Many important and interesting hypotheses about cultural evolution are evaluated using cross-cultural correlations: if knowing one particular feature of a culture (e.g. environmental conditions such as temperature, humidity or parasite load) allows you to predict other features (e.g. language features, religious beliefs, cuisine), it is often interpreted as indicating a causal link between the two (e.g. hotter climates carry greater disease risk, which encourages belief in supernatural forces and favours the use of antimicrobial ingredients in food preparation; dry climates make the production of distinct tones more difficult). However, testing such hypotheses from cross-cultural comparisons requires us to take proximity of cultures into account: nearby cultures share many aspects of their environment and are more likely to be similar in many culturally inherited traits. This can generate indirect associations between environment and culture which could be misinterpreted as signals of a direct causal link. Evaluating examples of cross-cultural correlations from the literature, we show that significant correlations interpreted as causal relationships can often be explained as a result of similarity between neighbouring cultures. We discuss some strategies for sorting the explanatory wheat from the co-varying chaff, distinguishing incidental correlations from causal relationships.
Humans have adapted to an immense array of environments by accumulating culturally transmitted knowledge and skills. Adaptive culture can accumulate either via more distinct cultural traits or via improvements of existing cultural traits. The kind of culture that accumulates depends on, and coevolves with, the social structure of societies. Here, we show that the coevolution of learning networks and cumulative culture results in two distinct pathways to cultural adaptation: highly connected populations with high proficiency but low trait diversity vs. sparsely connected populations with low proficiency but higher trait diversity. Importantly, we show there is a conflict between group-level payoffs, which are maximised in highly connected groups that attain high proficiency, and individual level selection, which favours disconnection. This conflict emerges from the interaction of social learning with population structure and causes populations to cycle between the two cultural and network states. The same conflict creates a paradox where increasing innovation rate lowers group payoffs. Finally, we explore how populations navigate these two pathways in environments where payoffs differ among traits and can change over time, showing that high proficiency is favoured when payoffs are stable and vary strongly between traits, while frequent changes in trait payoffs favour more trait diversity. Our results illustrate the complex interplay between networks, learning and the environment, and so inform our understanding of human social evolution.