In fire-prone ecosystems, plant resilience to recurrent fires depends on certain fire-adaptive traits. However, how key functional and reproductive traits of graminoids respond to varying burning seasons is poorly understood. This meta-analysis, therefore, unpacks global perspectives on how resprouting, growth, reproductive, and productivity traits of graminoids (grasses and sedges) respond to different burning seasons. We recorded 569 observations from 80 experimental studies comparing graminoid plant trait responses in unburned vs. burned treatments over different seasons of burn. Weighted log response ratios and 95% confidence intervals (95%CI) were analyzed for each plant trait using random effects models and compared across burning seasons. Summer (0.35 (95%CI = 0.25 to 0.46)) and autumn burns (0.24 (95%CI = 0.16 to 0.31)) increased above-ground biomass m−2, while biomass plant−1 was increased only by spring burns (0.27 (95%CI = 0.22 to 0.32)). Bud production plant−1 and tiller−1 were reduced significantly by fire, especially spring, summer, and autumn burns. The shoot height (0.29 (95%CI = 0.17 to 0.41)), leaf length (0.15 (95%CI = 0.11 to 0.20)), and specific leaf area (0.08 (95%CI = 0.06 to 0.09)) increased only under summer burns, while flowering was enhanced by spring (0.19 (95%CI = 0.00 to 0.38)) and autumn burns [0.34 (95%CI = 0.02 to 0.66)]. However, seed production m−2 was reduced by spring and summer burns and the opposite was true for seed production plant−1. Overall, herbaceous plant trait responses to fire varied by the season of burn, disagreeing with the general principle that early spring burning is the best practice. We suggest that a decision on the season of burn should be informed by the objective of burning.
{"title":"A Global Perspective of the Functional Trait Responses of Graminoids to the Seasonality of Fire","authors":"M. Mndela, Humphrey K. Thamaga, B. Gusha","doi":"10.3390/fire6090329","DOIUrl":"https://doi.org/10.3390/fire6090329","url":null,"abstract":"In fire-prone ecosystems, plant resilience to recurrent fires depends on certain fire-adaptive traits. However, how key functional and reproductive traits of graminoids respond to varying burning seasons is poorly understood. This meta-analysis, therefore, unpacks global perspectives on how resprouting, growth, reproductive, and productivity traits of graminoids (grasses and sedges) respond to different burning seasons. We recorded 569 observations from 80 experimental studies comparing graminoid plant trait responses in unburned vs. burned treatments over different seasons of burn. Weighted log response ratios and 95% confidence intervals (95%CI) were analyzed for each plant trait using random effects models and compared across burning seasons. Summer (0.35 (95%CI = 0.25 to 0.46)) and autumn burns (0.24 (95%CI = 0.16 to 0.31)) increased above-ground biomass m−2, while biomass plant−1 was increased only by spring burns (0.27 (95%CI = 0.22 to 0.32)). Bud production plant−1 and tiller−1 were reduced significantly by fire, especially spring, summer, and autumn burns. The shoot height (0.29 (95%CI = 0.17 to 0.41)), leaf length (0.15 (95%CI = 0.11 to 0.20)), and specific leaf area (0.08 (95%CI = 0.06 to 0.09)) increased only under summer burns, while flowering was enhanced by spring (0.19 (95%CI = 0.00 to 0.38)) and autumn burns [0.34 (95%CI = 0.02 to 0.66)]. However, seed production m−2 was reduced by spring and summer burns and the opposite was true for seed production plant−1. Overall, herbaceous plant trait responses to fire varied by the season of burn, disagreeing with the general principle that early spring burning is the best practice. We suggest that a decision on the season of burn should be informed by the objective of burning.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46387777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bojan Mihajlovski, P. Fernandes, J. Pereira, J. Guerra-Hernández
Wildfires burn millions of hectares of forest worldwide every year, and this trend is expected to continue growing under current and future climate scenarios. As a result, accurate knowledge of fuel conditions and fuel type mapping are important for assessing fire hazards and predicting fire behavior. In this study, 499 plots in six different areas in Portugal were surveyed by ALS and multisource RS, and the data thus obtained were used to evaluate a nationwide fuel classification. Random Forest (RF) and CART models were used to evaluate fuel models based on ALS (5 and 10 pulse/m2), Sentinel Imagery (Multispectral Sentinel 2 (S2) and SAR (Synthetic Aperture RaDaR) data (C-band (Sentinel 1 (S1)) and Phased Array L-band data (PALSAR-2/ALOS-2 Satellite) metrics. The specific goals of the study were as follows: (1) to develop simple CART and RF models to classify the four main fuel types in Portugal in terms of horizontal and vertical structure based on field-acquired ALS data; (2) to analyze the effect of canopy cover on fuel type classification; (3) to investigate the use of different ALS pulse densities to classify the fuel types; (4) to map a more complex classification of fuel using a multi-sensor approach and the RF method. The results indicate that use of ALS metrics (only) was a powerful way of accurately classifying the main four fuel types, with OA = 0.68. In terms of canopy cover, the best results were estimated in sparse forest, with an OA = 0.84. The effect of ALS pulse density on fuel classification indicates that 10 points m−2 data yielded better results than 5 points m−2 data, with OA = 0.78 and 0.71, respectively. Finally, the multi-sensor approach with RF successfully classified 13 fuel models in Portugal, with moderate OA = 0.44. Fuel mapping studies could be improved by generating more homogenous fuel models (in terms of structure and composition), increasing the number of sample plots and also by increasing the representativeness of each fuel model.
{"title":"Comparing Forest Understory Fuel Classification in Portugal Using Discrete Airborne Laser Scanning Data and Satellite Multi-Source Remote Sensing Data","authors":"Bojan Mihajlovski, P. Fernandes, J. Pereira, J. Guerra-Hernández","doi":"10.3390/fire6090327","DOIUrl":"https://doi.org/10.3390/fire6090327","url":null,"abstract":"Wildfires burn millions of hectares of forest worldwide every year, and this trend is expected to continue growing under current and future climate scenarios. As a result, accurate knowledge of fuel conditions and fuel type mapping are important for assessing fire hazards and predicting fire behavior. In this study, 499 plots in six different areas in Portugal were surveyed by ALS and multisource RS, and the data thus obtained were used to evaluate a nationwide fuel classification. Random Forest (RF) and CART models were used to evaluate fuel models based on ALS (5 and 10 pulse/m2), Sentinel Imagery (Multispectral Sentinel 2 (S2) and SAR (Synthetic Aperture RaDaR) data (C-band (Sentinel 1 (S1)) and Phased Array L-band data (PALSAR-2/ALOS-2 Satellite) metrics. The specific goals of the study were as follows: (1) to develop simple CART and RF models to classify the four main fuel types in Portugal in terms of horizontal and vertical structure based on field-acquired ALS data; (2) to analyze the effect of canopy cover on fuel type classification; (3) to investigate the use of different ALS pulse densities to classify the fuel types; (4) to map a more complex classification of fuel using a multi-sensor approach and the RF method. The results indicate that use of ALS metrics (only) was a powerful way of accurately classifying the main four fuel types, with OA = 0.68. In terms of canopy cover, the best results were estimated in sparse forest, with an OA = 0.84. The effect of ALS pulse density on fuel classification indicates that 10 points m−2 data yielded better results than 5 points m−2 data, with OA = 0.78 and 0.71, respectively. Finally, the multi-sensor approach with RF successfully classified 13 fuel models in Portugal, with moderate OA = 0.44. Fuel mapping studies could be improved by generating more homogenous fuel models (in terms of structure and composition), increasing the number of sample plots and also by increasing the representativeness of each fuel model.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48368781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iacopo Bassi, Claudia Bandinelli, Francesca Delchiaro, Marco Piana, Gianluca Sarti
Regulation (EU) No 305/2011 lays down harmonized conditions for marketing construction products in the European Union. One of its consequences has been the introduction of the product standard EN 50575 and standard EN 130501-6, concerning power, control, and communication cables permanently installed in buildings to prevent the risk of a fire and its consequences. EN 13501-6 provides the reaction to fire classifications for cables, the test methods to be performed, the requirements to meet a specific reaction to fire, and additional classifications for smoke production, flaming droplets, and acidity. It requires EN 60754-2 as the technical standard to assess acidity, and it defines three classes: a1, a2, and a3 (the less performant). Due to the release of hydrogen chloride during the combustion, acidity is the weak point of PVC cables, which are not yet capable of achieving the a1 or a2 classes required for specific locations according to fire risk assessments. EN 13501-6 does not include EN 60754-1, used in harmonized standards outside the scope of Regulation (EU) No 305/2011. EN 60754-1 and EN 60754-2 are common standards for determining halogen gas content, and acidity/conductivity, respectively. While they involve the same type of test apparatus, they differ in heating regimes, final temperatures, and detection methods. In particular, EN 60754-2 requires testing at temperatures between 935–965 °C in the tube furnace, where the sample burns, the smoke is collected in bubblers, and pH and conductivity are measured as an indirect assessment of acidity. On the other hand, the temperature regime of EN 60754-1 is a gradual heating run, followed by isothermal heating at 800 °C. The paper shows that when potent acid scavengers are used in PVC compounds, performing EN 60754-2 with the thermal profile of EN 60754-1 or at 500 °C in isothermal conditions, the evolution of hydrogen chloride changes significantly up to 10 times less than the test performed in isothermal at 950 °C. The reason lies behind the kinetic of hydrogen chloride release during the combustion of PVC compounds: the higher the temperature or faster the heat release, the quicker hydrogen chloride evolution and the lower the probability for the acid scavenger to trap it. Thus, these findings emphasize the “fragility” of EN 60754-2 as a tool for assessing risks associated with the release of hydrogen chloride during fires.
法规(EU) No 305/2011规定了在欧盟销售建筑产品的协调条件。其结果之一是引入了产品标准EN 50575和标准EN 130501-6,涉及永久安装在建筑物中的电源,控制和通信电缆,以防止火灾及其后果的风险。EN 13501-6提供了电缆对火灾的反应分类,要执行的测试方法,满足特定火灾反应的要求,以及烟雾产生,燃烧液滴和酸度的额外分类。它要求EN 60754-2作为评估酸度的技术标准,并定义了三个等级:a1, a2和a3(性能较差)。由于在燃烧过程中会释放出氯化氢,酸性是PVC电缆的弱点,根据火灾风险评估,PVC电缆还不能达到特定场所所需的a1或a2等级。EN 13501-6不包括EN 60754-1,用于法规(EU) No 305/2011范围之外的协调标准。EN 60754-1和EN 60754-2分别是测定卤素气体含量和酸度/电导率的通用标准。虽然它们涉及相同类型的测试设备,但它们在加热制度,最终温度和检测方法上有所不同。特别是,EN 60754-2要求在管式炉中在935-965°C的温度下进行测试,其中样品燃烧,烟雾收集在起泡器中,并测量pH值和电导率作为酸度的间接评估。另一方面,EN 60754-1的温度制度是一个渐进的加热运行,然后是800°C的等温加热。该论文表明,当在PVC化合物中使用强效酸清除剂时,在EN 60754-2和EN 60754-1的热分布或在500°C等温条件下,氯化氢的演变变化明显小于在950°C等温条件下进行的测试的10倍。其原因在于聚氯乙烯化合物燃烧过程中氯化氢释放的动力学:温度越高或释放热量越快,氯化氢的释放速度越快,酸清除剂捕获氯化氢的可能性越低。因此,这些发现强调了EN 60754-2作为评估火灾中氯化氢释放相关风险的工具的“脆弱性”。
{"title":"A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC Cables in Fires V: Comparison between EN 60754-1 and EN 60754-2","authors":"Iacopo Bassi, Claudia Bandinelli, Francesca Delchiaro, Marco Piana, Gianluca Sarti","doi":"10.3390/fire6080326","DOIUrl":"https://doi.org/10.3390/fire6080326","url":null,"abstract":"Regulation (EU) No 305/2011 lays down harmonized conditions for marketing construction products in the European Union. One of its consequences has been the introduction of the product standard EN 50575 and standard EN 130501-6, concerning power, control, and communication cables permanently installed in buildings to prevent the risk of a fire and its consequences. EN 13501-6 provides the reaction to fire classifications for cables, the test methods to be performed, the requirements to meet a specific reaction to fire, and additional classifications for smoke production, flaming droplets, and acidity. It requires EN 60754-2 as the technical standard to assess acidity, and it defines three classes: a1, a2, and a3 (the less performant). Due to the release of hydrogen chloride during the combustion, acidity is the weak point of PVC cables, which are not yet capable of achieving the a1 or a2 classes required for specific locations according to fire risk assessments. EN 13501-6 does not include EN 60754-1, used in harmonized standards outside the scope of Regulation (EU) No 305/2011. EN 60754-1 and EN 60754-2 are common standards for determining halogen gas content, and acidity/conductivity, respectively. While they involve the same type of test apparatus, they differ in heating regimes, final temperatures, and detection methods. In particular, EN 60754-2 requires testing at temperatures between 935–965 °C in the tube furnace, where the sample burns, the smoke is collected in bubblers, and pH and conductivity are measured as an indirect assessment of acidity. On the other hand, the temperature regime of EN 60754-1 is a gradual heating run, followed by isothermal heating at 800 °C. The paper shows that when potent acid scavengers are used in PVC compounds, performing EN 60754-2 with the thermal profile of EN 60754-1 or at 500 °C in isothermal conditions, the evolution of hydrogen chloride changes significantly up to 10 times less than the test performed in isothermal at 950 °C. The reason lies behind the kinetic of hydrogen chloride release during the combustion of PVC compounds: the higher the temperature or faster the heat release, the quicker hydrogen chloride evolution and the lower the probability for the acid scavenger to trap it. Thus, these findings emphasize the “fragility” of EN 60754-2 as a tool for assessing risks associated with the release of hydrogen chloride during fires.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42062917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Hassan, Nazra Hameed, Md. Delwar Hossain, Md Rayhan Hasnat, Grahame Douglas, S. Pathirana, P. Rahnamayiezekavat, S. Saha
Electric Vehicles (EVs) offer a promising solution to reduce the environmental impact compared to internal combustion engine vehicles. However, EV adoption in Australia has been hindered by concerns over fire safety. This study aims to comprehensively analyse EV fire risks and trends in Australia, including those related to charging stations and lithium-ion batteries. The research utilises secondary data from various reputable sources to develop statistical forecasting models, which estimate that Australia will have approximately 1.73 million EVs by 2030 and 15.8 million by 2050. The study reveals an average EV fire frequency of six fires per million EVs in Australia, aligning with the global average. Consequently, Australia is expected to experience 9 to 10 EV fire incidents annually in 2030, 37 to 42 EV fire incidents annually in 2040, and 84 to 95 EV fire incidents annually in 2050. To address these risks, an EV fire risk control framework is considered to identify and recommend appropriate measures for life safety, lithium-ion batteries, charging, EV handling, and EV locations. This research provides vital evidence for regulators, policymakers, and the fire industry to effectively manage EV fire risks and enhance preparedness for the growing EV market in Australia.
{"title":"Fire Incidents, Trends, and Risk Mitigation Framework of Electrical Vehicle Cars in Australia","authors":"M. Hassan, Nazra Hameed, Md. Delwar Hossain, Md Rayhan Hasnat, Grahame Douglas, S. Pathirana, P. Rahnamayiezekavat, S. Saha","doi":"10.3390/fire6080325","DOIUrl":"https://doi.org/10.3390/fire6080325","url":null,"abstract":"Electric Vehicles (EVs) offer a promising solution to reduce the environmental impact compared to internal combustion engine vehicles. However, EV adoption in Australia has been hindered by concerns over fire safety. This study aims to comprehensively analyse EV fire risks and trends in Australia, including those related to charging stations and lithium-ion batteries. The research utilises secondary data from various reputable sources to develop statistical forecasting models, which estimate that Australia will have approximately 1.73 million EVs by 2030 and 15.8 million by 2050. The study reveals an average EV fire frequency of six fires per million EVs in Australia, aligning with the global average. Consequently, Australia is expected to experience 9 to 10 EV fire incidents annually in 2030, 37 to 42 EV fire incidents annually in 2040, and 84 to 95 EV fire incidents annually in 2050. To address these risks, an EV fire risk control framework is considered to identify and recommend appropriate measures for life safety, lithium-ion batteries, charging, EV handling, and EV locations. This research provides vital evidence for regulators, policymakers, and the fire industry to effectively manage EV fire risks and enhance preparedness for the growing EV market in Australia.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45105495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bolun Li, Wei Zhang, Yucheng Li, Zhitao Zhang, Jinyang Dong, Y. Cui
Semiclosed tunnels are very common in engineering construction. They are not connected, so they easily accumulate heat. Once a fire breaks out in a semiclosed tunnel, the route for rescue workers to enter is limited, so it is tough to get close to the fire source. In this paper, taking a mine excavation roadway with local pressure ventilation as an example, the temperature field distribution and water spray fire prevention characteristics of the excavation roadway face were studied using numerical simulation and theoretical analysis. This paper provides an explanation of a dynamics-based smoke management method for water spraying in a semiclosed tunnel as well as the equilibrium relationship between droplet drag force and smoke buoyancy. A method was first developed to calculate the quantity of smoke blockage based on the thickness of the smoke congestion. The local ventilation and smoke movement created a circulating flow in the excavation face, which was discovered by investigating the velocity and temperature fields of the excavation face. The size of the high-temperature area and the pattern of temperature stratification varied due to this circulating flow. When local ventilation and sprinkler systems were operating simultaneously, when the volume of smoke was small, the smoke avoided the majority of the water spray effect with the circulation flow; however, when the volume of smoke was large, the effect of the circulation flow decreased and the smoke gathered close to the sprinkler head. At this time, the blocking effect of the water spray was significant. The mean square error analysis revealed that activating the sprinkler had the most significant cooling impact on the wall on one side of the air duct.
{"title":"Study on the Temperature and Smoke Movement in the Event of a Fire in a Semiclosed Tunnel under Water Spray","authors":"Bolun Li, Wei Zhang, Yucheng Li, Zhitao Zhang, Jinyang Dong, Y. Cui","doi":"10.3390/fire6080324","DOIUrl":"https://doi.org/10.3390/fire6080324","url":null,"abstract":"Semiclosed tunnels are very common in engineering construction. They are not connected, so they easily accumulate heat. Once a fire breaks out in a semiclosed tunnel, the route for rescue workers to enter is limited, so it is tough to get close to the fire source. In this paper, taking a mine excavation roadway with local pressure ventilation as an example, the temperature field distribution and water spray fire prevention characteristics of the excavation roadway face were studied using numerical simulation and theoretical analysis. This paper provides an explanation of a dynamics-based smoke management method for water spraying in a semiclosed tunnel as well as the equilibrium relationship between droplet drag force and smoke buoyancy. A method was first developed to calculate the quantity of smoke blockage based on the thickness of the smoke congestion. The local ventilation and smoke movement created a circulating flow in the excavation face, which was discovered by investigating the velocity and temperature fields of the excavation face. The size of the high-temperature area and the pattern of temperature stratification varied due to this circulating flow. When local ventilation and sprinkler systems were operating simultaneously, when the volume of smoke was small, the smoke avoided the majority of the water spray effect with the circulation flow; however, when the volume of smoke was large, the effect of the circulation flow decreased and the smoke gathered close to the sprinkler head. At this time, the blocking effect of the water spray was significant. The mean square error analysis revealed that activating the sprinkler had the most significant cooling impact on the wall on one side of the air duct.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43413689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pascal Vorwerk, J. Kelleter, Steffen Müller, Ulrich Krause
This work analyzes a new indoor laboratory dataset looking at early fire indicators in controlled and realistic experiments representing different incipient fire scenarios. The experiments were performed within the constraints of an indoor laboratory setting using multiple distributed sensor nodes in different room positions. Each sensor node collected data of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), ultraviolet radiation (UV), air temperature, and humidity in terms of a multivariate time series. These data hold immense value for researchers within the machine learning and data science communities who are keen to explore innovative and advanced statistical and machine learning techniques. They serve as a valuable resource for the development of early fire detection systems. The analysis of the collected data was carried out depending on the Manhattan distance between the fire source and the sensor node. We found that especially larger particles (>0.5 μm) and VOCs show a significant dependency with respect to the intensity as a function of the Manhattan distance to the source. Moreover, we observed differences in the propagation behavior of VOCs, PM, and CO, which are particularly relevant in incipient fire scenarios due to the presence of strand propagation effects.
{"title":"Distance-Based Analysis of Early Fire Indicators on a New Indoor Laboratory Dataset with Distributed Multi-Sensor Nodes","authors":"Pascal Vorwerk, J. Kelleter, Steffen Müller, Ulrich Krause","doi":"10.3390/fire6080323","DOIUrl":"https://doi.org/10.3390/fire6080323","url":null,"abstract":"This work analyzes a new indoor laboratory dataset looking at early fire indicators in controlled and realistic experiments representing different incipient fire scenarios. The experiments were performed within the constraints of an indoor laboratory setting using multiple distributed sensor nodes in different room positions. Each sensor node collected data of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), ultraviolet radiation (UV), air temperature, and humidity in terms of a multivariate time series. These data hold immense value for researchers within the machine learning and data science communities who are keen to explore innovative and advanced statistical and machine learning techniques. They serve as a valuable resource for the development of early fire detection systems. The analysis of the collected data was carried out depending on the Manhattan distance between the fire source and the sensor node. We found that especially larger particles (>0.5 μm) and VOCs show a significant dependency with respect to the intensity as a function of the Manhattan distance to the source. Moreover, we observed differences in the propagation behavior of VOCs, PM, and CO, which are particularly relevant in incipient fire scenarios due to the presence of strand propagation effects.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45725303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Ritter, C. Hoffman, M. Battaglia, R. Linn, W. Mell
A deeper understanding of the influence of fine-scale fuel patterns on fire behavior is essential to the design of forest treatments that aim to reduce fire hazard, enhance structural complexity, and increase ecosystem function and resilience. Of particular relevance is the impact of horizontal and vertical forest structure on potential tree torching and large-tree mortality. It may be the case that fire behavior in spatially complex stands differs from predictions based on stand-level descriptors of the fuel distribution and structure. In this work, we used a spatially explicit fire behavior model to evaluate how the vertical and horizontal distribution of fuels influences the potential for fire to travel from the surface into overstory tree crowns. Our results support the understanding that crown fuels (e.g., needles and small-diameter branchwood) close to the surface can aid in this transition; however, we add important nuance by showing the interactive effect of overstory horizontal fuel connectivity. The influence of fuels low in the canopy space was overridden by the effect of horizontal connectivity at surface fire-line intensities greater than 1415 kW/m. For example, tree groups with vertically continuous fuels and limited horizontal connectivity sustained less large-tree consumption than tree groups with a significant vertical gap between the surface and canopy but high-canopy horizontal connectivity. This effect was likely the result of reduced net vertical heat transfer as well as decreased horizontal heat transfer, or crown-to-crown spread, in the upper canopy. These results suggest that the crown fire hazard represented by vertically complex tree groups is strongly mediated by the density, or horizontal connectivity, of the tree crowns within the group, and therefore, managers may be able to mitigate some of the torching hazard associated with vertically heterogenous tree groups.
{"title":"Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption","authors":"S. Ritter, C. Hoffman, M. Battaglia, R. Linn, W. Mell","doi":"10.3390/fire6080321","DOIUrl":"https://doi.org/10.3390/fire6080321","url":null,"abstract":"A deeper understanding of the influence of fine-scale fuel patterns on fire behavior is essential to the design of forest treatments that aim to reduce fire hazard, enhance structural complexity, and increase ecosystem function and resilience. Of particular relevance is the impact of horizontal and vertical forest structure on potential tree torching and large-tree mortality. It may be the case that fire behavior in spatially complex stands differs from predictions based on stand-level descriptors of the fuel distribution and structure. In this work, we used a spatially explicit fire behavior model to evaluate how the vertical and horizontal distribution of fuels influences the potential for fire to travel from the surface into overstory tree crowns. Our results support the understanding that crown fuels (e.g., needles and small-diameter branchwood) close to the surface can aid in this transition; however, we add important nuance by showing the interactive effect of overstory horizontal fuel connectivity. The influence of fuels low in the canopy space was overridden by the effect of horizontal connectivity at surface fire-line intensities greater than 1415 kW/m. For example, tree groups with vertically continuous fuels and limited horizontal connectivity sustained less large-tree consumption than tree groups with a significant vertical gap between the surface and canopy but high-canopy horizontal connectivity. This effect was likely the result of reduced net vertical heat transfer as well as decreased horizontal heat transfer, or crown-to-crown spread, in the upper canopy. These results suggest that the crown fire hazard represented by vertically complex tree groups is strongly mediated by the density, or horizontal connectivity, of the tree crowns within the group, and therefore, managers may be able to mitigate some of the torching hazard associated with vertically heterogenous tree groups.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46026307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Externally bonded fiber-reinforced polymers (FRPs) have been widely used for strengthening and retrofitting applications. However, their efficacy is hindered by the poor resistance of their epoxy resins to elevated temperatures and their limited compatibility with concrete substrates. To address these limitations, fabric-reinforced cementitious matrix (FRCM), also known as textile reinforced mortar (TRM), systems have emerged as an alternative solution. In this study, experimental tests were performed on concrete cylinders confined with FRCM systems that consisted of mineral mortar and poliparafenilenbenzobisoxazole fabric (PBO). The cylinders with concrete strengths of 30, 45, and 70 MPa, were confined with one or two FRCM layers, and were subjected to different target temperatures (100, 400, and 800 °C). The experimental results highlighted the confinement effect of FRCMs on the compressive strength of the tested cylinders. Cylinders exposed to 100 °C exhibited a slight increase in their compressive strength, while no specific trend was observed in the compressive strength of cylinders heated to 400 °C. Specimens heated up to 800 °C experienced a significant reduction in strength, reaching up to 82%.
{"title":"Experimental Investigation of Concrete Cylinders Confined with PBO FRCM Exposed to Elevated Temperatures","authors":"Reem Talo, F. Abed, Ahmed El Refai, Yazan Alhoubi","doi":"10.3390/fire6080322","DOIUrl":"https://doi.org/10.3390/fire6080322","url":null,"abstract":"Externally bonded fiber-reinforced polymers (FRPs) have been widely used for strengthening and retrofitting applications. However, their efficacy is hindered by the poor resistance of their epoxy resins to elevated temperatures and their limited compatibility with concrete substrates. To address these limitations, fabric-reinforced cementitious matrix (FRCM), also known as textile reinforced mortar (TRM), systems have emerged as an alternative solution. In this study, experimental tests were performed on concrete cylinders confined with FRCM systems that consisted of mineral mortar and poliparafenilenbenzobisoxazole fabric (PBO). The cylinders with concrete strengths of 30, 45, and 70 MPa, were confined with one or two FRCM layers, and were subjected to different target temperatures (100, 400, and 800 °C). The experimental results highlighted the confinement effect of FRCMs on the compressive strength of the tested cylinders. Cylinders exposed to 100 °C exhibited a slight increase in their compressive strength, while no specific trend was observed in the compressive strength of cylinders heated to 400 °C. Specimens heated up to 800 °C experienced a significant reduction in strength, reaching up to 82%.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46154359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To accurately simulate realistic pedestrian evacuation from a fire, a cellular automaton model of the dynamic changes in pedestrian movement parameters is developed in conjunction with fire dynamics software. The fire dynamics software is used to simulate the spread of smoke within the scene to obtain visibility and CO concentration data within the scene. We imported the smoke data into the cellular automata and adjusted the pedestrian movement speed over time, resulting in simulation data that closely align with reality. The results show that for the single-room scenario, as pedestrian density increased from 0.1 to 0.5 persons per square meter (p/m2), the influence of the percentage of pedestrians familiar with their location on evacuation efficiency decreased from 44.93% to 24.52%. Conversely, in the multi-room scenario, it increased from 23.68% to 38.79%. The proportion of pedestrians less affected by smoke decreases and stabilizes as the CO yield increases. In the single-room scenario, when the CO yield is below 10%, the crowd with a low percentage of pedestrians familiar with the site is more affected by smoke than those with a high percentage. In the multi-room scenario, the victimization rate of the crowd follows an increasing-then-decreasing curve, ultimately stabilizing with changes in CO yield.
{"title":"Cellular Automaton Model for Pedestrian Evacuation Considering Impacts of Fire Products","authors":"Yuechan Liu, Junyan Li, Chao Sun","doi":"10.3390/fire6080320","DOIUrl":"https://doi.org/10.3390/fire6080320","url":null,"abstract":"To accurately simulate realistic pedestrian evacuation from a fire, a cellular automaton model of the dynamic changes in pedestrian movement parameters is developed in conjunction with fire dynamics software. The fire dynamics software is used to simulate the spread of smoke within the scene to obtain visibility and CO concentration data within the scene. We imported the smoke data into the cellular automata and adjusted the pedestrian movement speed over time, resulting in simulation data that closely align with reality. The results show that for the single-room scenario, as pedestrian density increased from 0.1 to 0.5 persons per square meter (p/m2), the influence of the percentage of pedestrians familiar with their location on evacuation efficiency decreased from 44.93% to 24.52%. Conversely, in the multi-room scenario, it increased from 23.68% to 38.79%. The proportion of pedestrians less affected by smoke decreases and stabilizes as the CO yield increases. In the single-room scenario, when the CO yield is below 10%, the crowd with a low percentage of pedestrians familiar with the site is more affected by smoke than those with a high percentage. In the multi-room scenario, the victimization rate of the crowd follows an increasing-then-decreasing curve, ultimately stabilizing with changes in CO yield.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42124433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Misyura, V. Morozov, I. Donskoy, N. Shlegel, V. Dorokhov
The process of combustion of a liquid fuel layer (diesel, kerosene, gasoline, separated petroleum, and oil) in the presence of CO2 hydrate has been studied. These fuels are widely used in engineering, which explains the great interest in effective methods of extinguishing. Extinguishing liquid fuels is quite a complicated scientific and technical task. It is often necessary to deal with fire extinction during oil spills and at fuel burning in large containers outdoors and in warehouses. Recently, attention to new extinguishing methods has increased. Advances in technology of the production, storage, and transportation of inert gas hydrates enhance the opportunities of using CO2 hydrate for extinguishing liquid fuels. Previous studies have shown a fairly high efficiency of CO2 hydrate (compared to water spray) in the extinction of volumetric fires. To date, there are neither experimental data nor methods for determining the dissociation rate of CO2 hydrate powder at the time of the gas hydrate fall on the burning layer of liquid fuel. The value of the dissociation rate is important to know in order to determine the temperatures of stable combustion and, accordingly, the mass of CO2 hydrate required to extinguish the flame. For the first time, a method jointly accounting for both the combustion of liquid fuel and the dissociation rate of the falling powder of gas hydrate at a negative temperature is proposed. The combustion stability depends on many factors. This paper defines three characteristic modes of evaporation of a liquid fuel layer, depending on the prevalence of vapor diffusion or free gas convection. The influence of the diameter and height of the layer on the nature of fuel evaporation is investigated.
{"title":"Combustion of Liquid Fuels in the Presence of CO2 Hydrate Powder","authors":"S. Misyura, V. Morozov, I. Donskoy, N. Shlegel, V. Dorokhov","doi":"10.3390/fire6080318","DOIUrl":"https://doi.org/10.3390/fire6080318","url":null,"abstract":"The process of combustion of a liquid fuel layer (diesel, kerosene, gasoline, separated petroleum, and oil) in the presence of CO2 hydrate has been studied. These fuels are widely used in engineering, which explains the great interest in effective methods of extinguishing. Extinguishing liquid fuels is quite a complicated scientific and technical task. It is often necessary to deal with fire extinction during oil spills and at fuel burning in large containers outdoors and in warehouses. Recently, attention to new extinguishing methods has increased. Advances in technology of the production, storage, and transportation of inert gas hydrates enhance the opportunities of using CO2 hydrate for extinguishing liquid fuels. Previous studies have shown a fairly high efficiency of CO2 hydrate (compared to water spray) in the extinction of volumetric fires. To date, there are neither experimental data nor methods for determining the dissociation rate of CO2 hydrate powder at the time of the gas hydrate fall on the burning layer of liquid fuel. The value of the dissociation rate is important to know in order to determine the temperatures of stable combustion and, accordingly, the mass of CO2 hydrate required to extinguish the flame. For the first time, a method jointly accounting for both the combustion of liquid fuel and the dissociation rate of the falling powder of gas hydrate at a negative temperature is proposed. The combustion stability depends on many factors. This paper defines three characteristic modes of evaporation of a liquid fuel layer, depending on the prevalence of vapor diffusion or free gas convection. The influence of the diameter and height of the layer on the nature of fuel evaporation is investigated.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49508564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}