首页 > 最新文献

2017 IEEE International Conference on Circuits and Systems (ICCS)最新文献

英文 中文
Fast computation of FFT in OFDM system OFDM系统中FFT的快速计算
Pub Date : 2017-12-01 DOI: 10.1109/ICCS1.2017.8325977
Jiya A. Sam, Aswathy K. Nair
The FFT processor is an essential part utilized for implementing the frameworks of OFDM. Due to its computational necessities, it involves large area and devours high power if implemented in hardware. In this paper, a low power and area efficient pipelined FFT processor using higher radix architecture and folding transformation is presented. The implemented low power FFT has a simple structure as that of radix 2 while utilizing the advantages of higher radix architecture. Higher radix algorithm minimizes the number of multiplication with twiddle factor which in turn reduces the large power utilization in FFT. Radix 22 multipath feedforward architecture is proposed in this paper. As various sequence are computed parallel, a high throughput can be achieved. Hardware resources needed for the presented architecture is much less than the multipath feedback architecture. Reduced chip area and lower power consumption are the merits of this FFT processor. Verilog coding for designed architecture is simulated and synthesized in Xilinx ISE Design Suite 12.1.
FFT处理器是实现OFDM框架的重要组成部分。由于计算量大,在硬件上实现时占地面积大,功耗高。本文提出了一种采用高基数结构和折叠变换的低功耗、高效率的流水线FFT处理器。所实现的低功耗FFT具有与基数2相同的简单结构,同时利用了更高基数结构的优点。高基数算法最大限度地减少了带有旋转因子的乘法次数,从而降低了FFT中较大的功耗利用率。提出了基数22多径前馈结构。由于各种序列并行计算,可以实现高吞吐量。所提出的体系结构所需的硬件资源比多路径反馈体系结构少得多。该FFT处理器的优点是芯片面积小,功耗低。在赛灵思ISE设计套件12.1中模拟和合成设计架构的Verilog编码。
{"title":"Fast computation of FFT in OFDM system","authors":"Jiya A. Sam, Aswathy K. Nair","doi":"10.1109/ICCS1.2017.8325977","DOIUrl":"https://doi.org/10.1109/ICCS1.2017.8325977","url":null,"abstract":"The FFT processor is an essential part utilized for implementing the frameworks of OFDM. Due to its computational necessities, it involves large area and devours high power if implemented in hardware. In this paper, a low power and area efficient pipelined FFT processor using higher radix architecture and folding transformation is presented. The implemented low power FFT has a simple structure as that of radix 2 while utilizing the advantages of higher radix architecture. Higher radix algorithm minimizes the number of multiplication with twiddle factor which in turn reduces the large power utilization in FFT. Radix 22 multipath feedforward architecture is proposed in this paper. As various sequence are computed parallel, a high throughput can be achieved. Hardware resources needed for the presented architecture is much less than the multipath feedback architecture. Reduced chip area and lower power consumption are the merits of this FFT processor. Verilog coding for designed architecture is simulated and synthesized in Xilinx ISE Design Suite 12.1.","PeriodicalId":367360,"journal":{"name":"2017 IEEE International Conference on Circuits and Systems (ICCS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115092603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lesion detection using segmented structure of retina 视网膜分节结构病变检测
Pub Date : 2017-11-07 DOI: 10.1109/iccs1.2017.8326028
B. Anoop, S. Sankar
Morphology of fundus image indicates diseases like diabetic retinopathy and glaucoma. Features of the retinal images allow ophthalmologist to perform retinal disease identification. Presence of lesions in the fundus retinal image is initial sign of diabetic retinopathy. The paper proposes a method for the detection of lesions in retinopathy fundus images based on segmented structure of retina. Morphological operators extract image features and selected features are passed into the support vector machine (SVM) classifier which classifies the images into normal and abnormal classes.
眼底影像形态学提示糖尿病视网膜病变、青光眼等疾病。视网膜图像的特征使眼科医生能够进行视网膜疾病的识别。眼底视网膜图像中出现病变是糖尿病视网膜病变的初始征象。提出了一种基于视网膜分割结构的视网膜病变眼底图像病灶检测方法。形态学算子提取图像特征,并将选择的特征传递给支持向量机分类器,支持向量机分类器将图像分为正常和异常两类。
{"title":"Lesion detection using segmented structure of retina","authors":"B. Anoop, S. Sankar","doi":"10.1109/iccs1.2017.8326028","DOIUrl":"https://doi.org/10.1109/iccs1.2017.8326028","url":null,"abstract":"Morphology of fundus image indicates diseases like diabetic retinopathy and glaucoma. Features of the retinal images allow ophthalmologist to perform retinal disease identification. Presence of lesions in the fundus retinal image is initial sign of diabetic retinopathy. The paper proposes a method for the detection of lesions in retinopathy fundus images based on segmented structure of retina. Morphological operators extract image features and selected features are passed into the support vector machine (SVM) classifier which classifies the images into normal and abnormal classes.","PeriodicalId":367360,"journal":{"name":"2017 IEEE International Conference on Circuits and Systems (ICCS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134038913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2017 IEEE International Conference on Circuits and Systems (ICCS)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1