaks involves deforestation, so the length of the fuelbreaks should be minimized as much as possible. In this paper, we propose the implementation of a greedy Dijkstra-based fuelbreak planning algorithm which identifies locations in which fuelbreaks could significantly reduce the risk of large wildfires, at a relatively low deforestation cost. We demonstrate the stages and output of the algorithm both on artificial forests and on actual forests in Israel. We discuss the factors which determine the cost effectiveness of fuelbreaks from a tree-economy perspective and demonstrate how fuelbreaks’ effectiveness increases as large wildfires become more frequent.
{"title":"A Dijkstra-Based Approach to Fuelbreak Planning","authors":"Assaf Shmuel, E. Heifetz","doi":"10.3390/fire6080295","DOIUrl":"https://doi.org/10.3390/fire6080295","url":null,"abstract":"One of the most effective methods of preventing large-scale wildfires is creating fuelbreaks, buffer zones whose purpose is to stop or delay the spread of the fire, providing firefighters an opportunity to control the fire. Fuelbreaks are already applied in several countries and have proven their effectiveness. However, creating fuelbreaks involves deforestation, so the length of the fuelbreaks should be minimized as much as possible. In this paper, we propose the implementation of a greedy Dijkstra-based fuelbreak planning algorithm which identifies locations in which fuelbreaks could significantly reduce the risk of large wildfires, at a relatively low deforestation cost. We demonstrate the stages and output of the algorithm both on artificial forests and on actual forests in Israel. We discuss the factors which determine the cost effectiveness of fuelbreaks from a tree-economy perspective and demonstrate how fuelbreaks’ effectiveness increases as large wildfires become more frequent.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43569758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Zou, M. Sadeghi, Yaling Liu, Alexandra Puchko, Son Le, Yang Chen, N. Andela, P. Gentine
Modeling the spread of wildland fires is essential for assessing and managing fire risks. However, this task remains challenging due to the partially stochastic nature of fire behavior and the limited availability of observational data with high spatial and temporal resolutions. Herein, we propose an attention-based deep learning modeling approach that can be used to learn the complex behaviors of wildfires across different fire-prone regions. We integrate optimized spatial and channel attention modules with a convolutional neural network (CNN) modeling architecture and train the attention-based fire spread models using a recently derived fire-tracking satellite observational dataset in conjunction with corresponding fuel, terrain, and weather conditions. The evaluation results and their comparison with benchmark models, such as a deeper and more complex autoencoder model and the semi-empirical FARSITE fire behavior model, demonstrate the effectiveness of the attention-based models. These new data-driven fire spread models exhibit promising modeling performances in both the next-step prediction (i.e., predicting fire progression from one timestep earlier) and recursive prediction (i.e., recursively predicting final fire perimeters from initial ignition points) of observed large wildfires in California, and they provide a foundation for further practical applications including short-term active fire spread prediction and long-term fire risk assessment.
{"title":"Attention-Based Wildland Fire Spread Modeling Using Fire-Tracking Satellite Observations","authors":"Y. Zou, M. Sadeghi, Yaling Liu, Alexandra Puchko, Son Le, Yang Chen, N. Andela, P. Gentine","doi":"10.3390/fire6080289","DOIUrl":"https://doi.org/10.3390/fire6080289","url":null,"abstract":"Modeling the spread of wildland fires is essential for assessing and managing fire risks. However, this task remains challenging due to the partially stochastic nature of fire behavior and the limited availability of observational data with high spatial and temporal resolutions. Herein, we propose an attention-based deep learning modeling approach that can be used to learn the complex behaviors of wildfires across different fire-prone regions. We integrate optimized spatial and channel attention modules with a convolutional neural network (CNN) modeling architecture and train the attention-based fire spread models using a recently derived fire-tracking satellite observational dataset in conjunction with corresponding fuel, terrain, and weather conditions. The evaluation results and their comparison with benchmark models, such as a deeper and more complex autoencoder model and the semi-empirical FARSITE fire behavior model, demonstrate the effectiveness of the attention-based models. These new data-driven fire spread models exhibit promising modeling performances in both the next-step prediction (i.e., predicting fire progression from one timestep earlier) and recursive prediction (i.e., recursively predicting final fire perimeters from initial ignition points) of observed large wildfires in California, and they provide a foundation for further practical applications including short-term active fire spread prediction and long-term fire risk assessment.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42980620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although wildfires are a common disturbance factor to the environment, some of them can cause significant environmental and socioeconomic losses, affecting ecosystems and people worldwide. The wildfire identification and assessment of their effects on damaged forest areas is of great importance for provision of effective actions on their management and preservation. Forest regrowth after a fire is a continuously evolving and dynamic process, and the accuracy assessment of different remote sensing indices for its evaluation is a complicated task. The implementation of this task cannot rely on the standard procedures. Therefore, we suggested a method involving delineation of dynamic boundaries between conditional categories within burnt forest areas by application of spectral reflectance characteristics (SRC). This study compared the performance of firmly established for fire monitoring differenced vegetation indices—Normalized Difference Vegetation Index (dNDVI) and Normalized Burn Ratio (dNBR) and tested the capabilities of tasseled cap-derived differenced Disturbance Index (dDI) for post-fire monitoring purposes in different forest environments (Boreal Mountain Forest (BMF), Mediterranean Mountain Forest (MMF), Mediterranean Hill Forest (MHF)). The accuracy assessment of the tree indices was performed using Very High Resolution (VHR) aerial and satellite data. The results show that dDI has an optimal performance in monitoring post-fire disturbances in more difficult-to-be-differentiated classes, whereas, for post-fire regrowth, the more appropriate is dNDVI. In the first case, dDI has an overall accuracy of 50%, whereas the accuracy of dNBR and dNDVI is barely 35% and 36%. Moreover, dDI shows better performance in 16 accuracy metrics (from 17). In the second case, dNDVI has an overall accuracy of 59%, whereas those of dNBR and dDI are 55% and 52%, and the accuracy metrics in which dNDVI shows better performance than the other two indices are 11 (from 13). Generally, the studied indices showed higher accuracy in assessment of post-fire disturbance rather than of the post-fire forest regrowth, implicitly at test areas—BMF and MMF, and contrary opposite result in the accuracy at MHF. This indicates the relation of the indices’ accuracy to the heterogeneity of the environment.
{"title":"Assessment of Spectral Vegetation Indices Performance for Post-Fire Monitoring of Different Forest Environments","authors":"Daniela Avetisyan, N. Stankova, Zlatomir Dimitrov","doi":"10.3390/fire6080290","DOIUrl":"https://doi.org/10.3390/fire6080290","url":null,"abstract":"Although wildfires are a common disturbance factor to the environment, some of them can cause significant environmental and socioeconomic losses, affecting ecosystems and people worldwide. The wildfire identification and assessment of their effects on damaged forest areas is of great importance for provision of effective actions on their management and preservation. Forest regrowth after a fire is a continuously evolving and dynamic process, and the accuracy assessment of different remote sensing indices for its evaluation is a complicated task. The implementation of this task cannot rely on the standard procedures. Therefore, we suggested a method involving delineation of dynamic boundaries between conditional categories within burnt forest areas by application of spectral reflectance characteristics (SRC). This study compared the performance of firmly established for fire monitoring differenced vegetation indices—Normalized Difference Vegetation Index (dNDVI) and Normalized Burn Ratio (dNBR) and tested the capabilities of tasseled cap-derived differenced Disturbance Index (dDI) for post-fire monitoring purposes in different forest environments (Boreal Mountain Forest (BMF), Mediterranean Mountain Forest (MMF), Mediterranean Hill Forest (MHF)). The accuracy assessment of the tree indices was performed using Very High Resolution (VHR) aerial and satellite data. The results show that dDI has an optimal performance in monitoring post-fire disturbances in more difficult-to-be-differentiated classes, whereas, for post-fire regrowth, the more appropriate is dNDVI. In the first case, dDI has an overall accuracy of 50%, whereas the accuracy of dNBR and dNDVI is barely 35% and 36%. Moreover, dDI shows better performance in 16 accuracy metrics (from 17). In the second case, dNDVI has an overall accuracy of 59%, whereas those of dNBR and dDI are 55% and 52%, and the accuracy metrics in which dNDVI shows better performance than the other two indices are 11 (from 13). Generally, the studied indices showed higher accuracy in assessment of post-fire disturbance rather than of the post-fire forest regrowth, implicitly at test areas—BMF and MMF, and contrary opposite result in the accuracy at MHF. This indicates the relation of the indices’ accuracy to the heterogeneity of the environment.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47169948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Palma, F. Gallucci, S. Papandrea, M. Carnevale, E. Paris, B. Vincenti, M. Salerno, Valerio Di Stefano, A. Proto
Agro-industrial activities generate a great amount of bioproducts as biomass residues containing energy and with potentially useful applications in the thermochemical conversion process. The management of this feedstock as uncontrolled combustion (“open burning”) can often be a problem within the supply chain for disposal practices, both in environmental and economic aspects. The residual matrices from agroforestry biomass processing can be treated to increase their energy levels and economic value. A widespread practice for sustainable disposal is the production of pellets from residual biomass, such as pruning. The aim of this study is to explore the combustion of pellets obtained from olive and citrus pruning, and their emissions into the atmosphere. This study confirms the possibility of using waste biomass to obtain a high-energy biofuel that is usable in a controlled combustion system and to monitor the process and its related emissions (CO, CO2, NOx, SO2, PM). Three different pellets (olive pellet, citrus pellet and a pellet obtained from a mix of olive and citrus) were characterized to determine their physicochemical properties and burned in an 80 kWth boiler equipped with multicyclone filter bags as an abatement system to evaluate relative emission. The characterization results show that citrus pellet has a higher ash content, moisture content and lower energy value than mixtures of olive pellet. The emission results suggest that, during combustion, higher emissions of CO and SO2 were monitored from mixtures of citrus pellet compared to burning only olive pellet.
{"title":"Experimental Study of the Combustion of and Emissions from Olive and Citrus Pellets in a Small Boiler","authors":"A. Palma, F. Gallucci, S. Papandrea, M. Carnevale, E. Paris, B. Vincenti, M. Salerno, Valerio Di Stefano, A. Proto","doi":"10.3390/fire6080288","DOIUrl":"https://doi.org/10.3390/fire6080288","url":null,"abstract":"Agro-industrial activities generate a great amount of bioproducts as biomass residues containing energy and with potentially useful applications in the thermochemical conversion process. The management of this feedstock as uncontrolled combustion (“open burning”) can often be a problem within the supply chain for disposal practices, both in environmental and economic aspects. The residual matrices from agroforestry biomass processing can be treated to increase their energy levels and economic value. A widespread practice for sustainable disposal is the production of pellets from residual biomass, such as pruning. The aim of this study is to explore the combustion of pellets obtained from olive and citrus pruning, and their emissions into the atmosphere. This study confirms the possibility of using waste biomass to obtain a high-energy biofuel that is usable in a controlled combustion system and to monitor the process and its related emissions (CO, CO2, NOx, SO2, PM). Three different pellets (olive pellet, citrus pellet and a pellet obtained from a mix of olive and citrus) were characterized to determine their physicochemical properties and burned in an 80 kWth boiler equipped with multicyclone filter bags as an abatement system to evaluate relative emission. The characterization results show that citrus pellet has a higher ash content, moisture content and lower energy value than mixtures of olive pellet. The emission results suggest that, during combustion, higher emissions of CO and SO2 were monitored from mixtures of citrus pellet compared to burning only olive pellet.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48925341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}