首页 > 最新文献

IEEE Transactions on Intelligent Vehicles最新文献

英文 中文
Blank 空白
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-26 DOI: 10.1109/TIV.2025.3594945
{"title":"Blank","authors":"","doi":"10.1109/TIV.2025.3594945","DOIUrl":"https://doi.org/10.1109/TIV.2025.3594945","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 4","pages":"C4-C4"},"PeriodicalIF":14.3,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11142508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Transactions on Intelligent Vehicles Information 智能车辆信息学报
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-26 DOI: 10.1109/TIV.2025.3594947
{"title":"The Transactions on Intelligent Vehicles Information","authors":"","doi":"10.1109/TIV.2025.3594947","DOIUrl":"https://doi.org/10.1109/TIV.2025.3594947","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 4","pages":"C3-C3"},"PeriodicalIF":14.3,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11142506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Share Your Preprint Research with the World! 与世界分享你的预印本研究!
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-26 DOI: 10.1109/TIV.2025.3592517
{"title":"Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TIV.2025.3592517","DOIUrl":"https://doi.org/10.1109/TIV.2025.3592517","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 4","pages":"2932-2932"},"PeriodicalIF":14.3,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11142487","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAEV-FL: Lightweight Secure Aggregation and Efficient Verification Scheme for Federated Learning in Cloud-Edge Collaborative Environment 云边缘协同环境下联邦学习的轻量级安全聚合和高效验证方案
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-21 DOI: 10.1109/TIV.2025.3599909
Shiwen Zhang;Feixiang Ren;Wei Liang;Kuanching Li;Nam Ling
In a cloud-edge collaborative environment, especially for the Internet of Vehicles, federated learning (FL) has garnered widespread attention due to its unique training process, where users solely upload trained parameters yet do not transmit their local data, demonstrating that FL is a promising privacy-preserving distributed machine learning paradigm. However, FL still faces challenges, such as the local gradients and global parameters (i.e., global model, global weights, or global gradients) transmitted by users may leak the users' private information, and malicious or lazy aggregation servers may forge or tamper with the parameters uploaded by users, thereby generating incorrect aggregated results, ultimately reducing the availability of the global model. Moreover, network fluctuations or device failures may cause user dropouts during training. Although existing works address these challenges, privacy protection schemes based on complex cryptographic primitives are costly and lack research on protecting global parameters. Additionally, verification schemes for aggregation results face overhead and security challenges. For such, we propose a lightweight secure aggregation and efficient verification scheme for federated learning, namely SAEV-FL. We design a single-masking protocol based on the Chinese Remainder Theorem (CRT) and perturbation technique to achieve privacy protection for local gradients and global parameters with lower overhead. To verify the correctness of the aggregated results, we have combined homomorphic hash functions and random number technology to design a secure verification mechanism that does not disclose users' privacy. Detailed theoretical analysis and comprehensive experiments establish that the proposed scheme outperforms other similar works in terms of security and efficiency.
在云边缘协作环境中,特别是对于车联网,联邦学习(FL)由于其独特的训练过程而引起了广泛关注,用户仅上传训练参数而不传输其本地数据,这表明FL是一种有前途的保护隐私的分布式机器学习范例。但是,FL仍然面临挑战,例如用户传输的局部梯度和全局参数(即全局模型、全局权重或全局梯度)可能会泄露用户的隐私信息,恶意或懒惰的聚合服务器可能会伪造或篡改用户上传的参数,从而生成错误的聚合结果,最终降低全局模型的可用性。此外,网络波动或设备故障也可能导致用户在训练过程中退出。尽管现有的工作解决了这些挑战,但基于复杂密码原语的隐私保护方案成本高,并且缺乏对全局参数保护的研究。此外,聚合结果的验证方案面临开销和安全性挑战。为此,我们提出了一种轻量级的安全聚合和高效的联邦学习验证方案,即SAEV-FL。我们设计了一种基于中国剩余定理(CRT)和微扰技术的单屏蔽协议,以较低的开销实现局部梯度和全局参数的隐私保护。为了验证聚合结果的正确性,我们将同态哈希函数与随机数技术相结合,设计了一种不泄露用户隐私的安全验证机制。详细的理论分析和综合实验表明,该方案在安全性和效率方面优于其他同类方案。
{"title":"SAEV-FL: Lightweight Secure Aggregation and Efficient Verification Scheme for Federated Learning in Cloud-Edge Collaborative Environment","authors":"Shiwen Zhang;Feixiang Ren;Wei Liang;Kuanching Li;Nam Ling","doi":"10.1109/TIV.2025.3599909","DOIUrl":"https://doi.org/10.1109/TIV.2025.3599909","url":null,"abstract":"In a cloud-edge collaborative environment, especially for the Internet of Vehicles, federated learning (FL) has garnered widespread attention due to its unique training process, where users solely upload trained parameters yet do not transmit their local data, demonstrating that FL is a promising privacy-preserving distributed machine learning paradigm. However, FL still faces challenges, such as the local gradients and global parameters (<italic>i.e.</i>, global model, global weights, or global gradients) transmitted by users may leak the users' private information, and malicious or lazy aggregation servers may forge or tamper with the parameters uploaded by users, thereby generating incorrect aggregated results, ultimately reducing the availability of the global model. Moreover, network fluctuations or device failures may cause user dropouts during training. Although existing works address these challenges, privacy protection schemes based on complex cryptographic primitives are costly and lack research on protecting global parameters. Additionally, verification schemes for aggregation results face overhead and security challenges. For such, we propose a lightweight secure aggregation and efficient verification scheme for federated learning, namely SAEV-FL. We design a single-masking protocol based on the Chinese Remainder Theorem (CRT) and perturbation technique to achieve privacy protection for local gradients and global parameters with lower overhead. To verify the correctness of the aggregated results, we have combined homomorphic hash functions and random number technology to design a secure verification mechanism that does not disclose users' privacy. Detailed theoretical analysis and comprehensive experiments establish that the proposed scheme outperforms other similar works in terms of security and efficiency.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"11 1","pages":"133-149"},"PeriodicalIF":14.3,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145802389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank 空白
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-14 DOI: 10.1109/TIV.2025.3592501
{"title":"Blank","authors":"","doi":"10.1109/TIV.2025.3592501","DOIUrl":"https://doi.org/10.1109/TIV.2025.3592501","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 3","pages":"C4-C4"},"PeriodicalIF":14.3,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11125683","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144853352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Transactions on Intelligent Vehicles Information 智能车辆信息学报
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-14 DOI: 10.1109/TIV.2025.3592503
{"title":"The Transactions on Intelligent Vehicles Information","authors":"","doi":"10.1109/TIV.2025.3592503","DOIUrl":"https://doi.org/10.1109/TIV.2025.3592503","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 3","pages":"C3-C3"},"PeriodicalIF":14.3,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11125690","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144852986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Intelligent Vehicles Publication Information IEEE智能车辆学报出版信息
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-14 DOI: 10.1109/TIV.2025.3592505
{"title":"IEEE Transactions on Intelligent Vehicles Publication Information","authors":"","doi":"10.1109/TIV.2025.3592505","DOIUrl":"https://doi.org/10.1109/TIV.2025.3592505","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 3","pages":"C2-C2"},"PeriodicalIF":14.3,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11125717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Securing End-to-End Reinforcement Learning-Driven Autonomous Driving: A Control Command Utility-Based Intrusion Response System 保护端到端强化学习驱动的自动驾驶:基于控制命令实用程序的入侵响应系统
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-13 DOI: 10.1109/TIV.2025.3598768
Qisheng Zhang;Han Jun Yoon;Terrence J. Moore;Seunghyun Yoon;Dan Dongseong Kim;Hyuk Lim;Frederica Nelson;Jin-Hee Cho
End-to-end autonomous driving with deep reinforcement learning (DRL) encounters significant challenges in security and safety, which are critical for the automotive industry's adoption of autonomous technologies. This paper introduces a novel intrusion response system (IRS), called the control command utility-based IRS (CCU), specifically designed for DRL-based autonomous systems. The CCU provides a lightweight yet powerful defense against false data injection attacks on the in-vehicle CAN (control area network) bus, enhancing both security and driving performance by making intelligent, context-aware decisions based on control command utilities derived from DRL outputs. We rigorously evaluated CCU against other state-of-the-art IRSs based on DRL autonomous driving models, Rails and Roach. Equipped with an additional confidence score-based filter, CCU effectively minimizes false alarms, demonstrating superior performance in improving critical driving metrics such as driving score, route completion, and infraction penalties, all while lowering defense costs. Furthermore, CCU exhibits robust resilience in hostile environments with varying attack probabilities, underscoring its reliability in complex scenarios. This contribution represents a significant advancement in autonomous driving, addressing essential security and safety challenges and accelerating the path toward safer, more reliable autonomous vehicle deployment.
基于深度强化学习(DRL)的端到端自动驾驶在安全和安全方面面临重大挑战,这对于汽车行业采用自动驾驶技术至关重要。本文介绍了一种新的入侵响应系统(IRS),称为基于控制命令实用程序的入侵响应系统(CCU),它是专门为基于drl的自主系统设计的。CCU为车载CAN(控制局域网)总线提供轻量级但强大的防御,防止虚假数据注入攻击,通过基于来自DRL输出的控制命令实用程序做出智能的上下文感知决策,增强安全性和驾驶性能。我们严格评估了CCU与基于DRL自动驾驶模型、Rails和Roach的其他最先进的irs。CCU配备了额外的基于置信度分数的过滤器,有效地减少了误报,在改善关键驾驶指标(如驾驶分数、路线完成度和违规处罚)方面表现出卓越的性能,同时降低了防御成本。此外,CCU在具有不同攻击概率的敌对环境中表现出强大的弹性,强调了其在复杂场景中的可靠性。这一贡献代表了自动驾驶领域的重大进步,解决了基本的安全和安全挑战,并加速了更安全、更可靠的自动驾驶汽车部署。
{"title":"Securing End-to-End Reinforcement Learning-Driven Autonomous Driving: A Control Command Utility-Based Intrusion Response System","authors":"Qisheng Zhang;Han Jun Yoon;Terrence J. Moore;Seunghyun Yoon;Dan Dongseong Kim;Hyuk Lim;Frederica Nelson;Jin-Hee Cho","doi":"10.1109/TIV.2025.3598768","DOIUrl":"https://doi.org/10.1109/TIV.2025.3598768","url":null,"abstract":"End-to-end autonomous driving with deep reinforcement learning (DRL) encounters significant challenges in security and safety, which are critical for the automotive industry's adoption of autonomous technologies. This paper introduces a novel intrusion response system (IRS), called the control command utility-based IRS (<monospace>CCU</monospace>), specifically designed for DRL-based autonomous systems. The <monospace>CCU</monospace> provides a lightweight yet powerful defense against false data injection attacks on the in-vehicle CAN (control area network) bus, enhancing both security and driving performance by making intelligent, context-aware decisions based on control command utilities derived from DRL outputs. We rigorously evaluated <monospace>CCU</monospace> against other state-of-the-art IRSs based on DRL autonomous driving models, Rails and Roach. Equipped with an additional confidence score-based filter, <monospace>CCU</monospace> effectively minimizes false alarms, demonstrating superior performance in improving critical driving metrics such as driving score, route completion, and infraction penalties, all while lowering defense costs. Furthermore, <monospace>CCU</monospace> exhibits robust resilience in hostile environments with varying attack probabilities, underscoring its reliability in complex scenarios. This contribution represents a significant advancement in autonomous driving, addressing essential security and safety challenges and accelerating the path toward safer, more reliable autonomous vehicle deployment.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"11 1","pages":"122-132"},"PeriodicalIF":14.3,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145802353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Transactions on Intelligent Vehicles Information 智能车辆信息学报
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-07-30 DOI: 10.1109/TIV.2025.3586525
{"title":"The Transactions on Intelligent Vehicles Information","authors":"","doi":"10.1109/TIV.2025.3586525","DOIUrl":"https://doi.org/10.1109/TIV.2025.3586525","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 2","pages":"C3-C3"},"PeriodicalIF":14.3,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11104195","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank 空白
IF 14.3 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-07-30 DOI: 10.1109/TIV.2025.3584686
{"title":"Blank","authors":"","doi":"10.1109/TIV.2025.3584686","DOIUrl":"https://doi.org/10.1109/TIV.2025.3584686","url":null,"abstract":"","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"10 2","pages":"C4-C4"},"PeriodicalIF":14.3,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11104069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Intelligent Vehicles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1