首页 > 最新文献

Journal of Magnetism and Magnetic Materials最新文献

英文 中文
Alloying effect on the magnetic and magnonic properties of a thin-film superlattice based on the magnetic semiconductor Ge1−xFex/Ge 合金化对基于磁性半导体Ge1−xFex/Ge的薄膜超晶格磁性和磁能谱的影响
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-29 DOI: 10.1016/j.jmmm.2025.173787
Marouan Karam, Atika Fahmi, Ahmed Qachaou, Mounir Fahoume, Ismail Benaicha, Jaouad Mhalla, Abderrahim Raidou, Mohamed Lharch
In this work, we investigate the effect of alloying on the magnetic properties of the semiconductor ferromagnetic Ge1xFex/Ge(001) superlattice. The system Hamiltonian is described within the localized-spin Heisenberg model. The excitation spectrum is calculated using linear spin-wave theory. A quantitative analysis of the experimental magnetization data reveals the existence of a spin reorientation transition (SRT) at the inflection temperature (T=Tr). To explain the behavior of this magnetization, we have developed a theoretical model based on the presence of a mixture of two magnon populations: quantum magnons and classical magnons. Furthermore, the agreement between the calculated and experimental magnetization curves is very satisfactory, enabling the determination of the key magnetic parameters of the system, namely, J(x), J(x), Δ(x), and Tr(x).
在这项工作中,我们研究了合金对半导体铁磁Ge1−xFex/Ge(001)超晶格磁性能的影响。在局域自旋海森堡模型中描述了系统的哈密顿量。利用线性自旋波理论计算激发谱。对实验磁化数据的定量分析表明,在弯曲温度(T=Tr)下存在自旋重取向跃迁(SRT)。为了解释这种磁化行为,我们建立了一个基于两种磁振子种群混合物存在的理论模型:量子磁振子和经典磁振子。此外,计算和实验磁化曲线之间的一致性非常令人满意,从而可以确定系统的关键磁参数,即J∥(x), J⊥(x), Δ(x)和Tr(x)。
{"title":"Alloying effect on the magnetic and magnonic properties of a thin-film superlattice based on the magnetic semiconductor Ge1−xFex/Ge","authors":"Marouan Karam,&nbsp;Atika Fahmi,&nbsp;Ahmed Qachaou,&nbsp;Mounir Fahoume,&nbsp;Ismail Benaicha,&nbsp;Jaouad Mhalla,&nbsp;Abderrahim Raidou,&nbsp;Mohamed Lharch","doi":"10.1016/j.jmmm.2025.173787","DOIUrl":"10.1016/j.jmmm.2025.173787","url":null,"abstract":"<div><div>In this work, we investigate the effect of alloying on the magnetic properties of the semiconductor ferromagnetic Ge<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>/Ge(001) superlattice. The system Hamiltonian is described within the localized-spin Heisenberg model. The excitation spectrum is calculated using linear spin-wave theory. A quantitative analysis of the experimental magnetization data reveals the existence of a spin reorientation transition (SRT) at the inflection temperature (<span><math><mrow><mi>T</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span>). To explain the behavior of this magnetization, we have developed a theoretical model based on the presence of a mixture of two magnon populations: quantum magnons and classical magnons. Furthermore, the agreement between the calculated and experimental magnetization curves is very satisfactory, enabling the determination of the key magnetic parameters of the system, namely, <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>∥</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mo>⊥</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"640 ","pages":"Article 173787"},"PeriodicalIF":3.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145882789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Nd–Ce–Fe–B grain boundary structure by Pr–Nd–Cu–Ga prealloyed powder to enhance coercivity 用Pr-Nd-Cu-Ga预合金粉优化Nd-Ce-Fe-B晶界结构,提高矫顽力
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-29 DOI: 10.1016/j.jmmm.2025.173790
Zikai Wu , Hongsheng Chen , Zhongge Luo , Chen Wang , Jiayi He , Kuangxin Luo , Haojun Zhou , Fenghua Luo
Cerium (Ce) is a high-quality substitute for Pr/Nd in Nd–Fe–B magnets due to its low cost and abundant natural reserves. However, the coercivity (Hcj) of Re–Fe–B magnets with high Ce content is difficult to improve due to the aggregation of ReFe2 phase at the triple junctions. This study investigated the grain boundary reconstruction in Nd-Ce-Fe-B sintered magnets using Pr–Nd–Cu–Ga prealloyed powder. The results indicate that as the addition amount of Pr–Nd–Cu–Ga increases, Hcj gradually increases. When the addition amount is 4 wt%, the maximum Hcj of the obtained magnet at a remanence of 11.5 kGs is 14.8 kOe. Grain boundary reconstruction promotes the continuous formation of ReFe2 and other rare earth rich phases at grain boundaries, promoting the forming of thicker grain boundary layers and improving magnetic isolation. Furthermore, Pr–Nd–Cu–Ga leads to an increase in ReFe2 phase; Cu and Ga can enhance the stability of ReFe2 phase, while Nd partially replaces Ce in the grain boundary ReFe2 phase, forming a new Nd–dominated 1:2 phase that enhances magnet wettability. The results advance the understanding of the ReFe2 phase and provide critical insights for developing low–cost Nd–Ce–Fe–B magnets with high Hcj.
铈(Ce)成本低,储量丰富,是钕铁硼磁体中Pr/Nd的优质替代品。然而,高Ce含量Re-Fe-B磁体的矫顽力(Hcj)由于ReFe2相在三结处聚集而难以提高。本文研究了用Pr-Nd-Cu-Ga预合金粉末对Nd-Ce-Fe-B烧结磁体的晶界重建。结果表明,随着Pr-Nd-Cu-Ga添加量的增加,Hcj逐渐增大。当添加量为4 wt%时,所得磁体在残余量为11.5 kg时的最大Hcj为14.8 kOe。晶界重构促进了ReFe2等富稀土相在晶界处的不断形成,促进了更厚的晶界层的形成,提高了磁隔离度。此外,Pr-Nd-Cu-Ga导致ReFe2相增加;Cu和Ga增强了ReFe2相的稳定性,而Nd部分取代了晶界ReFe2相中的Ce,形成以Nd为主的1:2相,增强了磁体的润湿性。研究结果促进了对ReFe2相的理解,并为开发低成本高Hcj的Nd-Ce-Fe-B磁体提供了重要见解。
{"title":"Optimizing Nd–Ce–Fe–B grain boundary structure by Pr–Nd–Cu–Ga prealloyed powder to enhance coercivity","authors":"Zikai Wu ,&nbsp;Hongsheng Chen ,&nbsp;Zhongge Luo ,&nbsp;Chen Wang ,&nbsp;Jiayi He ,&nbsp;Kuangxin Luo ,&nbsp;Haojun Zhou ,&nbsp;Fenghua Luo","doi":"10.1016/j.jmmm.2025.173790","DOIUrl":"10.1016/j.jmmm.2025.173790","url":null,"abstract":"<div><div>Cerium (Ce) is a high-quality substitute for Pr/Nd in Nd–Fe–B magnets due to its low cost and abundant natural reserves. However, the coercivity (H<sub>cj</sub>) of Re–Fe–B magnets with high Ce content is difficult to improve due to the aggregation of ReFe<sub>2</sub> phase at the triple junctions. This study investigated the grain boundary reconstruction in Nd-Ce-Fe-B sintered magnets using Pr–Nd–Cu–Ga prealloyed powder. The results indicate that as the addition amount of Pr–Nd–Cu–Ga increases, H<sub>cj</sub> gradually increases. When the addition amount is 4 wt%, the maximum H<sub>cj</sub> of the obtained magnet at a remanence of 11.5 kGs is 14.8 kOe. Grain boundary reconstruction promotes the continuous formation of ReFe<sub>2</sub> and other rare earth rich phases at grain boundaries, promoting the forming of thicker grain boundary layers and improving magnetic isolation. Furthermore, Pr–Nd–Cu–Ga leads to an increase in ReFe<sub>2</sub> phase; Cu and Ga can enhance the stability of ReFe<sub>2</sub> phase, while Nd partially replaces Ce in the grain boundary ReFe<sub>2</sub> phase, forming a new Nd–dominated 1:2 phase that enhances magnet wettability. The results advance the understanding of the ReFe<sub>2</sub> phase and provide critical insights for developing low–cost Nd–Ce–Fe–B magnets with high H<sub>cj</sub>.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"640 ","pages":"Article 173790"},"PeriodicalIF":3.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145882787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of magnetic phase transition and critical behavior in Cu2OSeO3 via magnetocaloric effect 利用磁热效应研究Cu2OSeO3的磁相变及临界行为
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-29 DOI: 10.1016/j.jmmm.2025.173791
Sudipta Mahana , Prasanta Kumar Behera , Keshab Chandra Prusty , Pronoy Nandi , Dinesh Topwal
Polycrystalline Cu2OSeO3 was synthesized via a solid-state reaction method, and its phase purity was confirmed through X-ray diffraction followed by Rietveld refinement. The compound features two distinct crystallographic copper sites: Cu(I) in a trigonal bipyramidal configuration and Cu(II) in a square pyramidal arrangement, present in a 1:3 ratio. This unique structure leads to complex magnetic interactions between the sites. Magnetic properties were investigated using DC magnetization and AC susceptibility measurements. The material exhibits a delicate balance of symmetric superexchange interactions, antisymmetric Dzyaloshinskii-Moriya (DM) interaction, magnetocrystalline anisotropy, and Zeeman energy, resulting in various intricate magnetic phases. These include fluctuation disorder (FD), helical, skyrmion mixed conical and tilted spiral, conical, field-polarized ferrimagnetism, and importantly, the skyrmion phase. Additionally, the magnetocaloric effect was studied through temperature-dependent heat capacity measurements under different magnetic fields. The findings indicate reasonable magnetic refrigeration capabilities, with maximum magnetic entropy changes of 2.23 J/kg·K and 4.25 J/kg·K at around 60 K for field changes of 4 T and 7 T, respectively. The corresponding maximum relative cooling powers are determined to be 67 J/Kg and 140 J/kg. The critical correlation was also investigated through the magnetocaloric effect, demonstrating 3D Heisenberg interaction above the paramagnetic to FD transition temperature (Tc), accompanied by short-range magnetic correlations. Furthermore, the universal behavior of the normalized magnetic entropy-change curve confirms the presence of a second-order magnetic phase transition near Tc under high magnetic fields.
采用固相反应法制备了多晶Cu2OSeO3,并通过x射线衍射和Rietveld精馏确定了其相纯度。该化合物具有两个不同的晶体铜位:Cu(I)在三角形双锥体结构中,Cu(II)在正方形锥体结构中,以1:3的比例存在。这种独特的结构导致了位点之间复杂的磁相互作用。通过直流磁化和交流磁化率测试研究了材料的磁性能。该材料表现出对称超交换相互作用、反对称Dzyaloshinskii-Moriya (DM)相互作用、磁晶各向异性和塞曼能量的微妙平衡,导致各种复杂的磁相。其中包括涨落无序态(FD)、螺旋态、斯基米子混合锥形和倾斜螺旋态、锥形态、场极化铁磁态,以及重要的斯基米子相。此外,通过测量不同磁场下的温度相关热容,研究了磁热效应。结果表明,在磁场变化为4 T和7 T时,在60 K左右,磁熵变化最大,分别为2.23 J/kg·K和4.25 J/kg·K。相应的最大相对冷却功率分别为67 J/Kg和140 J/Kg。通过磁热效应研究了临界相关性,证明了顺磁到FD转变温度(Tc)以上的三维海森堡相互作用,并伴有短程磁相关性。此外,归一化磁熵变曲线的普遍行为证实了高磁场下Tc附近存在二阶磁相变。
{"title":"Investigation of magnetic phase transition and critical behavior in Cu2OSeO3 via magnetocaloric effect","authors":"Sudipta Mahana ,&nbsp;Prasanta Kumar Behera ,&nbsp;Keshab Chandra Prusty ,&nbsp;Pronoy Nandi ,&nbsp;Dinesh Topwal","doi":"10.1016/j.jmmm.2025.173791","DOIUrl":"10.1016/j.jmmm.2025.173791","url":null,"abstract":"<div><div>Polycrystalline Cu<sub>2</sub>OSeO<sub>3</sub> was synthesized via a solid-state reaction method, and its phase purity was confirmed through X-ray diffraction followed by Rietveld refinement. The compound features two distinct crystallographic copper sites: Cu(I) in a trigonal bipyramidal configuration and Cu(II) in a square pyramidal arrangement, present in a 1:3 ratio. This unique structure leads to complex magnetic interactions between the sites. Magnetic properties were investigated using DC magnetization and AC susceptibility measurements. The material exhibits a delicate balance of symmetric superexchange interactions, antisymmetric Dzyaloshinskii-Moriya (DM) interaction, magnetocrystalline anisotropy, and Zeeman energy, resulting in various intricate magnetic phases. These include fluctuation disorder (FD), helical, skyrmion mixed conical and tilted spiral, conical, field-polarized ferrimagnetism, and importantly, the skyrmion phase. Additionally, the magnetocaloric effect was studied through temperature-dependent heat capacity measurements under different magnetic fields. The findings indicate reasonable magnetic refrigeration capabilities, with maximum magnetic entropy changes of 2.23 J/kg·K and 4.25 J/kg·K at around 60 K for field changes of 4 T and 7 T, respectively. The corresponding maximum relative cooling powers are determined to be 67 J/Kg and 140 J/kg. The critical correlation was also investigated through the magnetocaloric effect, demonstrating 3D Heisenberg interaction above the paramagnetic to FD transition temperature (<em>T</em><sub><em>c</em></sub>), accompanied by short-range magnetic correlations. Furthermore, the universal behavior of the normalized magnetic entropy-change curve confirms the presence of a second-order magnetic phase transition near <em>T</em><sub><em>c</em></sub> under high magnetic fields.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"640 ","pages":"Article 173791"},"PeriodicalIF":3.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145882788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of quenching temperature on the high-temperature properties and microstructure of FeNiCo alloys 淬火温度对FeNiCo合金高温性能和显微组织的影响
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-29 DOI: 10.1016/j.jmmm.2025.173794
Dongliang Guo , Xinteng Shen , Xiangtao Yu , Min Lin , Yingli Sun , Yong Ding , Aru Yan
The effects of quenching temperature (800–1000 °C) on the key properties of Fe61Ni32Co7 low-expansion alloy are investigated, which reveals that quenching temperature significantly regulates the alloy's grain size and performance. The core findings indicate that the alloy achieves a synergistic optimization of high-temperature soft magnetic properties and low expansion characteristics under a quenching temperature of 950 °C. At this temperature, the alloy exhibits excellent overall soft magnetic performance at 200 °C: saturated magnetic flux density rises markedly to 973.7mT, maximum permeability increases dramatically (about 5.6 times higher than the original state), and coercivity is significantly reduced by 85%. Notably, the coefficient of thermal expansion in this optimized state remains at a low level (2.199 × 10⁶/°C). The performance enhancement mechanism mainly stems from the full release of residual stress induced by quenching (recrystallized region >94%), optimization of magnetic domain structure (reduction of domain wall energy) and the effect of high Curie temperature in extending the temperature range for magnetostriction. This research provides crucial process guidance for the development of FeNiCo alloys with excellent high-temperature soft magnetic properties and stable low-expansion characteristics, which contributes to precision instruments and high-sensitivity sensors that require stringent thermal and magnetic stability.
研究了淬火温度(800 ~ 1000℃)对Fe61Ni32Co7低膨胀合金关键性能的影响,发现淬火温度对合金的晶粒尺寸和性能有显著调节作用。结果表明,该合金在950℃的淬火温度下实现了高温软磁性能和低膨胀性能的协同优化。在此温度下,合金在200℃时表现出优异的整体软磁性能:饱和磁通密度显著上升至973.7mT,最大磁导率显著提高(约为原始状态的5.6倍),矫顽力显著降低85%。值得注意的是,该优化状态下的热膨胀系数保持在较低的水平(2.199 × 10−26 /°C)。其性能增强机制主要源于淬火残余应力的充分释放(再结晶区>;94%)、磁畴结构的优化(畴壁能的降低)以及高居里温度对磁致伸缩温度范围的影响。该研究为开发具有优异高温软磁性能和稳定低膨胀特性的FeNiCo合金提供了重要的工艺指导,有助于对热稳定性和磁稳定性要求严格的精密仪器和高灵敏度传感器。
{"title":"The influence of quenching temperature on the high-temperature properties and microstructure of FeNiCo alloys","authors":"Dongliang Guo ,&nbsp;Xinteng Shen ,&nbsp;Xiangtao Yu ,&nbsp;Min Lin ,&nbsp;Yingli Sun ,&nbsp;Yong Ding ,&nbsp;Aru Yan","doi":"10.1016/j.jmmm.2025.173794","DOIUrl":"10.1016/j.jmmm.2025.173794","url":null,"abstract":"<div><div>The effects of quenching temperature (800–1000 °C) on the key properties of Fe<sub>61</sub>Ni<sub>32</sub>Co<sub>7</sub> low-expansion alloy are investigated, which reveals that quenching temperature significantly regulates the alloy's grain size and performance. The core findings indicate that the alloy achieves a synergistic optimization of high-temperature soft magnetic properties and low expansion characteristics under a quenching temperature of 950 °C. At this temperature, the alloy exhibits excellent overall soft magnetic performance at 200 °C: saturated magnetic flux density rises markedly to 973.7mT, maximum permeability increases dramatically (about 5.6 times higher than the original state), and coercivity is significantly reduced by 85%. Notably, the coefficient of thermal expansion in this optimized state remains at a low level (2.199 × 10<sup>−</sup>⁶/°C). The performance enhancement mechanism mainly stems from the full release of residual stress induced by quenching (recrystallized region &gt;94%), optimization of magnetic domain structure (reduction of domain wall energy) and the effect of high Curie temperature in extending the temperature range for magnetostriction. This research provides crucial process guidance for the development of FeNiCo alloys with excellent high-temperature soft magnetic properties and stable low-expansion characteristics, which contributes to precision instruments and high-sensitivity sensors that require stringent thermal and magnetic stability.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"640 ","pages":"Article 173794"},"PeriodicalIF":3.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145882793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic phase transition and magnetocaloric effect in rare-earth-free high entropy alloys MnCoNiFeCu 无稀土高熵合金MnCoNiFeCu的磁相变和磁热效应
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-29 DOI: 10.1016/j.jmmm.2025.173793
Yulin Pan, Yong Li
In this paper, the structural characteristics, magnetic properties and magnetocaloric performance of a series of high-entropy alloys (HEAs) Mn20Co20Ni20Fe26+xCu14-x (x = 0, 2, 4) have been experimentally determined and theoretically analyzed. The results showed that these alloys have a disordered FCC crystal structure. The Fe concentration determines the temperature range within which the ferromagnetic behavior and Curie temperatures can be adjusted. In particular, it decreases from 274 K for Fe26Cu14 to 242 K for Fe30Cu10. In addition, the maximum magnetic entropy change values are obtained in the magnetic field change of 7 T for 1.37, 1.28 and 1.33 J/kgK were obtained for x = 0, 2 and 4, respectively. Compared to other transition metal-based high-entropy alloys reported in the literatures, the present material shows comparable or superior performance. The experimental characterization results are in good agreement with the theoretical predictions and affords an extensive series of rare-earth-free HEAs exhibiting pronounced magnetocaloric properties.
本文对Mn20Co20Ni20Fe26+xCu14-x (x = 0,2,4)系列高熵合金(HEAs)的结构特征、磁性能和磁热性能进行了实验测定和理论分析。结果表明,这些合金具有无序的FCC晶体结构。铁浓度决定了铁磁行为和居里温度可调节的温度范围。特别是Fe26Cu14的274k, Fe30Cu10的242k。另外,在7 T磁场变化时,x = 0、2和4时的最大磁熵变化值分别为1.37、1.28和1.33 J/kgK。与文献报道的其他过渡金属基高熵合金相比,本材料表现出相当或更好的性能。实验表征结果与理论预测很好地吻合,并提供了一系列具有明显磁热特性的无稀土HEAs。
{"title":"Magnetic phase transition and magnetocaloric effect in rare-earth-free high entropy alloys MnCoNiFeCu","authors":"Yulin Pan,&nbsp;Yong Li","doi":"10.1016/j.jmmm.2025.173793","DOIUrl":"10.1016/j.jmmm.2025.173793","url":null,"abstract":"<div><div>In this paper, the structural characteristics, magnetic properties and magnetocaloric performance of a series of high-entropy alloys (HEAs) Mn<sub>20</sub>Co<sub>20</sub>Ni<sub>20</sub>Fe<sub>26+x</sub>Cu<sub>14-x</sub> (x = 0, 2, 4) have been experimentally determined and theoretically analyzed. The results showed that these alloys have a disordered FCC crystal structure. The Fe concentration determines the temperature range within which the ferromagnetic behavior and Curie temperatures can be adjusted. In particular, it decreases from 274 K for Fe<sub>26</sub>Cu<sub>14</sub> to 242 K for Fe<sub>30</sub>Cu<sub>10</sub>. In addition, the maximum magnetic entropy change values are obtained in the magnetic field change of 7 T for 1.37, 1.28 and 1.33 J/kgK were obtained for x <em>=</em> 0, 2 and 4, respectively. Compared to other transition metal-based high-entropy alloys reported in the literatures, the present material shows comparable or superior performance. The experimental characterization results are in good agreement with the theoretical predictions and affords an extensive series of rare-earth-free HEAs exhibiting pronounced magnetocaloric properties.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"641 ","pages":"Article 173793"},"PeriodicalIF":3.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145941220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of cooling rate on the microstructure and magnetic properties of melt-spun CeFeB ribbons 冷却速率对熔体纺CeFeB带状组织和磁性能的影响
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-28 DOI: 10.1016/j.jmmm.2025.173785
Yasin Yılmaz , Muhammed Fatih Kılıçaslan
NdFeB permanent magnetic alloys are widely used in industrial applications, particularly in electronics, due to their excellent magnetic performance. However, their dependence on expensive rare earth and neodymium elements has led to supply risks and price instability. As a more abundant and economical alternative, CeFeB alloys have gained attention recently. In this study, CeFeB ribbons with a nominal composition of Ce₃₅Fe₆₄B₁ (wt%) were fabricated via melt spinning method at different wheel surface speeds (3–35 m/s). XRD analysis revealed that all of the ribbon samples exhibit partially crystalline structures. They contains the Ce₂Fe₁₄B hard magnetic phase, along with soft magnetic α-Fe and paramagnetic CeFe₂ phases. As the wheel surface speed increased, crystallite size of the Ce₂Fe₁₄B phase reduced, and tendency to amorphous phase formation increased. The finest crystallite size of the Ce₂Fe₁₄B phase of 26.18 nm was achieved at the wheel surface speed of 5 m/s. Accordingly, the optimum magnetic properties were obtained. These are the coercivity, remanence, maximum energy product, and remanence ratio of 4301.84 Oe, 62.12 emu/g, 10.94 MGOe, and 0.624, respectively. These results highlight the critical role of cooling rate for modifying the microstructure and improving the magnetic performance. This study shows that the CeFeB alloys posses the requisite magnetic performance to serve as competitive, low-cost alternatives to their NdFeB counterparts. Their favorable characteristics highlight a strong potential for integration into large-scale industrial systems where rare earth scarcity and economic viability are of primary concern.
钕铁硼永磁合金由于其优异的磁性而广泛应用于工业领域,特别是电子领域。然而,它们对昂贵的稀土和钕元素的依赖导致了供应风险和价格不稳定。CeFeB合金作为一种储量丰富、经济实惠的替代材料,近年来备受关注。在本研究中,标称成分为Ce₃₅Fe₆₄B₁(wt%)的CeFeB缎带通过熔体纺丝法在不同车轮表面速度(3-35 m/s)下制成。XRD分析表明,所有带状样品均呈现部分结晶结构。它们含有Ce₂Fe₁₄B硬磁相,以及软磁α-Fe和顺磁CeFe₂相。随着车轮表面速度的增加,Ce₂Fe₁₄B相的晶粒尺寸减小,形成非晶相的倾向增加。当砂轮表面速度为5 m/s时,Ce₂Fe₁₄B相的晶粒尺寸为26.18 nm。从而获得了最佳的磁性能。矫顽力为4301.84 Oe,剩余物为62.12 emu/g,最大能积为10.94 MGOe,剩余物比为0.624。这些结果强调了冷却速度对改变微观结构和提高磁性能的关键作用。这项研究表明,CeFeB合金具有必要的磁性,可以作为其NdFeB同类产品的竞争性低成本替代品。它们的有利特点突出了融入大型工业系统的强大潜力,在这些系统中,稀土稀缺和经济可行性是主要关注的问题。
{"title":"Effect of cooling rate on the microstructure and magnetic properties of melt-spun CeFeB ribbons","authors":"Yasin Yılmaz ,&nbsp;Muhammed Fatih Kılıçaslan","doi":"10.1016/j.jmmm.2025.173785","DOIUrl":"10.1016/j.jmmm.2025.173785","url":null,"abstract":"<div><div>NdFeB permanent magnetic alloys are widely used in industrial applications, particularly in electronics, due to their excellent magnetic performance. However, their dependence on expensive rare earth and neodymium elements has led to supply risks and price instability. As a more abundant and economical alternative, CeFeB alloys have gained attention recently. In this study, CeFeB ribbons with a nominal composition of Ce₃₅Fe₆₄B₁ (wt%) were fabricated via melt spinning method at different wheel surface speeds (3–35 m/s). XRD analysis revealed that all of the ribbon samples exhibit partially crystalline structures. They contains the Ce₂Fe₁₄B hard magnetic phase, along with soft magnetic α-Fe and paramagnetic CeFe₂ phases. As the wheel surface speed increased, crystallite size of the Ce₂Fe₁₄B phase reduced, and tendency to amorphous phase formation increased. The finest crystallite size of the Ce₂Fe₁₄B phase of 26.18 nm was achieved at the wheel surface speed of 5 m/s. Accordingly, the optimum magnetic properties were obtained. These are the coercivity, remanence, maximum energy product, and remanence ratio of 4301.84 Oe, 62.12 emu/g, 10.94 MGOe, and 0.624, respectively. These results highlight the critical role of cooling rate for modifying the microstructure and improving the magnetic performance. This study shows that the CeFeB alloys posses the requisite magnetic performance to serve as competitive, low-cost alternatives to their NdFeB counterparts. Their favorable characteristics highlight a strong potential for integration into large-scale industrial systems where rare earth scarcity and economic viability are of primary concern.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"640 ","pages":"Article 173785"},"PeriodicalIF":3.0,"publicationDate":"2025-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145882790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-induced magnetic anisotropy and its role in the longitudinal giant stress-impedance effect of Fe-based alloys 应力诱导磁各向异性及其在铁基合金纵向巨应力阻抗效应中的作用
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-27 DOI: 10.1016/j.jmmm.2025.173789
Yanjun Qin , Xiaozhen Fan , Zheng Fang , Jianqiang Zhang , Jingui Li , Huiqun Ye , Jinju Zheng , Yunzhang Fang
Amorphous and nanocrystalline alloys possess substantial potential for sensor applications due to their superior soft magnetic characteristics and large giant stress-impedance (GSI) effect. This investigation elucidates the mechanisms by which stress annealing modulates the longitudinally-driven GSI (LDGSI) effect in Fe73.5Cu1Nb3Si13.5B9 amorphous ribbons. Samples subjected to tensile stresses of varying magnitudes during annealing were analyzed using synchrotron X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), and magnetic measurements to establish correlations between stress-induced magnetic anisotropy and GSI behavior. The sample annealed at 18 MPa demonstrated optimal performance, achieving an LDGSI ratio of 1031 %, significantly exceeding that of the conventional transverse-driven configuration. Microstructural characterization revealed that stress annealing promotes lattice anisotropy in α-Fe(Si) nanocrystals and modulates the magnetic anisotropy constant (Ku) via residual elastic strain, thereby affecting effective permeability (μe) and impedance response. Magnetic domain imaging confirmed that enhanced transverse magnetic anisotropy is a decisive factor in achieving superior GSI performance. These results contribute to the informed design and optimization of advanced GSI sensor materials.
非晶和纳米晶合金由于其优异的软磁特性和较大的巨应力阻抗效应,在传感器领域具有巨大的应用潜力。本研究阐明了应力退火调节Fe73.5Cu1Nb3Si13.5B9非晶带中纵向驱动GSI (LDGSI)效应的机制。利用同步x射线衍射(XRD)、高分辨率透射电子显微镜(TEM)和磁性测量对退火过程中受到不同强度拉伸应力的样品进行分析,以建立应力诱导的磁各向异性与GSI行为之间的相关性。在18 MPa下退火的样品表现出最佳性能,实现了1031%的LDGSI比,显著超过了传统的横向驱动配置。微观结构表征表明,应力退火促进了α-Fe(Si)纳米晶体的晶格各向异性,并通过残余弹性应变调节磁性各向异性常数Ku,从而影响有效磁导率μe和阻抗响应。磁畴成像证实,增强的横向磁各向异性是实现优越GSI性能的决定性因素。这些结果有助于先进GSI传感器材料的明智设计和优化。
{"title":"Stress-induced magnetic anisotropy and its role in the longitudinal giant stress-impedance effect of Fe-based alloys","authors":"Yanjun Qin ,&nbsp;Xiaozhen Fan ,&nbsp;Zheng Fang ,&nbsp;Jianqiang Zhang ,&nbsp;Jingui Li ,&nbsp;Huiqun Ye ,&nbsp;Jinju Zheng ,&nbsp;Yunzhang Fang","doi":"10.1016/j.jmmm.2025.173789","DOIUrl":"10.1016/j.jmmm.2025.173789","url":null,"abstract":"<div><div>Amorphous and nanocrystalline alloys possess substantial potential for sensor applications due to their superior soft magnetic characteristics and large giant stress-impedance (GSI) effect. This investigation elucidates the mechanisms by which stress annealing modulates the longitudinally-driven GSI (LDGSI) effect in Fe<sub>73.5</sub>Cu<sub>1</sub>Nb<sub>3</sub>Si<sub>13.5</sub>B<sub>9</sub> amorphous ribbons. Samples subjected to tensile stresses of varying magnitudes during annealing were analyzed using synchrotron X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), and magnetic measurements to establish correlations between stress-induced magnetic anisotropy and GSI behavior. The sample annealed at 18 MPa demonstrated optimal performance, achieving an LDGSI ratio of 1031 %, significantly exceeding that of the conventional transverse-driven configuration. Microstructural characterization revealed that stress annealing promotes lattice anisotropy in <em>α</em>-Fe(Si) nanocrystals and modulates the magnetic anisotropy constant (<em>K</em><sub><em>u</em></sub>) via residual elastic strain, thereby affecting effective permeability (μ<sub><em>e</em></sub>) and impedance response. Magnetic domain imaging confirmed that enhanced transverse magnetic anisotropy is a decisive factor in achieving superior GSI performance. These results contribute to the informed design and optimization of advanced GSI sensor materials.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"639 ","pages":"Article 173789"},"PeriodicalIF":3.0,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of nickel ferrite (NiFe₂O₄) nanoparticles as dual T₁–T₂ MRI contrast agents 铁酸镍(NiFe₂O₄)纳米颗粒作为双T₁-T₂MRI造影剂的合成和表征
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-27 DOI: 10.1016/j.jmmm.2025.173786
Ahmadreza Nematolahi, Ghasem Dini, Fereshteh Mahmoodiyan Najafabadi, Maryam Abdollahi Asl
Dual-mode (T₁T₂) magnetic resonance imaging (MRI) contrast agents offer improved diagnostic capability through simultaneous longitudinal and transverse relaxation enhancement. In this work, quasi-spherical and cubic NiFe₂O₄ nanoparticles were synthesized via a hydrothermal process by varying reaction time and subsequently coated with polyethylene glycol (PEG) to enhance colloidal stability. The quasi-spherical nanoparticles synthesized for 12 h exhibited an average diameter of ∼25 nm and a saturation magnetization (Mₛ) of 49 emu·g−1, whereas the cubic nanoparticles obtained after 24 h displayed an edge length of ∼65 nm with Mₛ = ∼ 67 emu·g−1. T₁- and T₂-weighted MRI measurements revealed that particle size and surface modification strongly influenced relaxivity. The 25 nm sample showed optimal dual-mode performance, with r₁ = 5.7 mM−1·s−1 and r₂ = 103.1 mM−1·s−1 (r₂/r₁ = ∼18), while PEG coating slightly reduced both relaxivities due to magnetic shielding but significantly improved dispersion stability. 65 nm cubic nanoparticles exhibited high r₂ (153.4 mM−1·s−1), confirming their suitability for T₂-weighted imaging. In vitro MTT cytotoxicity assays on HepG2 cells at 200 μg·mL−1 demonstrated low toxicity, with cell viability exceeding 80 % after 72 h across all samples and > 94 % for PEG-coated variants. These results demonstrate that controlled morphology and surface engineering of NiFe₂O₄ nanoparticles can effectively tune their magnetic and relaxometric properties, enabling their application as efficient T₁–T₂ dual-mode MRI contrast agents.
双模(T₁-T₂)磁共振成像造影剂通过同时增强纵向和横向弛豫,提高诊断能力。通过不同的反应时间,通过水热法合成了准球形和立方的NiFe₂O₄纳米颗粒,并在表面涂覆聚乙二醇(PEG)以提高胶体稳定性。经过12 h合成的准球形纳米颗粒的平均直径为~ 25 nm,饱和磁化强度(Mₛ)为49 emu·g−1,而经过24 h合成的立方纳米颗粒的边长为~ 65 nm, Mₛ= ~ 67 emu·g−1。t212加权和t212加权MRI测量显示,颗粒大小和表面改性强烈影响弛豫度。25 nm样品表现出最佳的双模性能,r₁= 5.7 mM−1·s−1和r₂= 103.1 mM−1·s−1 (r₂/r₁= ~ 18),而PEG涂层由于磁屏蔽而略微降低了这两种弛豫度,但显著提高了色散稳定性。65 nm立方纳米颗粒表现出高r₂(153.4 mM−1·s−1),证实了其适用于T₂加权成像。在200 μg·mL−1浓度的体外MTT细胞毒性实验中,HepG2细胞显示出低毒性,72小时后,所有样品的细胞存活率都超过80%,peg包被变体的细胞存活率超过94%。这些结果表明,控制NiFe₂O₄纳米颗粒的形貌和表面工程可以有效地调节其磁性和弛豫性能,使其成为高效的T₁-T₂双模MRI造影剂。
{"title":"Synthesis and characterization of nickel ferrite (NiFe₂O₄) nanoparticles as dual T₁–T₂ MRI contrast agents","authors":"Ahmadreza Nematolahi,&nbsp;Ghasem Dini,&nbsp;Fereshteh Mahmoodiyan Najafabadi,&nbsp;Maryam Abdollahi Asl","doi":"10.1016/j.jmmm.2025.173786","DOIUrl":"10.1016/j.jmmm.2025.173786","url":null,"abstract":"<div><div>Dual-mode (<em>T₁</em>–<em>T₂</em>) magnetic resonance imaging (MRI) contrast agents offer improved diagnostic capability through simultaneous longitudinal and transverse relaxation enhancement. In this work, quasi-spherical and cubic NiFe₂O₄ nanoparticles were synthesized via a hydrothermal process by varying reaction time and subsequently coated with polyethylene glycol (PEG) to enhance colloidal stability. The quasi-spherical nanoparticles synthesized for 12 h exhibited an average diameter of ∼25 nm and a saturation magnetization (Mₛ) of 49 emu·g<sup>−1</sup>, whereas the cubic nanoparticles obtained after 24 h displayed an edge length of ∼65 nm with Mₛ = ∼ 67 emu·g<sup>−1</sup>. <em>T₁</em>- and <em>T₂</em>-weighted MRI measurements revealed that particle size and surface modification strongly influenced relaxivity. The 25 nm sample showed optimal dual-mode performance, with <em>r₁</em> = 5.7 mM<sup>−1</sup>·s<sup>−1</sup> and <em>r₂</em> = 103.1 mM<sup>−1</sup>·s<sup>−1</sup> (<em>r₂</em>/<em>r₁</em> = ∼18), while PEG coating slightly reduced both relaxivities due to magnetic shielding but significantly improved dispersion stability. 65 nm cubic nanoparticles exhibited high <em>r₂</em> (153.4 mM<sup>−1</sup>·s<sup>−1</sup>), confirming their suitability for <em>T₂</em>-weighted imaging. In vitro MTT cytotoxicity assays on HepG2 cells at 200 μg·mL<sup>−1</sup> demonstrated low toxicity, with cell viability exceeding 80 % after 72 h across all samples and &gt; 94 % for PEG-coated variants. These results demonstrate that controlled morphology and surface engineering of NiFe₂O₄ nanoparticles can effectively tune their magnetic and relaxometric properties, enabling their application as efficient <em>T₁–T₂</em> dual-mode MRI contrast agents.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"639 ","pages":"Article 173786"},"PeriodicalIF":3.0,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145881451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standing wave shift magnetoimpedance in Cu/YIG/Cu cylindrical system at microwave frequencies 微波频率下Cu/YIG/Cu圆柱系统的驻波移磁阻抗
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-24 DOI: 10.1016/j.jmmm.2025.173784
C.A.M. Iglesias , S.M. Rezende , J. Xavier , J.H.R. Lima , J.D.M. de Lima , F.L.A. Machado , I.B.T. Silva , M.A. Correa , F. Bohn , J.M. Soares
We report a theoretical approach to describe the magnetoimpedance phenomenon in cylindrical systems at microwave frequencies. Unlike existing theories of giant magnetoimpedance, often linked to the skin-depth effect in magnetic conductors, our theoretical framework is based on a low-loss transmission line model in conjunction with the Landau-Lifshitz-Gilbert equation, applied in systems composed of diamagnetic electrically conductive materials interspersed with magnetic insulating layers. From our proposal, we carry out numerical calculations that yield significant findings, which motivated us to engineer a cylindrical system consisting of a wire and an external layer, both of copper, interspersed by yttrium-iron-garnet powder. The experimental results show remarkable impedance variations on the order of hundreds of ohms at microwave frequencies. In particular, we find a magnetoimpedance variation higher than 4000% at the frequency of 5.27 GHz, which we designate as standing wave shift magnetoimpedance to distinguish this phenomenon from previously recognized effects, since its origin arises from distinct principles.
我们报告了一种描述微波频率下圆柱形系统磁阻抗现象的理论方法。与现有的巨磁阻抗理论不同,我们的理论框架是基于低损耗传输线模型,结合Landau-Lifshitz-Gilbert方程,应用于散布有磁绝缘层的抗磁性导电材料组成的系统。根据我们的建议,我们进行了数值计算,得出了重要的发现,这促使我们设计了一个圆柱形系统,由导线和外层组成,都是铜,点缀着钇铁石榴石粉末。实验结果表明,在微波频率下,阻抗变化显著,约为数百欧姆。特别是,我们发现在5.27 GHz频率处磁阻抗变化高于4000%,我们将其命名为驻波移磁阻抗,以区分这种现象与先前认识到的效应,因为它的起源源于不同的原理。
{"title":"Standing wave shift magnetoimpedance in Cu/YIG/Cu cylindrical system at microwave frequencies","authors":"C.A.M. Iglesias ,&nbsp;S.M. Rezende ,&nbsp;J. Xavier ,&nbsp;J.H.R. Lima ,&nbsp;J.D.M. de Lima ,&nbsp;F.L.A. Machado ,&nbsp;I.B.T. Silva ,&nbsp;M.A. Correa ,&nbsp;F. Bohn ,&nbsp;J.M. Soares","doi":"10.1016/j.jmmm.2025.173784","DOIUrl":"10.1016/j.jmmm.2025.173784","url":null,"abstract":"<div><div>We report a theoretical approach to describe the magnetoimpedance phenomenon in cylindrical systems at microwave frequencies. Unlike existing theories of giant magnetoimpedance, often linked to the skin-depth effect in magnetic conductors, our theoretical framework is based on a low-loss transmission line model in conjunction with the Landau-Lifshitz-Gilbert equation, applied in systems composed of diamagnetic electrically conductive materials interspersed with magnetic insulating layers. From our proposal, we carry out numerical calculations that yield significant findings, which motivated us to engineer a cylindrical system consisting of a wire and an external layer, both of copper, interspersed by yttrium-iron-garnet powder. The experimental results show remarkable impedance variations on the order of hundreds of ohms at microwave frequencies. In particular, we find a magnetoimpedance variation higher than 4000% at the frequency of 5.27 GHz, which we designate as standing wave shift magnetoimpedance to distinguish this phenomenon from previously recognized effects, since its origin arises from distinct principles.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"640 ","pages":"Article 173784"},"PeriodicalIF":3.0,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145882786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay of nonlocal exchange and correlation in the magnetism of small Mn clusters 小锰团簇磁性中非局部交换和相关的相互作用
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-23 DOI: 10.1016/j.jmmm.2025.173782
J.L. Ricardo-Chávez , P. Ajiquichí-Pecher , P. Ruiz-Díaz
<div><div>We present a comprehensive first-principles investigation of the structural, magnetic, and electronic properties of small manganese clusters, Mn<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> (<span><math><mrow><mi>n</mi><mo>≤</mo><mn>7</mn></mrow></math></span>), employing three hybrid density-functional approximations: the range-separated hybrid meta-GGA with nonlocal correlation (<span><math><mi>ω</mi></math></span>B97M-V), the global double-hybrid Becke 2nd-order perturbation with Lee–Yang–Parr correlation (B2PLYP), and the global hybrid Becke three-parameter Lee–Yang–Parr (B3LYP) functionals. Our results demonstrate that the inclusion of nonlocal Hartree–Fock exchange and perturbative correlation critically influences magnetic ordering and bonding, yielding significantly improved agreement with experimental observations compared to semi-local functionals. The structural stability and magnetism of Mn<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> clusters are governed by the localization and splitting of <span><math><mi>d</mi></math></span>-states, as well as the occupancy of the <span><math><mi>s</mi></math></span>-states. For Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, all three functionals reproduce the experimentally observed weakly bound antiferromagnetic <span><math><mrow><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>+</mo></mrow></msubsup></mrow></math></span> ground state. As cluster size increases, the magnetic ground state evolves from ferromagnetic (Mn<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) to ferrimagnetic (Mn<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>–Mn<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>), accompanied by progressive <span><math><mi>d</mi></math></span>-orbital hybridization and partial delocalization. For Mn<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>, both hybrid and double-hybrid functionals predict a bi-capped tetrahedral geometry as the most stable isomer, with <span><math><mi>ω</mi></math></span>B97M-V yielding a ferrimagnetic ground state (<span><math><mrow><mi>μ</mi><mo>=</mo><mn>10</mn><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span>) reflected in multiple near-degenerate minima. For Mn<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>, the pentagonal bipyramid geometry is consistently stabilized, although <span><math><mi>ω</mi></math></span>B97M-V favors a low-spin ferrimagnetic state (<span><math><mrow><mi>μ</mi><mo>=</mo><mn>5</mn><mspace></mspace><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span>), while B2PLYP predicts a high-spin fe
我们采用三种杂化密度泛函近似:具有非局部相关(ωB97M-V)的范围分离杂化meta-GGA,具有Lee-Yang-Parr相关的全局双杂化Becke二阶微扰(B2PLYP),以及全局杂化Becke三参数Lee-Yang-Parr泛函(B3LYP),对锰簇Mnn (n≤7)的结构、磁性和电子性质进行了全面的第一原理研究。我们的研究结果表明,包含非局部Hartree-Fock交换和微扰相关对磁有序和键合有重要影响,与半局部泛函数相比,与实验观察结果显著提高了一致性。Mnn簇的结构稳定性和磁性取决于d态的局部化和分裂,以及s态的占据。对于Mn2,所有三个官能团都重现了实验观察到的弱束缚反铁磁性1Σg+基态。随着簇大小的增加,磁性基态由铁磁性(Mn3, Mn4)演变为铁磁性(Mn5-Mn7),并伴有渐进的d轨道杂化和部分离域。对于Mn6,杂化和双杂化泛函都预测双帽四面体是最稳定的异构体,ωB97M-V产生铁磁基态(μ=10μB),反映在多个近简并极小值中。对于Mn7,虽然ωB97M-V倾向于低自旋铁磁态(μ=5μB),而ω B2PLYP倾向于高自旋铁磁态(μ=35μB),但五角形双金字塔几何结构始终稳定,突出了磁序对交换相关处理的敏感性。有趣的是,Mn7的低温磁性来自多种亚稳态自旋构型,而不是单一的主导态。对态密度的分析表明,ωB97M-V在更大程度上保留了Mn的原子性质,产生具有局域、弱相互作用磁矩的弱束缚团簇,有利于反铁磁耦合。总体而言,距离分离的杂化ωB97M-V函式提供了磁性和键合的最平衡描述,准确地捕获了小Mn簇中的弱磁耦合,交换分裂和磁挫折。
{"title":"Interplay of nonlocal exchange and correlation in the magnetism of small Mn clusters","authors":"J.L. Ricardo-Chávez ,&nbsp;P. Ajiquichí-Pecher ,&nbsp;P. Ruiz-Díaz","doi":"10.1016/j.jmmm.2025.173782","DOIUrl":"10.1016/j.jmmm.2025.173782","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We present a comprehensive first-principles investigation of the structural, magnetic, and electronic properties of small manganese clusters, Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;), employing three hybrid density-functional approximations: the range-separated hybrid meta-GGA with nonlocal correlation (&lt;span&gt;&lt;math&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;B97M-V), the global double-hybrid Becke 2nd-order perturbation with Lee–Yang–Parr correlation (B2PLYP), and the global hybrid Becke three-parameter Lee–Yang–Parr (B3LYP) functionals. Our results demonstrate that the inclusion of nonlocal Hartree–Fock exchange and perturbative correlation critically influences magnetic ordering and bonding, yielding significantly improved agreement with experimental observations compared to semi-local functionals. The structural stability and magnetism of Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; clusters are governed by the localization and splitting of &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-states, as well as the occupancy of the &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-states. For Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, all three functionals reproduce the experimentally observed weakly bound antiferromagnetic &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; ground state. As cluster size increases, the magnetic ground state evolves from ferromagnetic (Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) to ferrimagnetic (Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;–Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;), accompanied by progressive &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-orbital hybridization and partial delocalization. For Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, both hybrid and double-hybrid functionals predict a bi-capped tetrahedral geometry as the most stable isomer, with &lt;span&gt;&lt;math&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;B97M-V yielding a ferrimagnetic ground state (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) reflected in multiple near-degenerate minima. For Mn&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, the pentagonal bipyramid geometry is consistently stabilized, although &lt;span&gt;&lt;math&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;B97M-V favors a low-spin ferrimagnetic state (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;), while B2PLYP predicts a high-spin fe","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"639 ","pages":"Article 173782"},"PeriodicalIF":3.0,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145838538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Magnetism and Magnetic Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1