首页 > 最新文献

Journal of Magnetism and Magnetic Materials最新文献

英文 中文
Spin–singlet dimer phase in a frustrated square lattice under a magnetic field 磁场作用下受挫方形晶格中的自旋单线态二聚体相
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-17 DOI: 10.1016/j.jmmm.2025.173687
L.M. Ramos , M. Schmidt , F.M. Zimmer
We investigated the isotropic spin-12 Heisenberg model on an anisotropic square lattice with competing exchange interactions, motivated by the unconventional magnetic behavior observed in the verdazyl-based compound (o-MePy-V)PF6. Using a cluster mean-field approach, we explore a field-induced phase stabilized by the interplay between frustration and quantum fluctuations, focusing on the role of exchange interactions. We identify: (i) the formation of spin singlet pairs, signaled by enhanced spin–spin correlations in specific field regimes; and (ii) a one-half magnetization plateau, emerging from a subtle balance between competing exchange couplings and field-enhanced quantum fluctuations. Our results reveal that an enhancement of frustration, achieved by tuning small variations in the spatially anisotropic exchange interactions of the compound (o-MePy-V)PF6, can stabilize a field-induced quantum phase where ferromagnetism coexists with antiferromagnetic dimers. Our results provide microscopic insight into the mechanisms driving these nontrivial phases and offer theoretical support for interpreting experimental observations in this class of low-dimensional quantum magnets.
我们研究了具有竞争性交换相互作用的各向异性方形晶格上的各向同性自旋-12海森堡模型,该模型是由在verdazyl基化合物(o-MePy-V)PF6中观察到的非常规磁性行为驱动的。利用簇平均场方法,我们探索了由挫折和量子涨落之间的相互作用稳定的场诱导相,重点研究了交换相互作用的作用。我们发现:(i)自旋单线态对的形成,在特定场域中自旋-自旋相关性增强;(ii)在相互竞争的交换耦合和场增强量子涨落之间的微妙平衡中出现的一半磁化平台。我们的研究结果表明,通过调整化合物(o-MePy-V)PF6的空间各向异性交换相互作用的微小变化来实现挫败感的增强,可以稳定铁磁性与反铁磁性二聚体共存的场诱导量子相。我们的研究结果为驱动这些非平凡相的机制提供了微观视角,并为解释这类低维量子磁体的实验观察提供了理论支持。
{"title":"Spin–singlet dimer phase in a frustrated square lattice under a magnetic field","authors":"L.M. Ramos ,&nbsp;M. Schmidt ,&nbsp;F.M. Zimmer","doi":"10.1016/j.jmmm.2025.173687","DOIUrl":"10.1016/j.jmmm.2025.173687","url":null,"abstract":"<div><div>We investigated the isotropic spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> Heisenberg model on an anisotropic square lattice with competing exchange interactions, motivated by the unconventional magnetic behavior observed in the verdazyl-based compound (<span><math><mi>o</mi></math></span>-MePy-V)PF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>. Using a cluster mean-field approach, we explore a field-induced phase stabilized by the interplay between frustration and quantum fluctuations, focusing on the role of exchange interactions. We identify: (i) the formation of spin singlet pairs, signaled by enhanced spin–spin correlations in specific field regimes; and (ii) a one-half magnetization plateau, emerging from a subtle balance between competing exchange couplings and field-enhanced quantum fluctuations. Our results reveal that an enhancement of frustration, achieved by tuning small variations in the spatially anisotropic exchange interactions of the compound (<span><math><mi>o</mi></math></span>-MePy-V)PF<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>, can stabilize a field-induced quantum phase where ferromagnetism coexists with antiferromagnetic dimers. Our results provide microscopic insight into the mechanisms driving these nontrivial phases and offer theoretical support for interpreting experimental observations in this class of low-dimensional quantum magnets.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173687"},"PeriodicalIF":3.0,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145578499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid-cooled yield stress measurement system for magnetorheological fluids 磁流变液的液冷屈服应力测量系统
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1016/j.jmmm.2025.173683
Xianfei Yin , Fei Chen , Mingzhuang Wu , Aimin Li , Haopeng Li , Shuyou Wang
Aiming at the problem that the existing magnetorheological (MR) fluid shear stress measurement system lacks effective heat dissipation, this paper proposes a new liquid-cooled measurement system. The structure of the measurement system is designed, and the expression of the MR fluid shear yield stress of the measurement system is derived. Theoretical analysis and finite element simulation analysis are carried out on the magnetic field and temperature field of the measurement system, which verify the rationality of the magnetic circuit design and the effectiveness of heat dissipation. The measurement system is built and its performance is verified. The results show that the measurement system can provide a magnetic field strength of 650 mT, a temperature rise of less than 5 °C, and a measurement accuracy of more than 98 %.
针对现有磁流变(MR)流体剪切应力测量系统缺乏有效散热的问题,提出了一种新型液冷测量系统。设计了测量系统的结构,推导了测量系统的磁流变液剪切屈服应力表达式。对测量系统的磁场和温度场进行了理论分析和有限元仿真分析,验证了磁路设计的合理性和散热的有效性。搭建了测量系统,并对其性能进行了验证。结果表明,该测量系统可提供650 mT的磁场强度,温升小于5℃,测量精度大于98%。
{"title":"Liquid-cooled yield stress measurement system for magnetorheological fluids","authors":"Xianfei Yin ,&nbsp;Fei Chen ,&nbsp;Mingzhuang Wu ,&nbsp;Aimin Li ,&nbsp;Haopeng Li ,&nbsp;Shuyou Wang","doi":"10.1016/j.jmmm.2025.173683","DOIUrl":"10.1016/j.jmmm.2025.173683","url":null,"abstract":"<div><div>Aiming at the problem that the existing magnetorheological (MR) fluid shear stress measurement system lacks effective heat dissipation, this paper proposes a new liquid-cooled measurement system. The structure of the measurement system is designed, and the expression of the MR fluid shear yield stress of the measurement system is derived. Theoretical analysis and finite element simulation analysis are carried out on the magnetic field and temperature field of the measurement system, which verify the rationality of the magnetic circuit design and the effectiveness of heat dissipation. The measurement system is built and its performance is verified. The results show that the measurement system can provide a magnetic field strength of 650 mT, a temperature rise of less than 5 °C, and a measurement accuracy of more than 98 %.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173683"},"PeriodicalIF":3.0,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145532758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Er substitution on structural, magnetic, and dielectric-resistivity properties of NiZnCo ferrite 铒取代对NiZnCo铁氧体结构、磁性和介电电阻率的影响
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1016/j.jmmm.2025.173674
Yuan Zhuang , Yi-Lei Li , Lin-Jie Guo , Xing Zhang , Zu-Heng Hu , Le-Zhong Li , Jian Tang
This study synthesized Ni0.5Zn0.35Co0.15ErxFe2-xO4 (NZCEF, 0 ≤ x ≤ 0.100) ferrite ceramics and systematically investigated the influence of Er3+ substitution, along with the synergistically formed secondary phase, on the microstructure, dielectric-resistivity properties, and magnetic performance. The results demonstrate the material's promising potential for next-generation wireless communication and high-frequency power inductors. XRD analysis confirmed that all substituted ferrites maintained the spinel structure, with theoretical density increasing and porosity decreasing as the substitution level rose. A secondary ErFeO3 phase emerged at x = 0.025, reaching a phase fraction of 11.06 % at x = 0.1. Scanning electron microscopy revealed that the average grain size decreased from 1.78 μm to 1.26 μm, consistent with the trend of calculated crystallite size (D). Regarding magnetic properties, both the calculated anisotropy field (Ha) and effective anisotropy constant (Kₑff) increased gradually with substitution level. The measured saturation magnetization decreased from 53.65 emu/g to 40.26 emu/g, while coercivity increased from 37.56 Oe to 45.46 Oe, validating the computational reliability. Notably, the resonance frequency significantly improved to 407.9 MHz, surpassing the benchmark of mainstream IEEE 802.15.4 Sub-GHz high-frequency devices. For the dielectric-resistivity properties, Er3+ substitution and the formation of the secondary phase altered the electron hopping mechanism between Fe3+ and Fe2+ ions, significantly reducing dielectric loss. At x = 0.05, the activation energy (Eₐ) markedly increases to 0.508 eV, and the resistivity reaches a peak value of 6.50 × 106 Ω·m at 321 K. This work demonstrates the synergistic effects of Er3+ substitution and secondary phase formation in enhancing dielectric properties, reducing losses, and increasing resonance frequency, thereby positioning the material as an ideal candidate for wireless communication systems, RF power amplifier modules, and high-speed IoT applications.
本研究合成了Ni0.5Zn0.35Co0.15ErxFe2-xO4 (NZCEF, 0≤x≤0.100)铁氧体陶瓷,系统研究了Er3+取代及其协同形成的二次相对陶瓷微观结构、介电性能和磁性能的影响。结果表明,该材料在下一代无线通信和高频功率电感方面具有很大的潜力。XRD分析证实,所有取代铁氧体均保持尖晶石结构,理论密度随取代水平的升高而增大,孔隙率随取代水平的升高而减小。在x = 0.025时出现二次ErFeO3相,在x = 0.1时达到11.06%的相分数。扫描电镜显示,平均晶粒尺寸从1.78 μm减小到1.26 μm,与计算的晶粒尺寸(D)趋势一致。磁性能方面,计算各向异性场(Ha)和有效各向异性常数(Kₑff)随取代水平的增加而逐渐增大。实测饱和磁化强度从53.65 emu/g下降到40.26 emu/g,矫顽力从37.56 Oe增加到45.46 Oe,验证了计算的可靠性。值得注意的是,谐振频率显著提高到407.9 MHz,超过了主流IEEE 802.15.4 Sub-GHz高频器件的基准。在介电电阻性能方面,Er3+的取代和二次相的形成改变了Fe3+和Fe2+离子之间的电子跳变机制,显著降低了介电损耗。当x = 0.05时,活化能(E - v)显著增加至0.508 eV,在321 K时电阻率达到峰值6.50 × 106 Ω·m。这项工作证明了Er3+取代和二次相形成在增强介电性能、降低损耗和提高谐振频率方面的协同效应,从而使该材料成为无线通信系统、射频功率放大器模块和高速物联网应用的理想候选材料。
{"title":"Effect of Er substitution on structural, magnetic, and dielectric-resistivity properties of NiZnCo ferrite","authors":"Yuan Zhuang ,&nbsp;Yi-Lei Li ,&nbsp;Lin-Jie Guo ,&nbsp;Xing Zhang ,&nbsp;Zu-Heng Hu ,&nbsp;Le-Zhong Li ,&nbsp;Jian Tang","doi":"10.1016/j.jmmm.2025.173674","DOIUrl":"10.1016/j.jmmm.2025.173674","url":null,"abstract":"<div><div>This study synthesized Ni<sub>0.5</sub>Zn<sub>0.35</sub>Co<sub>0.15</sub>Er<sub><em>x</em></sub>Fe<sub>2-<em>x</em></sub>O<sub>4</sub> (NZCEF, 0 ≤ <em>x</em> ≤ 0.100) ferrite ceramics and systematically investigated the influence of Er<sup>3+</sup> substitution, along with the synergistically formed secondary phase, on the microstructure, dielectric-resistivity properties, and magnetic performance. The results demonstrate the material's promising potential for next-generation wireless communication and high-frequency power inductors. XRD analysis confirmed that all substituted ferrites maintained the spinel structure, with theoretical density increasing and porosity decreasing as the substitution level rose. A secondary ErFeO<sub>3</sub> phase emerged at <em>x</em> = 0.025, reaching a phase fraction of 11.06 % at <em>x</em> = 0.1. Scanning electron microscopy revealed that the average grain size decreased from 1.78 μm to 1.26 μm, consistent with the trend of calculated crystallite size (<em>D</em>). Regarding magnetic properties, both the calculated anisotropy field (<em>H</em>a) and effective anisotropy constant (K<sub><em>ₑff</em></sub>) increased gradually with substitution level. The measured saturation magnetization decreased from 53.65 emu/g to 40.26 emu/g, while coercivity increased from 37.56 Oe to 45.46 Oe, validating the computational reliability. Notably, the resonance frequency significantly improved to 407.9 MHz, surpassing the benchmark of mainstream IEEE 802.15.4 Sub-GHz high-frequency devices. For the dielectric-resistivity properties, Er<sup>3+</sup> substitution and the formation of the secondary phase altered the electron hopping mechanism between Fe<sup>3+</sup> and Fe<sup>2+</sup> ions, significantly reducing dielectric loss. At <em>x</em> = 0.05, the activation energy (<em>E</em>ₐ) markedly increases to 0.508 eV, and the resistivity reaches a peak value of 6.50 × 10<sup>6</sup> Ω·m at 321 K. This work demonstrates the synergistic effects of Er<sup>3+</sup> substitution and secondary phase formation in enhancing dielectric properties, reducing losses, and increasing resonance frequency, thereby positioning the material as an ideal candidate for wireless communication systems, RF power amplifier modules, and high-speed IoT applications.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173674"},"PeriodicalIF":3.0,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145621890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic coupling mediated by oxygen vacancies in Sm doped ZnO nanocrystals: Hydrothermal synthesis and first-principles investigation Sm掺杂ZnO纳米晶体中氧空位介导的磁偶联:水热合成和第一性原理研究
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1016/j.jmmm.2025.173684
Hao Yuan , Yanfang Zhao , Dongbo Li , Jian Lv , Ping Zhou , Xinyao Li , Yuanbin Xiao , Wei Ding
This study presents the hydrothermal synthesis of samarium (Sm) doped ZnO nanocrystals, coupled with a comprehensive experimental and first-principles computational investigation to elucidate their structural, electronic, and magneto-optical properties. X-ray diffraction and energy-dispersive X-ray spectroscopy confirm high crystallinity and purity of the doped nanocrystals, with no detectable secondary phases. X-ray photoelectron spectroscopy verifies successful incorporation of Sm3+ ions and the presence of oxygen vacancies (VO). Doping induces two critical effects: a reduction in the optical bandgap and the emergence of room-temperature paramagnetism in ZnO. First-principles calculations further reveal that Sm doping enhances magneto-optical properties through two key mechanisms: high-spin polarization of Sm-4f energy levels and modulation of the host band structure. Notably, while oxygen vacancies contribute minimally to individual magnetic moments, they act as critical mediators of magnetic coupling between Sm3+ ions via bound magnetic polarons. Specifically, both Sm-O-Sm atomic configurations and Sm-VO-Sm defect complexes facilitate robust ferromagnetic coupling, enabling room temperature ferromagnetism in the doped nanocrystals. These findings highlight the potential of Sm doped ZnO for advanced spintronic applications, where tunable magnetic and magneto-optical properties are essential.
本研究提出了水热合成钐(Sm)掺杂ZnO纳米晶体,并结合综合实验和第一性原理计算研究来阐明其结构,电子和磁光性质。x射线衍射和能量色散x射线光谱证实了掺杂纳米晶体的高结晶度和纯度,没有检测到二次相。x射线光电子能谱证实Sm3+离子的成功结合和氧空位(VO)的存在。掺杂引起两个关键效应:光学带隙的减小和ZnO室温顺磁性的出现。第一性原理计算进一步揭示了Sm掺杂通过Sm-4f能级的高自旋极化和主能带结构的调制两种关键机制来增强磁光性能。值得注意的是,虽然氧空位对单个磁矩的贡献很小,但它们是Sm3+离子之间通过束缚磁极化子进行磁耦合的关键介质。具体来说,Sm-O-Sm原子构型和Sm-VO-Sm缺陷配合物都促进了强大的铁磁耦合,使掺杂纳米晶体具有室温铁磁性。这些发现突出了Sm掺杂ZnO在先进自旋电子应用中的潜力,其中可调谐的磁性和磁光特性是必不可少的。
{"title":"Magnetic coupling mediated by oxygen vacancies in Sm doped ZnO nanocrystals: Hydrothermal synthesis and first-principles investigation","authors":"Hao Yuan ,&nbsp;Yanfang Zhao ,&nbsp;Dongbo Li ,&nbsp;Jian Lv ,&nbsp;Ping Zhou ,&nbsp;Xinyao Li ,&nbsp;Yuanbin Xiao ,&nbsp;Wei Ding","doi":"10.1016/j.jmmm.2025.173684","DOIUrl":"10.1016/j.jmmm.2025.173684","url":null,"abstract":"<div><div>This study presents the hydrothermal synthesis of samarium (Sm) doped ZnO nanocrystals, coupled with a comprehensive experimental and first-principles computational investigation to elucidate their structural, electronic, and magneto-optical properties. X-ray diffraction and energy-dispersive X-ray spectroscopy confirm high crystallinity and purity of the doped nanocrystals, with no detectable secondary phases. X-ray photoelectron spectroscopy verifies successful incorporation of Sm<sup>3+</sup> ions and the presence of oxygen vacancies (V<sub>O</sub>). Doping induces two critical effects: a reduction in the optical bandgap and the emergence of room-temperature paramagnetism in ZnO. First-principles calculations further reveal that Sm doping enhances magneto-optical properties through two key mechanisms: high-spin polarization of Sm-4f energy levels and modulation of the host band structure. Notably, while oxygen vacancies contribute minimally to individual magnetic moments, they act as critical mediators of magnetic coupling between Sm<sup>3+</sup> ions via bound magnetic polarons. Specifically, both Sm-O-Sm atomic configurations and Sm-V<sub>O</sub>-Sm defect complexes facilitate robust ferromagnetic coupling, enabling room temperature ferromagnetism in the doped nanocrystals. These findings highlight the potential of Sm doped ZnO for advanced spintronic applications, where tunable magnetic and magneto-optical properties are essential.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173684"},"PeriodicalIF":3.0,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145578498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the valence transition in Ce2Rh2Ga by chemical pressure 化学压力探测Ce2Rh2Ga的价跃迁
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1016/j.jmmm.2025.173680
S.P. Xhakaza, A.M. Strydom
We have investigated the behaviour of site-selective substitution in the intermetallic compound Ce2Rh2Ga which has coinciding crystal structure and valence transitions at Tt=128.5 K, by means of magnetic susceptibility and specific heat. Substitutions were performed on each of the Ce, Rh, and Ga sites to a level of 10at.%. All the substituted samples proved to crystallize at room temperature in the expected orthorhombic La2Ni3-type (Cmce, nr. 64), demonstrating the structural robustness of the host lattice upon doping. In only two of the compounds, namely Ce1.8La0.2Rh2Ga and Ce2Rh2Ga0.9Al0.1 was the transition at Tt found to disappear.
本文利用磁化率和比热研究了具有相同晶体结构和价态跃迁的金属间化合物Ce2Rh2Ga在Tt=128.5 K时的选择性取代行为。将Ce、Rh和Ga位点置换至10at.%的水平。所有取代的样品在室温下都以预期的正交la2ni3型(Cmce, nr. 64)结晶,证明了掺杂后主体晶格的结构稳健性。其中只有Ce1.8La0.2Rh2Ga和Ce2Rh2Ga0.9Al0.1的Tt跃迁消失。
{"title":"Probing the valence transition in Ce2Rh2Ga by chemical pressure","authors":"S.P. Xhakaza,&nbsp;A.M. Strydom","doi":"10.1016/j.jmmm.2025.173680","DOIUrl":"10.1016/j.jmmm.2025.173680","url":null,"abstract":"<div><div>We have investigated the behaviour of site-selective substitution in the intermetallic compound Ce<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Rh<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Ga which has coinciding crystal structure and valence transitions at <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>128</mn><mo>.</mo><mn>5</mn></mrow></math></span> K, by means of magnetic susceptibility and specific heat. Substitutions were performed on each of the Ce, Rh, and Ga sites to a level of <span><math><mrow><mn>10</mn><mspace></mspace><mi>at</mi><mo>.</mo><mspace></mspace><mtext>%</mtext></mrow></math></span>. All the substituted samples proved to crystallize at room temperature in the expected orthorhombic La<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-type (<span><math><mrow><mi>C</mi><mi>m</mi><mi>c</mi><mi>e</mi></mrow></math></span>, nr. 64), demonstrating the structural robustness of the host lattice upon doping. In only two of the compounds, namely Ce<sub>1.8</sub>La<sub>0.2</sub>Rh<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Ga and Ce<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Rh<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Ga<sub>0.9</sub>Al<sub>0.1</sub> was the transition at <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> found to disappear.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173680"},"PeriodicalIF":3.0,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145578500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation between structural-magnetic-optical properties of new double perovskite oxide Y2ZnMnO6 新型双钙钛矿氧化物Y2ZnMnO6结构-磁-光学性质的相关性
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1016/j.jmmm.2025.173685
Papiya Saha , R. Nithya , K. Sethupathi , P.K. Sreejith , Rabindra Nath Juine , Sujoy Sen
Mn-based double perovskite oxides are gaining huge interest due to their multivalent oxidation state resulting in unique magnetic and optical properties. Double perovskite oxide Y2ZnMnO6 is synthesized for the first time using solid state reaction route. The correlation between the structural, magnetic and optical properties are reported here. It crystallizes in monoclinic structure with the space group, P21/n and the lattice parameters are a = 5.257 (5) Å, b = 5.614 (3) Å, c = 7.512 (3) Å, β = 90.03 (2)°. Significant octahedral tilting is observed. The obtained values of bond valence sum confirm the stoichiometry. Temperature dependent DC magnetization measurements under ZFC, FCC and FCW protocols showed an antiferromagnetic transition (TN) at 14.8 K. The super-exchange interaction between Mn4+, t2g3 orbitals via Mn-O2-O3-Mn and Mn-O1-Zn-O1-Mn are responsible for the antiferromagnetic transition. The obtained values of Curie Weiss temperature and effective magnetic moment are 7.62 K and 4.41 μB respectively. The absence of spin glass state is confirmed from AC susceptibility results. The bifurcation between magnetic susceptibility under ZFC, FC modes below the Neel temperature (TN) could be due to the presence of weak ferromagnetism. Conduction mechanism switching at temperatures around 190 K from small polaron hopping to Arrhenius type has also been verified. Y2ZnMnO6 absorbs light from 250 nm to 500 nm due to the charge transfer band Mn4+-O2− transition. The direct bandgap value of 2.5 eV is obtained from the Tauc's plot. All these properties make Y2ZnMnO6 an interesting and potential candidate for opto-electronic device applications.
锰基双钙钛矿氧化物由于其多价氧化态导致独特的磁性和光学性质而获得了巨大的兴趣。采用固相反应的方法首次合成了双钙钛矿氧化物Y2ZnMnO6。本文报道了结构、磁性和光学性质之间的相互关系。晶型为单斜晶型,具有空间群P21/n,晶格参数为a = 5.257 (5) Å, b = 5.614 (3) Å, c = 7.512 (3) Å, β = 90.03(2)°。观察到明显的八面体倾斜。得到的键价和的值证实了化学计量。温度相关的ZFC、FCC和FCW方案下的直流磁化测量结果显示,在14.8 K时出现了反铁磁跃迁(TN)。Mn4+、t2g3轨道之间通过Mn-O2-O3-Mn和Mn-O1-Zn-O1-Mn的超交换相互作用是反铁磁跃迁的原因。得到的居里魏斯温度和有效磁矩分别为7.62 K和4.41 μB。交流磁化率结果证实了自旋玻璃态的不存在。ZFC模式下磁化率和低于Neel温度(TN)的FC模式之间的分叉可能是由于弱铁磁性的存在。在190 K左右的温度下,从小极化子跳变到Arrhenius型的传导机制也得到了验证。由于电荷转移带Mn4+-O2−跃迁,Y2ZnMnO6吸收250 ~ 500 nm的光。直接带隙值为2.5 eV。所有这些特性使Y2ZnMnO6成为光电器件应用的一个有趣和潜在的候选者。
{"title":"Correlation between structural-magnetic-optical properties of new double perovskite oxide Y2ZnMnO6","authors":"Papiya Saha ,&nbsp;R. Nithya ,&nbsp;K. Sethupathi ,&nbsp;P.K. Sreejith ,&nbsp;Rabindra Nath Juine ,&nbsp;Sujoy Sen","doi":"10.1016/j.jmmm.2025.173685","DOIUrl":"10.1016/j.jmmm.2025.173685","url":null,"abstract":"<div><div>Mn-based double perovskite oxides are gaining huge interest due to their multivalent oxidation state resulting in unique magnetic and optical properties. Double perovskite oxide Y<sub>2</sub>ZnMnO<sub>6</sub> is synthesized for the first time using solid state reaction route. The correlation between the structural, magnetic and optical properties are reported here. It crystallizes in monoclinic structure with the space group, <em>P2</em><sub><em>1</em></sub><em>/n</em> and the lattice parameters are <em>a</em> = 5.257 (5) Å, <em>b</em> = 5.614 (3) Å, <em>c</em> = 7.512 (3) Å, β = 90.03 (2)°. Significant octahedral tilting is observed. The obtained values of bond valence sum confirm the stoichiometry. Temperature dependent DC magnetization measurements under ZFC, FCC and FCW protocols showed an antiferromagnetic transition (T<sub>N</sub>) at 14.8 K. The super-exchange interaction between Mn<sup>4+</sup>, <span><math><msubsup><mi>t</mi><mrow><mn>2</mn><mi>g</mi></mrow><mn>3</mn></msubsup></math></span> orbitals via Mn-O2-O3-Mn and Mn-O1-Zn-O1-Mn are responsible for the antiferromagnetic transition. The obtained values of Curie Weiss temperature and effective magnetic moment are 7.62 K and 4.41 μ<sub>B</sub> respectively. The absence of spin glass state is confirmed from AC susceptibility results. The bifurcation between magnetic susceptibility under ZFC, FC modes below the Neel temperature (T<sub>N</sub>) could be due to the presence of weak ferromagnetism. Conduction mechanism switching at temperatures around 190 K from small polaron hopping to Arrhenius type has also been verified. Y<sub>2</sub>ZnMnO<sub>6</sub> absorbs light from 250 nm to 500 nm due to the charge transfer band Mn<sup>4+</sup>-O<sup>2−</sup> transition. The direct bandgap value of 2.5 eV is obtained from the Tauc's plot. All these properties make Y<sub>2</sub>ZnMnO<sub>6</sub> an interesting and potential candidate for opto-electronic device applications.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173685"},"PeriodicalIF":3.0,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145532756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of FeSe2 paramagnetic to Fe7Se8 ferromagnetic transition in FeSe by Mössbauer spectroscopy Mössbauer光谱法检测FeSe中FeSe2顺磁到Fe7Se8的铁磁跃迁
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-15 DOI: 10.1016/j.jmmm.2025.173676
Abdelhak Chebli , Joan Josep Suñol , Daniel Nižňanský , Baris Avar
In this study, nanocrystalline Fe25Se75 powders were synthesized by high-energy mechanical alloying (MA) for milling times up to 52 h. The evolution of the crystalline structure, hyperfine parameters, and magnetic behavior was investigated using Mössbauer spectroscopy (MS), vibrating sample magnetometry (VSM), and X-ray diffraction (XRD). The Mössbauer spectra of samples milled up to 33 h showed a dominant paramagnetic doublet, corresponding to the formation of the FeSe2 phase, alongside a sextet from residual α-Fe. However, after 52 h of milling, the spectra showed the emergence of a broad ferromagnetic sextet, indicating a phase transformation from paramagnetic FeSe2 to ferromagnetic Fe7Se8. This magnetic transition is supported by VSM measurements performed at room temperature for samples milled for 1, 6, 10, 33, and 52 h. The VSM data confirmed the presence of a ferromagnetic phase at extended milling times, characterized by a progressive increase in coercivity (Hc) and a sharp decrease in saturation magnetization (Ms). X-ray diffraction (XRD) patterns corroborated the phase identification and structural information revealed by Mössbauer spectroscopy.
These findings highlight the capability of MA to induce phase transformations and demonstrate that the combination of MS and VSM is highly effective for tracking the magnetic transition from paramagnetic FeSe2 to ferromagnetic Fe7Se8.
在本研究中,通过高能机械合金化(MA)合成纳米晶Fe25Se75粉末,铣削时间长达52 h。利用Mössbauer光谱(MS)、振动样品磁强计(VSM)和x射线衍射(XRD)研究了晶体结构、超细参数和磁性行为的演变。研磨至33 h的样品的Mössbauer光谱显示出一个主要的顺磁偶极体,对应于FeSe2相的形成,以及残余α-Fe的六重体。然而,铣削52 h后,光谱显示出现了宽铁磁六体,表明从顺磁性的FeSe2到铁磁性的Fe7Se8相变。在室温下对研磨1、6、10、33和52小时的样品进行的VSM测量支持了这种磁转变。VSM数据证实了在延长研磨时间时铁磁相的存在,其特征是矫顽力(Hc)逐渐增加,饱和磁化强度(Ms)急剧下降。x射线衍射(XRD)图证实了Mössbauer光谱所揭示的物相识别和结构信息。这些发现突出了MA诱导相变的能力,并表明MS和VSM的结合对于跟踪顺磁性FeSe2到铁磁性Fe7Se8的磁转变是非常有效的。
{"title":"Detection of FeSe2 paramagnetic to Fe7Se8 ferromagnetic transition in FeSe by Mössbauer spectroscopy","authors":"Abdelhak Chebli ,&nbsp;Joan Josep Suñol ,&nbsp;Daniel Nižňanský ,&nbsp;Baris Avar","doi":"10.1016/j.jmmm.2025.173676","DOIUrl":"10.1016/j.jmmm.2025.173676","url":null,"abstract":"<div><div>In this study, nanocrystalline Fe<sub>25</sub>Se<sub>75</sub> powders were synthesized by high-energy mechanical alloying (MA) for milling times up to 52 h. The evolution of the crystalline structure, hyperfine parameters, and magnetic behavior was investigated using Mössbauer spectroscopy (MS), vibrating sample magnetometry (VSM), and X-ray diffraction (XRD). The Mössbauer spectra of samples milled up to 33 h showed a dominant paramagnetic doublet, corresponding to the formation of the FeSe2 phase, alongside a sextet from residual α-Fe. However, after 52 h of milling, the spectra showed the emergence of a broad ferromagnetic sextet, indicating a phase transformation from paramagnetic FeSe<sub>2</sub> to ferromagnetic Fe<sub>7</sub>Se<sub>8</sub>. This magnetic transition is supported by VSM measurements performed at room temperature for samples milled for 1, 6, 10, 33, and 52 h. The VSM data confirmed the presence of a ferromagnetic phase at extended milling times, characterized by a progressive increase in coercivity (Hc) and a sharp decrease in saturation magnetization (Ms). X-ray diffraction (XRD) patterns corroborated the phase identification and structural information revealed by Mössbauer spectroscopy.</div><div>These findings highlight the capability of MA to induce phase transformations and demonstrate that the combination of MS and VSM is highly effective for tracking the magnetic transition from paramagnetic FeSe<sub>2</sub> to ferromagnetic Fe<sub>7</sub>Se<sub>8</sub>.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173676"},"PeriodicalIF":3.0,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145621889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of coercivity and squareness in high-Fe 2:17-type SmCo alloys fabricated via dual-alloy process 双合金工艺制备高铁2:17型SmCo合金矫顽力和方度的研究
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-14 DOI: 10.1016/j.jmmm.2025.173675
Jue Wang , Youning Kang , Chen Zhang , Dongtao Zhang , Jianjun Yang , Yuqing Li , Weiqiang Liu , Ming Yue
Increasing the Fe content constitutes a strategy for enhancing the remanence and maximum energy product of 2:17-type SmCo alloys. However, it typically compromises coercivity and squareness ratio. In this study, a dual-alloy approach was employed, where in a high-Fe and low-Cu alloy A with a low-Fe and high-Cu alloy B, followed by sintering to fabricate a composite magnet C. Compared with the single-alloy A magnet, the dual-alloy magnet C achieves a significant increase in coercivity to 33.1 kOe and squareness ratio from 40.7 % to 42.6 %, while maintaining comparable remanence. The analysis revealed that the dual-alloy process optimized the volume fraction of the 1:3R platelet phase and the distribution of the 1:5H cell-boundary phase, resulting in a more uniform cellular structure, reducing the density of the 2:17R’ phase, and altering the domain-wall pinning mechanism. This methodology overcomes the limitations inherent in conventional composition design, offering a viable strategy for developing high-performance, high-Fe 2:17-type SmCo alloys with significant application potential.
提高铁含量是提高2:17型SmCo合金剩余物和最大能积的策略。然而,它通常会损害矫顽力和正方形比。本研究采用双合金方法,将高铁低铜合金a与低铁高铜合金B烧结制成复合磁体C。与单合金a磁体相比,双合金磁体C的矫顽力显著提高到33.1 kOe,方形比从40.7%提高到42.6%,同时保持了相当的剩余率。分析表明,双合金工艺优化了1:3R血小板相的体积分数和1:5H胞界相的分布,使细胞结构更加均匀,降低了2:17R′相的密度,改变了畴壁钉钉机制。该方法克服了传统成分设计固有的局限性,为开发高性能、高铁2:17型SmCo合金提供了一种可行的策略,具有重要的应用潜力。
{"title":"Investigation of coercivity and squareness in high-Fe 2:17-type SmCo alloys fabricated via dual-alloy process","authors":"Jue Wang ,&nbsp;Youning Kang ,&nbsp;Chen Zhang ,&nbsp;Dongtao Zhang ,&nbsp;Jianjun Yang ,&nbsp;Yuqing Li ,&nbsp;Weiqiang Liu ,&nbsp;Ming Yue","doi":"10.1016/j.jmmm.2025.173675","DOIUrl":"10.1016/j.jmmm.2025.173675","url":null,"abstract":"<div><div>Increasing the Fe content constitutes a strategy for enhancing the remanence and maximum energy product of 2:17-type SmCo alloys. However, it typically compromises coercivity and squareness ratio. In this study, a dual-alloy approach was employed, where in a high-Fe and low-Cu alloy A with a low-Fe and high-Cu alloy B, followed by sintering to fabricate a composite magnet C. Compared with the single-alloy A magnet, the dual-alloy magnet C achieves a significant increase in coercivity to 33.1 kOe and squareness ratio from 40.7 % to 42.6 %, while maintaining comparable remanence. The analysis revealed that the dual-alloy process optimized the volume fraction of the 1:3R platelet phase and the distribution of the 1:5H cell-boundary phase, resulting in a more uniform cellular structure, reducing the density of the 2:17R’ phase, and altering the domain-wall pinning mechanism. This methodology overcomes the limitations inherent in conventional composition design, offering a viable strategy for developing high-performance, high-Fe 2:17-type SmCo alloys with significant application potential.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173675"},"PeriodicalIF":3.0,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145532755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure, surface composition, and magnetic properties of Mn2+-doped magnetite nanoparticles of the composition MnxFe3-yO4 MnxFe3-yO4掺杂Mn2+纳米磁铁矿的结构、表面组成和磁性能
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-13 DOI: 10.1016/j.jmmm.2025.173677
K.S. Al-Rashdi , H.M. Widatallah , F. Al Ma'Mari , M.E. Elzain , A.M. Gismelseed , A.D. Al-Rawas , H.H. Kyaw , O. Cespedes , E.A. Moore , E.M. Crabb
We systematically investigated the core structure, surface composition, and magnetic properties of Mn2+-doped magnetite nanocrystalline particles (∼ 8–23 nm) of the nominal composition MnxFe3-yO4 (x = 0.0–0.5; y=23x) where the Fe3+, not Fe2+, ions are deliberately substituted with Mn2+ to create a unique defect structure formed of both substitutional and interstitial Mn2+ impurities. XRD and Raman data indicate that Mn2+ doping weakens the magnetite-to-maghemite transformation, halting it entirely for the MnxFe3-yO4 sample with x = 0.5. Rietveld analysis of XRD data favors a cationic distribution wherein Mn2+ ions exclusively substitute the tetrahedral Fe3+ ions in the spinel-related structure, removing x of them to interstitial tetrahedral sites at low x values and to both interstitial tetrahedral and octahedral sites at higher x values. XPS data support the finding that the magnetite-to-maghemite transformation is increasingly inhibited at higher x values. The nanoparticles exhibit complex magnetic behavior, which is a manifestation of the unique defect structure wherein the saturation magnetization initially decreases and then increases as x increases. The Verwey transition observed at very low temperatures (∼10 K) in MnxFe3-yO4 nanoparticles is attributed to particle size effects rather than Mn2+ doping. The changes in the magnetic properties are clearly related to the unique defect structure developed.
我们系统地研究了名义成分MnxFe3-yO4 (x = 0 - 0.5; y=23x)的Mn2+掺杂磁铁矿纳米晶颗粒(~ 8-23 nm)的核心结构、表面组成和磁性,其中Fe3+而不是Fe2+离子被故意用Mn2+取代,以形成由取代和间隙Mn2+杂质形成的独特缺陷结构。XRD和Raman数据表明,掺杂Mn2+削弱了磁铁矿向磁铁矿的转变,在x = 0.5的MnxFe3-yO4样品中完全停止了磁铁矿向磁铁矿的转变。XRD数据的Rietveld分析倾向于阳离子分布,其中Mn2+离子完全替代尖晶石相关结构中的四面体Fe3+离子,在低x值时将三分之一的Mn2+离子转移到间隙四面体位置,在高x值时将三分之一的Mn2+离子转移到间隙四面体和八面体位置。XPS数据支持这一发现,即在较高的x值下,磁铁矿向磁铁矿的转变越来越受到抑制。纳米颗粒表现出复杂的磁性行为,这是其独特的缺陷结构的表现,其饱和磁化强度随着x的增加先降低后增加。在极低温度(~ 10 K)下观察到的MnxFe3-yO4纳米颗粒的Verwey转变归因于粒径效应,而不是Mn2+掺杂。磁性能的变化显然与所形成的独特缺陷结构有关。
{"title":"Structure, surface composition, and magnetic properties of Mn2+-doped magnetite nanoparticles of the composition MnxFe3-yO4","authors":"K.S. Al-Rashdi ,&nbsp;H.M. Widatallah ,&nbsp;F. Al Ma'Mari ,&nbsp;M.E. Elzain ,&nbsp;A.M. Gismelseed ,&nbsp;A.D. Al-Rawas ,&nbsp;H.H. Kyaw ,&nbsp;O. Cespedes ,&nbsp;E.A. Moore ,&nbsp;E.M. Crabb","doi":"10.1016/j.jmmm.2025.173677","DOIUrl":"10.1016/j.jmmm.2025.173677","url":null,"abstract":"<div><div>We systematically investigated the core structure, surface composition, and magnetic properties of Mn<sup>2+</sup>-doped magnetite nanocrystalline particles (∼ 8–23 nm) of the nominal composition Mn<sub><em>x</em></sub>Fe<sub>3-<em>y</em></sub>O<sub>4</sub> (<em>x</em> = 0.0–0.5; <span><math><mi>y</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>x</mi></math></span>) where the Fe<sup>3+</sup>, not Fe<sup>2+</sup>, ions are deliberately substituted with Mn<sup>2+</sup> to create a unique defect structure formed of both substitutional and interstitial Mn<sup>2+</sup> impurities. XRD and Raman data indicate that Mn<sup>2+</sup> doping weakens the magnetite-to-maghemite transformation, halting it entirely for the Mn<sub><em>x</em></sub>Fe<sub>3-<em>y</em></sub>O<sub>4</sub> sample with <em>x</em> = 0.5. Rietveld analysis of XRD data favors a cationic distribution wherein Mn<sup>2+</sup> ions exclusively substitute the tetrahedral Fe<sup>3+</sup> ions in the spinel-related structure, removing <span><math><mn>⅓</mn><mspace></mspace><mi>x</mi></math></span> of them to interstitial tetrahedral sites at low <em>x</em> values and to both interstitial tetrahedral and octahedral sites at higher <em>x</em> values. XPS data support the finding that the magnetite-to-maghemite transformation is increasingly inhibited at higher <em>x</em> values. The nanoparticles exhibit complex magnetic behavior, which is a manifestation of the unique defect structure wherein the saturation magnetization initially decreases and then increases as <em>x</em> increases. The Verwey transition observed at very low temperatures (∼10 K) in Mn<sub><em>x</em></sub>Fe<sub>3-<em>y</em></sub>O<sub>4</sub> nanoparticles is attributed to particle size effects rather than Mn<sup>2+</sup> doping. The changes in the magnetic properties are clearly related to the unique defect structure developed.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"637 ","pages":"Article 173677"},"PeriodicalIF":3.0,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145578502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-induced metamagnetism and topological Hall effect in antiferromagnetic semimetal CeSbTe 反铁磁半金属CeSbTe的场致变磁性和拓扑霍尔效应
IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-11-13 DOI: 10.1016/j.jmmm.2025.173682
Junbo Li , Yihao Wang , Zhihao Li , Liang Cao , Yimin Xiong
The tunability of electronic band topology and properties by magnetic fields is of great interest for both the exploration of novel states of matter and potential applications. In the topological semimetal CeSbTe, various topological bands and magnetic structures are predicted when a magnetic field is applied along distinct crystallographic directions, particularly within the ab-plane. Here, we establish the in-plane (H ab-plane) magnetic phase diagram of CeSbTe using direct current (DC) and alternating current (AC) susceptibility measurements, and electronic transport measurements. An angle-dependent intermediate metamagnetic (IMM) phase is observed at applied fields between 2 and 3 T, suggesting the presence of competing magnetic interactions within its tetragonal Ce3+ lattice. The observation of a topological Hall effect in the IMM phase below the Néel temperature, manifesting as a hump-like anomaly in the Hall resistivity, provides evidence for the emergence of nontrivial spin configurations. We propose that a canted antiferromagnetic state forms in this IMM phase, arising from the nontrivial spin texture during the field-induced spin-flop transition. Our study provides critical insights into competing exchange interactions in tetragonal Ce-based systems, while the tunable metamagnetic response suggests potential for engineering topological spin textures in rare-earth based spintronic devices.
磁场对电子能带拓扑结构和性质的可调性对于探索物质的新状态和潜在应用具有重要意义。在拓扑半金属CeSbTe中,当磁场沿着不同的晶体学方向施加时,特别是在ab平面内,可以预测各种拓扑带和磁性结构。本文通过直流(DC)和交流(AC)磁化率测量以及电子输运测量,建立了CeSbTe的面内(H∥ab-面)磁相图。在2和3t之间的外加磁场中观察到一个角相关的中间偏磁(IMM)相,表明在其四方Ce3+晶格内存在竞争性磁相互作用。在低于nsamel温度的IMM相中观察到拓扑霍尔效应,在霍尔电阻率中表现为驼峰状异常,为非平凡自旋构型的出现提供了证据。我们提出一个倾斜的反铁磁态在这个IMM相中形成,这是由场诱导自旋跃迁期间的非平凡自旋织构引起的。我们的研究为四边形ce基系统中的竞争交换相互作用提供了重要的见解,而可调谐的超磁响应表明了稀土基自旋电子器件中工程拓扑自旋织构的潜力。
{"title":"Field-induced metamagnetism and topological Hall effect in antiferromagnetic semimetal CeSbTe","authors":"Junbo Li ,&nbsp;Yihao Wang ,&nbsp;Zhihao Li ,&nbsp;Liang Cao ,&nbsp;Yimin Xiong","doi":"10.1016/j.jmmm.2025.173682","DOIUrl":"10.1016/j.jmmm.2025.173682","url":null,"abstract":"<div><div>The tunability of electronic band topology and properties by magnetic fields is of great interest for both the exploration of novel states of matter and potential applications. In the topological semimetal CeSbTe, various topological bands and magnetic structures are predicted when a magnetic field is applied along distinct crystallographic directions, particularly within the <span><math><mrow><mi>a</mi><mi>b</mi></mrow></math></span>-plane. Here, we establish the in-plane (H <span><math><mo>∥</mo></math></span> <span><math><mrow><mi>a</mi><mi>b</mi></mrow></math></span>-plane) magnetic phase diagram of CeSbTe using direct current (DC) and alternating current (AC) susceptibility measurements, and electronic transport measurements. An angle-dependent intermediate metamagnetic (IMM) phase is observed at applied fields between 2 and 3 T, suggesting the presence of competing magnetic interactions within its tetragonal Ce<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> lattice. The observation of a topological Hall effect in the IMM phase below the Néel temperature, manifesting as a hump-like anomaly in the Hall resistivity, provides evidence for the emergence of nontrivial spin configurations. We propose that a canted antiferromagnetic state forms in this IMM phase, arising from the nontrivial spin texture during the field-induced spin-flop transition. Our study provides critical insights into competing exchange interactions in tetragonal Ce-based systems, while the tunable metamagnetic response suggests potential for engineering topological spin textures in rare-earth based spintronic devices.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"636 ","pages":"Article 173682"},"PeriodicalIF":3.0,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145526987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Magnetism and Magnetic Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1