Piecewise Linear Interface Calculation (PLIC) schemes have been extensively employed in the Volume of Fluid (VOF) method to capture the interface between water and air in marine applications. The Adaptive Mesh Refinement (AMR) is often adopted to increase the local mesh resolution dynamically within the cells which are close to or contain the interface. Dynamic overset meshes can be especially useful in applications involving component motions involving ship/offshore platform hydrodynamics, semi-submerged propellers, water entry/exiting, etc. An adaptive PLIC-VOF method with overset mesh for static objects has been introduced in the present study. Simulations are performed under the framework of OpenFOAM with a modified flow solver. Numerical simulations of two dam-breaking problems with overset meshes and adaptive PLIC-VOF method have been successfully performed. An extension of solid body movement supporting is currently ongoing.
{"title":"The Adaptive PLIC-VOF Method with Overset Meshes","authors":"Dezhi Dai, A. Y. Tong","doi":"10.2218/marine2021.6834","DOIUrl":"https://doi.org/10.2218/marine2021.6834","url":null,"abstract":"Piecewise Linear Interface Calculation (PLIC) schemes have been extensively employed in the Volume of Fluid (VOF) method to capture the interface between water and air in marine applications. The Adaptive Mesh Refinement (AMR) is often adopted to increase the local mesh resolution dynamically within the cells which are close to or contain the interface. Dynamic overset meshes can be especially useful in applications involving component motions involving ship/offshore platform hydrodynamics, semi-submerged propellers, water entry/exiting, etc. An adaptive PLIC-VOF method with overset mesh for static objects has been introduced in the present study. Simulations are performed under the framework of OpenFOAM with a modified flow solver. Numerical simulations of two dam-breaking problems with overset meshes and adaptive PLIC-VOF method have been successfully performed. An extension of solid body movement supporting is currently ongoing.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127819984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yadong Jiang, W. Finnegan, F. Wallace, M. Flanagan, T. Flanagan, J. Goggins
{"title":"Numerical Modelling and Structural Analysis of a 1 MW Tidal Turbine Blade","authors":"Yadong Jiang, W. Finnegan, F. Wallace, M. Flanagan, T. Flanagan, J. Goggins","doi":"10.2218/marine2021.6799","DOIUrl":"https://doi.org/10.2218/marine2021.6799","url":null,"abstract":"","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127882937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization based design of Pre-Swirl Stator Fins","authors":"M. Martinelli, S. Gaggero","doi":"10.2218/marine2021.6829","DOIUrl":"https://doi.org/10.2218/marine2021.6829","url":null,"abstract":"","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127956913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Pellegrini, A. Serani, M. Diez, M. Visonneau, J. Wackers
{"title":"Towards Automatic Parameter Selection for Multifidelity Surrogate-Based Optimization","authors":"R. Pellegrini, A. Serani, M. Diez, M. Visonneau, J. Wackers","doi":"10.2218/marine2021.6794","DOIUrl":"https://doi.org/10.2218/marine2021.6794","url":null,"abstract":"","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"69 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130769957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. Recent research shows that planks of various roughness can be towed in water, and the frictional resistance obtained can be extended to hull forms. Thus, the resistance is determined experimentally with the help of towing tank setup. The estimation of resistance of planks of varied roughness by towing them in the towing tank will help determine frictional resistance of the ship. In the studies of Schultz (Schultz 2007), it is reported that higher drag values are reported for small coverage of barnacles, and smaller drag values are reported for large coverage. The skin friction coefficients for different plate lengths are extrapolated to ship size and speed. Usually, the variation in drag coefficients is minimal for planks of length above 50 feet.
{"title":"Alternate Method For Determining Resistance Of Ship With Fouled Hull","authors":"Della Thomas, S. Surendran, N. J. Vasa","doi":"10.2218/marine2021.6856","DOIUrl":"https://doi.org/10.2218/marine2021.6856","url":null,"abstract":". Recent research shows that planks of various roughness can be towed in water, and the frictional resistance obtained can be extended to hull forms. Thus, the resistance is determined experimentally with the help of towing tank setup. The estimation of resistance of planks of varied roughness by towing them in the towing tank will help determine frictional resistance of the ship. In the studies of Schultz (Schultz 2007), it is reported that higher drag values are reported for small coverage of barnacles, and smaller drag values are reported for large coverage. The skin friction coefficients for different plate lengths are extrapolated to ship size and speed. Usually, the variation in drag coefficients is minimal for planks of length above 50 feet.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113969279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. Slug flow, being the mixture of oil, gas and water, can increase the dynamics and structural response of a riser in internal fluid transportation due to the variation of slug flow's force caused by the time-space varying density. This paper presents a high-fidelity model of a flexible deep-water riser based on the absolute nodal coordinate formulation with slug flow in the arbitrary Lagrangian-Eulerian description. In the current paper, the Lagrangian and Eulerian description is introduced to describe the slug flow moving along the riser. Besides, a material coordinate is added together with the position and position gradient as the state variables. The riser is discretized into two types of elements, the constant-length and variable-length elements. The variable-length element is where the slug flow locates whose velocity of the material coordinates is equal to the slug flow speed, and its movement along the riser is simulated by the moving mesh technology. Considering the fact that the enormous ratio of the length to the riser's diameter, the Euler-Bernoulli beam theory is adopted to model the riser. In this paper, the equations of motion (EOM) of the riser subjected to the slug-flow and environmental loads are derived based on the generalized D'Alembert principle. The implicit time integration method is applied to solve the derived differential-algebraic equations. First, the proposed model and the slug flow method are validated. Second, Parametric studies are performed to quantitatively identify the design conditions most affected by the slug flow.
{"title":"Novel Modeling Methodology of the Deep-water Flexible Riser with the Slug-flow","authors":"Hanze Yu, Y. Xie, G. Li, Lijun Wang","doi":"10.2218/marine2021.6804","DOIUrl":"https://doi.org/10.2218/marine2021.6804","url":null,"abstract":". Slug flow, being the mixture of oil, gas and water, can increase the dynamics and structural response of a riser in internal fluid transportation due to the variation of slug flow's force caused by the time-space varying density. This paper presents a high-fidelity model of a flexible deep-water riser based on the absolute nodal coordinate formulation with slug flow in the arbitrary Lagrangian-Eulerian description. In the current paper, the Lagrangian and Eulerian description is introduced to describe the slug flow moving along the riser. Besides, a material coordinate is added together with the position and position gradient as the state variables. The riser is discretized into two types of elements, the constant-length and variable-length elements. The variable-length element is where the slug flow locates whose velocity of the material coordinates is equal to the slug flow speed, and its movement along the riser is simulated by the moving mesh technology. Considering the fact that the enormous ratio of the length to the riser's diameter, the Euler-Bernoulli beam theory is adopted to model the riser. In this paper, the equations of motion (EOM) of the riser subjected to the slug-flow and environmental loads are derived based on the generalized D'Alembert principle. The implicit time integration method is applied to solve the derived differential-algebraic equations. First, the proposed model and the slug flow method are validated. Second, Parametric studies are performed to quantitatively identify the design conditions most affected by the slug flow.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123696342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantin Missios, N. Jacobsen, J. Roenby, Kasper Moeller
We consider the interfacial flow in and around porous structures in coastal and marine engineering. During recent years, interfacial flow through porous media has been repeatedly simulated with Computational Fluid Dynamics (CFD) based on algebraic Volume Of Fluid (VOF) methods (Jensen et al., 2014; Higuera et al., 2014). Here, we present an implementation of a porous medium interfacial flow solver based on the geometric VOF method, isoAdvector (Roenby et al., 2016; Roenby et al., 2017). In our implementation, the porous media is treated without resolving the actual pore geometry. Rather, the porous media, pores, and rigid structure are considered a continuum and the effects of porosity on the fluid flow are modelled through source terms in the Navier-Stokes equations, including Darcy-Forchheimer forces, added mass force and accounting for the part of mesh cells that are occupied by the solid material comprising the skeleton of the porous medium. The governing equations are adopted from the formulation by Jensen et al. (2014). For the interface advection using isoAdvector, we also account for the reduced cell volume available for fluid flow and for the increase in the interface front velocity caused by a cell being partially filled with solid material. The solver is implemented in the open source CFD library OpenFOAM ® . It is validated using two case setups: 1) A pure passive advection test case to compare the isolated advection algorithm against a known analytical soltuion and 2) a porous dam break case by Liu et al. (1999) where both numerical and experimental results are available for comparison. We find good agreement with numerical and experimental results. For both cases the interface sharpness, shape conservation as well as volume conservation and boundedness are demonstrated to be very good. The solver is released as open source for the benefit of the coastal and marine CFD community.
我们考虑了海岸和海洋工程中多孔结构内部和周围的界面流动。近年来,基于代数流体体积(VOF)方法的计算流体动力学(CFD)反复模拟了多孔介质中的界面流动(Jensen et al., 2014;Higuera et al., 2014)。在这里,我们提出了一个基于几何VOF方法的多孔介质界面流动求解器的实现,isoAdvector (Roenby等人,2016;Roenby等人,2017)。在我们的实施中,多孔介质的处理没有解决实际的孔隙几何。相反,多孔介质、孔隙和刚性结构被认为是一个连续体,孔隙度对流体流动的影响是通过Navier-Stokes方程中的源项来建模的,包括Darcy-Forchheimer力、附加质量力和由构成多孔介质骨架的固体物质占据的网格单元部分。控制方程采用Jensen et al.(2014)的公式。对于使用isoAdvector的界面平流,我们还考虑了可用于流体流动的细胞体积的减少以及由细胞部分填充固体材料引起的界面前速度的增加。求解器在开源CFD库OpenFOAM®中实现。它使用两种情况设置进行验证:1)一个纯被动平流测试案例,将孤立平流算法与已知解析解进行比较;2)Liu等人(1999)的多孔溃坝案例,其中数值和实验结果均可用于比较。计算结果与实验结果吻合较好。在这两种情况下,界面清晰度、形状守恒、体积守恒和有界性都非常好。为了沿海和海洋CFD社区的利益,求解器作为开源发布。
{"title":"Using the isoAdvector geometric VoF method for interfacial flows through porous media","authors":"Konstantin Missios, N. Jacobsen, J. Roenby, Kasper Moeller","doi":"10.2218/marine2021.6811","DOIUrl":"https://doi.org/10.2218/marine2021.6811","url":null,"abstract":"We consider the interfacial flow in and around porous structures in coastal and marine engineering. During recent years, interfacial flow through porous media has been repeatedly simulated with Computational Fluid Dynamics (CFD) based on algebraic Volume Of Fluid (VOF) methods (Jensen et al., 2014; Higuera et al., 2014). Here, we present an implementation of a porous medium interfacial flow solver based on the geometric VOF method, isoAdvector (Roenby et al., 2016; Roenby et al., 2017). In our implementation, the porous media is treated without resolving the actual pore geometry. Rather, the porous media, pores, and rigid structure are considered a continuum and the effects of porosity on the fluid flow are modelled through source terms in the Navier-Stokes equations, including Darcy-Forchheimer forces, added mass force and accounting for the part of mesh cells that are occupied by the solid material comprising the skeleton of the porous medium. The governing equations are adopted from the formulation by Jensen et al. (2014). For the interface advection using isoAdvector, we also account for the reduced cell volume available for fluid flow and for the increase in the interface front velocity caused by a cell being partially filled with solid material. The solver is implemented in the open source CFD library OpenFOAM ® . It is validated using two case setups: 1) A pure passive advection test case to compare the isolated advection algorithm against a known analytical soltuion and 2) a porous dam break case by Liu et al. (1999) where both numerical and experimental results are available for comparison. We find good agreement with numerical and experimental results. For both cases the interface sharpness, shape conservation as well as volume conservation and boundedness are demonstrated to be very good. The solver is released as open source for the benefit of the coastal and marine CFD community.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116335430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. A fully consistent finite element model for fluid-structure interaction between incompressible viscous fluids and elastic structures considering large structural deformation is presented. The coupling approach is based on a segregated solution procedure for the Navier-Stokes equations for incompressible viscous fluid flow and the structural equation of motion for elastic structures. The fluid-structure interaction model is applied on the 2D example of a rigid and elastic, respectively, flag in the quasi-harmonic fluid wake flow behind a square rigid obstacle. Time-harmonic pattern of fluid flow and time-harmonic structural deformation are evaluated at different steps of oscillation. Transient evolution of acting coupling forces on the common fluid-structure interface is shown and pointed out. The fluid-structure interaction model is further applied on the 3D example of a rigid and elastic, respectively, mast and sail structure that is exposed to quasi-stationary fluid flow on its surface. Corresponding structural response is analyzed with respect to different stages of fluid-structure coupling that can be applied to finally arrive at the fully consistent stage of the fluid-structure interaction model. Characteristics of fluid flow pattern and deformation of mast and sail structure are pointed out. The concised version only shows evaluation of computational results.
{"title":"Finite element modeling of fluid-structure interaction of an elastic 2D flag in harmonic viscous fluid flow and an elastic 3D sail structure in stationary viscous fluid flow (concised version)","authors":"C. Corte","doi":"10.2218/marine2021.6836","DOIUrl":"https://doi.org/10.2218/marine2021.6836","url":null,"abstract":". A fully consistent finite element model for fluid-structure interaction between incompressible viscous fluids and elastic structures considering large structural deformation is presented. The coupling approach is based on a segregated solution procedure for the Navier-Stokes equations for incompressible viscous fluid flow and the structural equation of motion for elastic structures. The fluid-structure interaction model is applied on the 2D example of a rigid and elastic, respectively, flag in the quasi-harmonic fluid wake flow behind a square rigid obstacle. Time-harmonic pattern of fluid flow and time-harmonic structural deformation are evaluated at different steps of oscillation. Transient evolution of acting coupling forces on the common fluid-structure interface is shown and pointed out. The fluid-structure interaction model is further applied on the 3D example of a rigid and elastic, respectively, mast and sail structure that is exposed to quasi-stationary fluid flow on its surface. Corresponding structural response is analyzed with respect to different stages of fluid-structure coupling that can be applied to finally arrive at the fully consistent stage of the fluid-structure interaction model. Characteristics of fluid flow pattern and deformation of mast and sail structure are pointed out. The concised version only shows evaluation of computational results.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125997424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work investigates the working characteristics of a large amplitude semi-passive flapping-foil with a prescribed sinusoidal heave motion and a passive pitch motion. Different from the active flapping foil with two degrees of freedom, this self-pitching flapping foil ( SPFF ) constructs a single degree of freedom spring mass system in the direction around the pitching motion axis. Because of the torsion spring attached to the foil, this kind of foil is a flow-induced vibration system, and the torsional spring stiffness, the foil inertia and the hydrodynamic added inertia should affect the propulsive performance. Its working characteristics are affected by two non-dimensional coeffificients: the frequency ratio r and spring stiffness ratio k’ according to dimensional analysis. In this paper, the fluid-structure coupling method is used to analyze the working characteristics of the self-pitching flapping foil with different parameter settings. After the verification of the numerical method, the investigation first discusses the working characteristics of the self-pitching flapping foil when the system resonates and identifies that the resonance can make the self-pitching flapping foil deviate from the ideal angle of attack, and its fluctuation of short-term average thrust coefficient becomes irregular. That leads to the performance degradation of self-pitching flapping foil and even the loss of propulsion ability. Then the influence of frequency ratio on the propulsive performance is investigated. The numerical results confirm that the semi-active flapping foil performs efficiently when the frequency ratio r is small, and the maximum efficiency can reach as high as 86%; the more suitable frequency ratio is recommended to be less than 0.5. Finally, the effect of spring stiffness ratio is discussed under a small frequency ratio. The results imply that the peak efficiency of self-pitching flapping foil is not monotonic with different spring stiffness ratio, and there is a maximum value; but self-pitching flapping foil can maintain the peak efficiency over a wider range of spring stiffness ratio, the range is 0.1 ~ 1000 in this report; Through the analysis of the performance curves of the foil with different pitching center positions, it indicates that the influence trend of pitching center position is close to that of the spring stiffness ratio.
{"title":"Working characteristics of self-pitching flapping foil propulsor","authors":"Mei Lei, W. Yan, Junwei Zhou, D. Yu, Pengcheng Wu","doi":"10.2218/marine2021.6840","DOIUrl":"https://doi.org/10.2218/marine2021.6840","url":null,"abstract":"This work investigates the working characteristics of a large amplitude semi-passive flapping-foil with a prescribed sinusoidal heave motion and a passive pitch motion. Different from the active flapping foil with two degrees of freedom, this self-pitching flapping foil ( SPFF ) constructs a single degree of freedom spring mass system in the direction around the pitching motion axis. Because of the torsion spring attached to the foil, this kind of foil is a flow-induced vibration system, and the torsional spring stiffness, the foil inertia and the hydrodynamic added inertia should affect the propulsive performance. Its working characteristics are affected by two non-dimensional coeffificients: the frequency ratio r and spring stiffness ratio k’ according to dimensional analysis. In this paper, the fluid-structure coupling method is used to analyze the working characteristics of the self-pitching flapping foil with different parameter settings. After the verification of the numerical method, the investigation first discusses the working characteristics of the self-pitching flapping foil when the system resonates and identifies that the resonance can make the self-pitching flapping foil deviate from the ideal angle of attack, and its fluctuation of short-term average thrust coefficient becomes irregular. That leads to the performance degradation of self-pitching flapping foil and even the loss of propulsion ability. Then the influence of frequency ratio on the propulsive performance is investigated. The numerical results confirm that the semi-active flapping foil performs efficiently when the frequency ratio r is small, and the maximum efficiency can reach as high as 86%; the more suitable frequency ratio is recommended to be less than 0.5. Finally, the effect of spring stiffness ratio is discussed under a small frequency ratio. The results imply that the peak efficiency of self-pitching flapping foil is not monotonic with different spring stiffness ratio, and there is a maximum value; but self-pitching flapping foil can maintain the peak efficiency over a wider range of spring stiffness ratio, the range is 0.1 ~ 1000 in this report; Through the analysis of the performance curves of the foil with different pitching center positions, it indicates that the influence trend of pitching center position is close to that of the spring stiffness ratio.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129926159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical investigation of curvature effect on ship hydrodynamics in confined curved channels","authors":"Bo Yang, S. Kaidi, E. Lefrançois","doi":"10.2218/marine2021.6790","DOIUrl":"https://doi.org/10.2218/marine2021.6790","url":null,"abstract":"","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128966595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}