首页 > 最新文献

Journal of Hydrology X最新文献

英文 中文
Intercomparison of Sentinel-2 and modelled snow cover maps in a high-elevation Alpine catchment Sentinel-2和高海拔阿尔卑斯山集水区的模拟积雪地图的相互比较
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100123
Florentin Hofmeister , Leonardo F. Arias-Rodriguez , Valentina Premier , Carlo Marin , Claudia Notarnicola , Markus Disse , Gabriele Chiogna

Modelling runoff generation in high-elevation Alpine catchments requires detailed knowledge on the spatio-temporal distribution of snow storage. With Sentinel-2 MultiSpectral Instrument (MSI), it is possible to map snow cover with a high temporal and spatial resolution. In contrast to the coarse MODIS data, Sentinel-2 MSI enables the investigation of small-scale differences in snow cover duration in complex terrains due to gravitational redistribution (slope), energy balance and wind-driven redistribution (aspect). In this study, we describe the generation of high-resolution spatial and temporal snow cover data sets from Sentinel-2 images for a high-elevation Alpine catchment and discuss how the data contribute to our understanding of the spatio-temporal snow cover distribution. The quality of snow and cloud detection is evaluated against in-situ snow observations and against other snow and cloud products. The main problem was in the false detection of snow in the presence of clouds and in topographically shaded areas. We then seek to explore the potential of the generated high-resolution snow cover maps in calibrating the gravitational snow redistribution module of a physically based snow model, especially for an area with a very data-scarce point snow observation network. Generally, the calibrated snow model is able to simulate both the mean snow cover duration with a high F1 accuracy score of > 0.9 and the fractional snow-covered area with a correlation coefficient of 0.98. The snow model is also able to reproduce spatio-temporal variability in snow cover duration due to surface energy balance dynamics, wind and gravitational redistribution.

模拟高海拔高山流域的径流生成需要详细了解雪储量的时空分布。利用Sentinel-2多光谱仪器(MSI),可以绘制具有高时空分辨率的积雪分布图。与粗糙的MODIS数据相比,Sentinel-2 MSI能够调查复杂地形中由于重力再分布(坡度)、能量平衡和风驱动再分布(坡向)而导致的积雪持续时间的小尺度差异。在这项研究中,我们描述了从高海拔高山流域的Sentinel-2图像中生成高分辨率时空积雪数据集的过程,并讨论了这些数据如何有助于我们对积雪时空分布的理解。根据现场雪观测和其他雪和云产品来评估雪和云探测的质量。主要的问题是在有云层和地形阴影的地区对雪的错误检测。然后,我们试图探索生成的高分辨率积雪地图在校准基于物理的积雪模型的重力积雪再分布模块方面的潜力,特别是对于具有非常缺乏数据的点雪观测网络的地区。一般来说,校正后的积雪模型既能模拟平均积雪持续时间,F1精度得分较高,为>与分数积雪面积相关系数为0.98。由于地表能量平衡动力学、风和重力再分布,积雪模式还能够再现积雪持续时间的时空变化。
{"title":"Intercomparison of Sentinel-2 and modelled snow cover maps in a high-elevation Alpine catchment","authors":"Florentin Hofmeister ,&nbsp;Leonardo F. Arias-Rodriguez ,&nbsp;Valentina Premier ,&nbsp;Carlo Marin ,&nbsp;Claudia Notarnicola ,&nbsp;Markus Disse ,&nbsp;Gabriele Chiogna","doi":"10.1016/j.hydroa.2022.100123","DOIUrl":"10.1016/j.hydroa.2022.100123","url":null,"abstract":"<div><p>Modelling runoff generation in high-elevation Alpine catchments requires detailed knowledge on the spatio-temporal distribution of snow storage. With Sentinel-2 MultiSpectral Instrument (MSI), it is possible to map snow cover with a high temporal and spatial resolution. In contrast to the coarse MODIS data, Sentinel-2 MSI enables the investigation of small-scale differences in snow cover duration in complex terrains due to gravitational redistribution (slope), energy balance and wind-driven redistribution (aspect). In this study, we describe the generation of high-resolution spatial and temporal snow cover data sets from Sentinel-2 images for a high-elevation Alpine catchment and discuss how the data contribute to our understanding of the spatio-temporal snow cover distribution. The quality of snow and cloud detection is evaluated against in-situ snow observations and against other snow and cloud products. The main problem was in the false detection of snow in the presence of clouds and in topographically shaded areas. We then seek to explore the potential of the generated high-resolution snow cover maps in calibrating the gravitational snow redistribution module of a physically based snow model, especially for an area with a very data-scarce point snow observation network. Generally, the calibrated snow model is able to simulate both the mean snow cover duration with a high F1 accuracy score of &gt; 0.9 and the fractional snow-covered area with a correlation coefficient of 0.98. The snow model is also able to reproduce spatio-temporal variability in snow cover duration due to surface energy balance dynamics, wind and gravitational redistribution.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"15 ","pages":"Article 100123"},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000050/pdfft?md5=d2516a474bd52cebdf2ba53ad2737fcd&pid=1-s2.0-S2589915522000050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47971301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Development of a simple Budyko-based framework for the simulation and attribution of ET variability in dry regions 为干旱地区蒸散发变率的模拟和归因建立一个简单的基于budyko的框架
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100128
Xuefeng Xu, Xuliang Li, Chansheng He, W. Tian, Jie Tian
{"title":"Development of a simple Budyko-based framework for the simulation and attribution of ET variability in dry regions","authors":"Xuefeng Xu, Xuliang Li, Chansheng He, W. Tian, Jie Tian","doi":"10.1016/j.hydroa.2022.100128","DOIUrl":"https://doi.org/10.1016/j.hydroa.2022.100128","url":null,"abstract":"","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42645938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Complex wave propagation from open water bodies into aquifers: A fast analytical approach 从开放水体到含水层的复波传播:一种快速分析方法
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100125
Wout Hanckmann , Thomas Sweijen , Alraune Zech

Aquifers are of particular interest in the vicinity of rivers, lakes and coastal areas due to their extensive usage. Hydraulic properties such as transmissivity and storativity can be deduced from periodical water level fluctuations in both open water bodies and groundwater. Here, we model the effect of complex wave propagation into adjacent isotropic and homogeneous aquifers. Besides confined aquifers, we also study wave propagation in leaky aquifers and situations with flow barriers near open water bodies as encountered in harbours where sheet piling are in place. We present a fast analytical solution for the hydraulic head distribution which allows for determining the hydraulic diffusivity (Ss/K) of the aquifer, with low investigational efforts. We make use of the Fast Fourier Transform to decompose complex wave boundary conditions and derive solutions through superposition. Analytical solutions are verified by comparing to numerical MODFLOW models for three application examples: a tidal wave measured in the harbour of Rotterdam, a synthetic square wave and river fluctuations in the river Rhine near Lobith. We setup a parameter estimation routine to identify hydraulic diffusivity, which can be easily adapted to real observation data from piezometers. Inverse estimates show relative differences of less than 2% to numerical input data. A sensitivity study further shows how to achieve reliable estimates depending on the piezometer location or other influencing factors such as resistance values of the confining layer (for leaky aquifers) and flow barriers.

由于含水层的广泛使用,它在河流、湖泊和沿海地区的附近受到特别关注。从开放水体和地下水的周期性水位波动可以推断出透水性和储存性等水力特性。在这里,我们模拟了复杂波传播到邻近各向同性和均匀含水层的影响。除了承压含水层,我们还研究了渗漏含水层中的波传播,以及在开放水体附近有流障的情况,如在港口中有板桩的情况。我们提出了水力水头分布的快速分析解决方案,该解决方案允许确定含水层的水力扩散系数(Ss/K),而调查工作较少。利用快速傅立叶变换对复杂的波边界条件进行分解,并通过叠加得到解。通过与MODFLOW数值模型的比较,验证了解析解的正确性,并给出了三个应用实例:鹿特丹港测量的潮汐波、lobitth附近莱茵河的合成方波和河流波动。建立了一套参数估计程序来识别水力扩散系数,该程序可以很容易地适应压电计的实际观测数据。反向估计显示与数值输入数据的相对差异小于2%。一项敏感性研究进一步表明,如何根据测压仪的位置或其他影响因素,如围压层(对于渗漏含水层)的电阻值和流动障碍,获得可靠的估计。
{"title":"Complex wave propagation from open water bodies into aquifers: A fast analytical approach","authors":"Wout Hanckmann ,&nbsp;Thomas Sweijen ,&nbsp;Alraune Zech","doi":"10.1016/j.hydroa.2022.100125","DOIUrl":"10.1016/j.hydroa.2022.100125","url":null,"abstract":"<div><p>Aquifers are of particular interest in the vicinity of rivers, lakes and coastal areas due to their extensive usage. Hydraulic properties such as transmissivity and storativity can be deduced from periodical water level fluctuations in both open water bodies and groundwater. Here, we model the effect of complex wave propagation into adjacent isotropic and homogeneous aquifers. Besides confined aquifers, we also study wave propagation in leaky aquifers and situations with flow barriers near open water bodies as encountered in harbours where sheet piling are in place. We present a fast analytical solution for the hydraulic head distribution which allows for determining the hydraulic diffusivity (<span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>/</mo><mi>K</mi></mrow></math></span>) of the aquifer, with low investigational efforts. We make use of the Fast Fourier Transform to decompose complex wave boundary conditions and derive solutions through superposition. Analytical solutions are verified by comparing to numerical MODFLOW models for three application examples: a tidal wave measured in the harbour of Rotterdam, a synthetic square wave and river fluctuations in the river Rhine near Lobith. We setup a parameter estimation routine to identify hydraulic diffusivity, which can be easily adapted to real observation data from piezometers. Inverse estimates show relative differences of less than <span><math><mrow><mn>2</mn><mo>%</mo></mrow></math></span> to numerical input data. A sensitivity study further shows how to achieve reliable estimates depending on the piezometer location or other influencing factors such as resistance values of the confining layer (for leaky aquifers) and flow barriers.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"15 ","pages":"Article 100125"},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000074/pdfft?md5=6f6f9c69d2a590548d60b34b45a576bb&pid=1-s2.0-S2589915522000074-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48607898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Assessing the role of groundwater recharge from tanks in crystalline bedrock aquifers in Karnataka, India, using hydrochemical tracers 使用水化学示踪剂评估印度卡纳塔克邦结晶基岩含水层水箱补给地下水的作用
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100121
Bentje Brauns , Somsubhra Chattopadhyay , Dan J. Lapworth , Sian E. Loveless , Alan M. MacDonald , Andrew A. McKenzie , Muddu Sekhar , Siva Naga Venkat Nara , Veena Srinivasan

The majority of India’s rural drinking water supply is sourced from groundwater, which also plays a critical role in irrigated agriculture, supporting the livelihoods of millions of users. However, recent high abstractions are threatening the sustainable use of groundwater, and action is needed to ensure continued supply. Increased managed aquifer recharge (MAR) using the > 200,000 existing tanks (artificially created surface water bodies) is one of the Indian government’s key initiatives to combat declining groundwater levels. However, few studies have directly examined the effectiveness of tank recharge, particularly in the complex fractured hydrogeology of Peninsular India. To address this gap, this study examined the impact of tanks in three crystalline bedrock catchments in Karnataka, southern India, by analysing the isotopic and hydrochemical composition of surface waters and groundwaters, combined with groundwater level observations. The results indicate that tanks have limited impact on regional groundwater recharge and quality in rural areas, where recharge from precipitation and groundwater recycling from irrigation dominate the recharge signal. In the urban setting (Bengaluru), impermeable surfaces increased the relative effect of recharge from point sources such as tanks and rivers, but where present, pipe leakage from public-water-supply accounted for the majority of recharge. Shallow groundwater levels in the inner parts of the city may lead to groundwater discharge to tanks, particularly in the dry season. We conclude that the importance of aquifer recharge from tanks is limited compared to other recharge sources and highly dependent on the specific setting. Additional studies to quantify tank recharge and revisions to the current guidelines for national groundwater recharge estimations, using a less generalised approach, are recommended to avoid over-estimating the role tanks play in groundwater recharge.

印度农村的大部分饮用水供应来自地下水,地下水在灌溉农业中也发挥着关键作用,支持着数百万用户的生计。然而,最近的高抽取量正在威胁地下水的可持续利用,需要采取行动确保持续供应。使用>增加管理含水层补给(MAR);20万个现有的水箱(人工创造的地表水体)是印度政府应对地下水位下降的关键举措之一。然而,很少有研究直接考察储罐补给的有效性,特别是在印度半岛复杂的裂缝水文地质中。为了解决这一差距,本研究通过分析地表水和地下水的同位素和水化学成分,结合地下水位观测,研究了印度南部卡纳塔克邦三个结晶基岩集水区的水箱的影响。结果表明,水库对农村地区地下水补给和水质的影响有限,降水补给和灌溉循环水是主要的补给信号。在城市环境中(班加罗尔),不透水的表面增加了从水箱和河流等点源补给的相对效果,但在现有的地方,公共供水的管道泄漏占了补给的大部分。城市内部较浅的地下水位可能导致地下水排放到水箱中,特别是在旱季。我们得出结论,与其他补给来源相比,储罐补给含水层的重要性是有限的,并且高度依赖于特定的设置。建议进行进一步的研究,以量化储罐的回灌量,并采用较不普遍的方法修订目前的国家地下水回灌估计准则,以避免高估储罐在地下水回灌中的作用。
{"title":"Assessing the role of groundwater recharge from tanks in crystalline bedrock aquifers in Karnataka, India, using hydrochemical tracers","authors":"Bentje Brauns ,&nbsp;Somsubhra Chattopadhyay ,&nbsp;Dan J. Lapworth ,&nbsp;Sian E. Loveless ,&nbsp;Alan M. MacDonald ,&nbsp;Andrew A. McKenzie ,&nbsp;Muddu Sekhar ,&nbsp;Siva Naga Venkat Nara ,&nbsp;Veena Srinivasan","doi":"10.1016/j.hydroa.2022.100121","DOIUrl":"10.1016/j.hydroa.2022.100121","url":null,"abstract":"<div><p>The majority of India’s rural drinking water supply is sourced from groundwater, which also plays a critical role in irrigated agriculture, supporting the livelihoods of millions of users. However, recent high abstractions are threatening the sustainable use of groundwater, and action is needed to ensure continued supply. Increased managed aquifer recharge (MAR) using the &gt; 200,000 existing tanks (artificially created surface water bodies) is one of the Indian government’s key initiatives to combat declining groundwater levels. However, few studies have directly examined the effectiveness of tank recharge, particularly in the complex fractured hydrogeology of Peninsular India. To address this gap, this study examined the impact of tanks in three crystalline bedrock catchments in Karnataka, southern India, by analysing the isotopic and hydrochemical composition of surface waters and groundwaters, combined with groundwater level observations. The results indicate that tanks have limited impact on regional groundwater recharge and quality in rural areas, where recharge from precipitation and groundwater recycling from irrigation dominate the recharge signal. In the urban setting (Bengaluru), impermeable surfaces increased the relative effect of recharge from point sources such as tanks and rivers, but where present, pipe leakage from public-water-supply accounted for the majority of recharge. Shallow groundwater levels in the inner parts of the city may lead to groundwater discharge to tanks, particularly in the dry season. We conclude that the importance of aquifer recharge from tanks is limited compared to other recharge sources and highly dependent on the specific setting. Additional studies to quantify tank recharge and revisions to the current guidelines for national groundwater recharge estimations, using a less generalised approach, are recommended to avoid over-estimating the role tanks play in groundwater recharge.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"15 ","pages":"Article 100121"},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000037/pdfft?md5=4b829791c0de1c456dcc560daa3a344c&pid=1-s2.0-S2589915522000037-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48853355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Optimal planning of natural stormwater solutions using a composite Gini coefficient: A watershed assessment of hydrological, environmental, social, and economic efficiency 使用复合基尼系数的天然雨水解决方案的优化规划:水文、环境、社会和经济效率的流域评估
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100127
Cyndi Vail Castro
{"title":"Optimal planning of natural stormwater solutions using a composite Gini coefficient: A watershed assessment of hydrological, environmental, social, and economic efficiency","authors":"Cyndi Vail Castro","doi":"10.1016/j.hydroa.2022.100127","DOIUrl":"https://doi.org/10.1016/j.hydroa.2022.100127","url":null,"abstract":"","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48994688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Modelling of ice jam floods under past and future climates: A review 过去和未来气候下冰塞洪水的建模:综述
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100120
Prabin Rokaya , Karl-Erich Lindenschmidt , Alain Pietroniro , Martyn Clark

Ice-jam floods (IJFs) are a key concern in cold-region environments, where seasonal effects of river ice formation and break-up can have substantial impacts on flooding processes. Different statistical, machine learning, and process-based models have been developed to simulate IJF events in order to improve our understanding of river ice processes, to quantify potential flood magnitudes and backwater levels, and to undertake risk analysis under a changing climate. Assessment of IJF risks under future climate is limited due to constraints related to model input data. However, given the broad economic and environmental significance of IJFs and their sensitivity to a changing climate, robust modelling frameworks that can incorporate future climatic changes, and produce reliable scenarios of future IJF risks are needed. In this review paper, we discuss the probable impacts of future climate on IJFs and provide suggestions on modelling IJFs under both past and future climates. We also make recommendations around existing approaches and highlight some data and research opportunities, that could lead to further improvements in IJF modelling and prediction.

冰塞洪水(IJFs)是寒冷地区环境中的一个关键问题,在寒冷地区,河流冰的形成和破裂的季节性影响可能对洪水过程产生重大影响。不同的统计、机器学习和基于过程的模型已经被开发出来来模拟IJF事件,以提高我们对河流冰过程的理解,量化潜在的洪水规模和回水水位,并在气候变化的情况下进行风险分析。由于模式输入数据的限制,对未来气候下IJF风险的评估是有限的。然而,鉴于IJF具有广泛的经济和环境意义以及它们对气候变化的敏感性,需要能够纳入未来气候变化并产生未来IJF风险的可靠情景的强大建模框架。在这篇综述中,我们讨论了未来气候对IJFs的可能影响,并提出了在过去和未来气候下建立IJFs的建议。我们还围绕现有方法提出建议,并强调一些数据和研究机会,这可能会导致IJF建模和预测的进一步改进。
{"title":"Modelling of ice jam floods under past and future climates: A review","authors":"Prabin Rokaya ,&nbsp;Karl-Erich Lindenschmidt ,&nbsp;Alain Pietroniro ,&nbsp;Martyn Clark","doi":"10.1016/j.hydroa.2022.100120","DOIUrl":"10.1016/j.hydroa.2022.100120","url":null,"abstract":"<div><p>Ice-jam floods (IJFs) are a key concern in cold-region environments, where seasonal effects of river ice formation and break-up can have substantial impacts on flooding processes. Different statistical, machine learning, and process-based models have been developed to simulate IJF events in order to improve our understanding of river ice processes, to quantify potential flood magnitudes and backwater levels, and to undertake risk analysis under a changing climate. Assessment of IJF risks under future climate is limited due to constraints related to model input data. However, given the broad economic and environmental significance of IJFs and their sensitivity to a changing climate, robust modelling frameworks that can incorporate future climatic changes, and produce reliable scenarios of future IJF risks are needed. In this review paper, we discuss the probable impacts of future climate on IJFs and provide suggestions on modelling IJFs under both past and future climates. We also make recommendations around existing approaches and highlight some data and research opportunities, that could lead to further improvements in IJF modelling and prediction.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"15 ","pages":"Article 100120"},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000025/pdfft?md5=207f8feeb993fd7ff9058bb99b61dbc2&pid=1-s2.0-S2589915522000025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42705258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Linking different drought types in a small catchment from a statistical perspective – Case study of the Wernersbach catchment, Germany 从统计角度将一个小流域的不同干旱类型联系起来——以德国Wernersbach流域为例
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100122
Ivan Vorobevskii, Rico Kronenberg, Christian Bernhofer

Drought is a complex natural phenomenon, which is challenging to define and to describe quantitatively. Canonical drought propagation scheme ‘meteorological → agricultural (or soil related) → hydrological’ does not always reflect the reality in a catchment. Thus it is necessary to include compound or cascading effects of precipitation, soil moisture and discharge interactions on different time scales to get a comprehensive picture on the drought characteristics, as well as on its development and recovery.

We studied the linkage between droughts over multiply temporal scales and severity levels using various statistical methods for a case study of a small forested catchment in Germany. It was found that indeed different types of droughts are highly interconnected and their behavior can significantly differ from the classical scheme.

A simple empirical approach gives frequencies, seasonality and trends of various combinations of droughts. It showed that among all types the test site is mostly exposed to a light hydro-meteorological one especially in autumn months with an increasing trend. Multivariate distributions can be used to evaluate joint probabilities and return periods of drought components. It was revealed that the well-known European drought in 2018 was also presented as an extreme case of a joint hydro-meteo-soil drought in the examined catchment. By Markov chains one can analyze the transition and persistence between droughts. Well-established propagation pathways between different types and severity levels of droughts with high persistence for longer droughts were found for the study area.

干旱是一种复杂的自然现象,难以定义和定量描述。典型的干旱传播方案“气象→农业(或土壤相关)→水文”并不总是反映集水区的现实情况。因此,有必要在不同时间尺度上考虑降水、土壤水分和流量相互作用的复合或级联效应,以全面了解干旱特征及其发展和恢复。我们研究了干旱在多个时间尺度和严重程度之间的联系,使用不同的统计方法,以德国一个小的森林流域为例进行了研究。研究发现,不同类型的干旱确实是高度相互关联的,它们的行为可能与经典方案有显著不同。一种简单的经验方法给出了各种干旱组合的频率、季节性和趋势。结果表明,试验场主要受轻度水文气象影响,特别是在秋季,且有增加趋势。多元分布可以用来评价干旱分量的联合概率和回归期。据透露,2018年欧洲著名的干旱也被认为是受调查流域水文-气象-土壤联合干旱的极端情况。通过马尔可夫链,人们可以分析干旱之间的过渡和持续。研究区在不同干旱类型和严重程度之间建立了成熟的传播途径,且干旱持续时间较长。
{"title":"Linking different drought types in a small catchment from a statistical perspective – Case study of the Wernersbach catchment, Germany","authors":"Ivan Vorobevskii,&nbsp;Rico Kronenberg,&nbsp;Christian Bernhofer","doi":"10.1016/j.hydroa.2022.100122","DOIUrl":"10.1016/j.hydroa.2022.100122","url":null,"abstract":"<div><p>Drought is a complex natural phenomenon, which is challenging to define and to describe quantitatively. Canonical drought propagation scheme ‘meteorological → agricultural (or soil related) → hydrological’ does not always reflect the reality in a catchment. Thus it is necessary to include compound or cascading effects of precipitation, soil moisture and discharge interactions on different time scales to get a comprehensive picture on the drought characteristics, as well as on its development and recovery.</p><p>We studied the linkage between droughts over multiply temporal scales and severity levels using various statistical methods for a case study of a small forested catchment in Germany. It was found that indeed different types of droughts are highly interconnected and their behavior can significantly differ from the classical scheme.</p><p>A simple empirical approach gives frequencies, seasonality and trends of various combinations of droughts. It showed that among all types the test site is mostly exposed to a light hydro-meteorological one especially in autumn months with an increasing trend. Multivariate distributions can be used to evaluate joint probabilities and return periods of drought components. It was revealed that the well-known European drought in 2018 was also presented as an extreme case of a joint hydro-meteo-soil drought in the examined catchment. By Markov chains one can analyze the transition and persistence between droughts. Well-established propagation pathways between different types and severity levels of droughts with high persistence for longer droughts were found for the study area.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"15 ","pages":"Article 100122"},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000049/pdfft?md5=6c95ce224c94620786a0e20a4f2bf41c&pid=1-s2.0-S2589915522000049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44863278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Balancing water reuse and ecological support goals in an effluent dominated river 在一条以污水为主的河流中平衡水的再利用和生态支持目标
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-05-01 DOI: 10.1016/j.hydroa.2022.100124
Jordyn M. Wolfand , Kristine T. Taniguchi-Quan , Reza Abdi , Elizabeth Gallo , Katie Irving , Daniel Philippus , Jennifer B. Rogers , Eric D. Stein , Terri S. Hogue

Flows in urban rivers are increasingly managed to support water supply needs while also protecting and/or restoring instream ecological functions, goals that are often in opposition to each other. Effluent-dominated rivers (i.e., rivers that consist primarily of discharged treated wastewater) pose a particular challenge because changes in effluent discharge may impact river ecology. A functional flows approach, in which metrics from the annual hydrograph correspond to ecological processes, was applied to understand the hydro-ecological implications of wastewater reuse in the Los Angeles River watershed (Los Angeles County, California, USA). The Los Angeles River, like many urban rivers, is dominated by effluent, particularly during dry weather. An hourly hydrologic model was created, calibrated, and validated in EPA SWMM for the Los Angeles River watershed to investigate how increases in wastewater reuse (i.e., decreases in discharge to the river) may impact river flows and subsequently ecology and recreation in the river. Current flows are shown to support freshwater marsh, riparian habitat, fish migration, and wading shorebird habitat, in addition to recreational kayaking. Functional flow metrics were assessed under future management scenarios including reducing discharge to increase recycling at three wastewater treatment plants within the watershed. Both wet-season and dry-season baseflows were most sensitive to increasing wastewater reuse, with an average decrease of 51–56% (0.93 cms) from current baseflows. Sensitivity curves that relate potential changes in wastewater discharge to changes in functional flows show that a 4% decrease in current wastewater discharge may negatively impact habitat for indicator species during the dry season. More opportunity exists for wastewater reuse during the wet season, when current wastewater discharge may be reduced by 24% with minimal impacts to ecology and recreation. The developed approach has the potential to inform similar tradeoff decisions in other urban rivers where flows are dominated by wastewater or stormdrain discharge.

越来越多地管理城市河流的流量,以满足供水需求,同时也保护和/或恢复河流的生态功能,这两个目标往往是相互矛盾的。污水为主的河流(即主要由排放的处理过的废水组成的河流)构成了一个特别的挑战,因为污水排放的变化可能影响河流生态。一种功能流方法,其中来自年度水文曲线的指标对应于生态过程,被应用于了解洛杉矶河流域(美国加利福尼亚州洛杉矶县)废水再利用的水文生态影响。洛杉矶河,像许多城市河流一样,主要是污水,特别是在干燥的天气。在EPA SWMM中为洛杉矶河流域创建、校准和验证了每小时的水文模型,以调查废水回用的增加(即向河流排放的减少)如何影响河流流量以及随后的河流生态和娱乐。除休闲皮划艇外,水流还支持淡水沼泽、河岸栖息地、鱼类迁徙和涉水滨鸟栖息地。在未来的管理方案下评估了功能流量指标,包括在流域内的三个污水处理厂减少排放以增加循环利用。干湿季基流对污水回用的增加最为敏感,平均比当前基流减少51-56% (0.93 cm)。将废水排放的潜在变化与功能流量变化联系起来的敏感性曲线表明,当前废水排放量减少4%可能会对指示物种的栖息地产生负面影响。在雨季,废水回用的机会更多,目前的废水排放量可减少24%,对生态和娱乐的影响最小。开发的方法有可能为其他城市河流提供类似的权衡决策,这些河流的流量主要是废水或雨水排放。
{"title":"Balancing water reuse and ecological support goals in an effluent dominated river","authors":"Jordyn M. Wolfand ,&nbsp;Kristine T. Taniguchi-Quan ,&nbsp;Reza Abdi ,&nbsp;Elizabeth Gallo ,&nbsp;Katie Irving ,&nbsp;Daniel Philippus ,&nbsp;Jennifer B. Rogers ,&nbsp;Eric D. Stein ,&nbsp;Terri S. Hogue","doi":"10.1016/j.hydroa.2022.100124","DOIUrl":"10.1016/j.hydroa.2022.100124","url":null,"abstract":"<div><p>Flows in urban rivers are increasingly managed to support water supply needs while also protecting and/or restoring instream ecological functions, goals that are often in opposition to each other. Effluent-dominated rivers (i.e., rivers that consist primarily of discharged treated wastewater) pose a particular challenge because changes in effluent discharge may impact river ecology. A functional flows approach, in which metrics from the annual hydrograph correspond to ecological processes, was applied to understand the hydro-ecological implications of wastewater reuse in the Los Angeles River watershed (Los Angeles County, California, USA). The Los Angeles River, like many urban rivers, is dominated by effluent, particularly during dry weather. An hourly hydrologic model was created, calibrated, and validated in EPA SWMM for the Los Angeles River watershed to investigate how increases in wastewater reuse (i.e., decreases in discharge to the river) may impact river flows and subsequently ecology and recreation in the river. Current flows are shown to support freshwater marsh, riparian habitat, fish migration, and wading shorebird habitat, in addition to recreational kayaking. Functional flow metrics were assessed under future management scenarios including reducing discharge to increase recycling at three wastewater treatment plants within the watershed. Both wet-season and dry-season baseflows were most sensitive to increasing wastewater reuse, with an average decrease of 51–56% (0.93 cms) from current baseflows. Sensitivity curves that relate potential changes in wastewater discharge to changes in functional flows show that a 4% decrease in current wastewater discharge may negatively impact habitat for indicator species during the dry season. More opportunity exists for wastewater reuse during the wet season, when current wastewater discharge may be reduced by 24% with minimal impacts to ecology and recreation. The developed approach has the potential to inform similar tradeoff decisions in other urban rivers where flows are dominated by wastewater or stormdrain discharge.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"15 ","pages":"Article 100124"},"PeriodicalIF":4.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915522000062/pdfft?md5=5c47f02837739b38622f7930cf01aa30&pid=1-s2.0-S2589915522000062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47147257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Utility of low-cost recreational-grade echosounders in imaging and characterizing bubbly coastal submarine groundwater discharge 低成本娱乐级回声测深仪在成像和表征泡沫海岸海底地下水排放中的应用
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.1016/j.hydroa.2021.100118
Mary Rose P. Gabuyo, Fernando P. Siringan

Despite the growing knowledge on the significance of submarine groundwater discharge (SGD), mapping its occurrence is a continuing challenge. This study explores the capability and applicability of low-cost, off-the-shelf, recreational-grade echosounders (RGESs) to image different types and locate point sources of bubbly coastal SGD. Standard and systematic methodologies for efficient imaging and processing were established. The use of RGES was validated using a research-grade side scan sonar (RGSSS), continuous resistivity profiling, conductivity-temperature-depth casting, and MantaCam and SCUBA diving surveys. Lower frequencies (77/83 kHz) of RGESs showed more distinct acoustic signatures of bubbly SGD, as these were nearly the same as the effective resonance frequency of the bubbles. The clusters of bubbly discharges have higher backscatter strength than the water column noise, resulting in the definitive and convenient manual detection of SGD features. Hence, showing more accurate point sources of SGD. Three types of known SGD occurrence were identified and characterized based on acoustic behavior and spatial distribution: 1) sparse, discrete and sporadic discharge over wide area, 2) curtain, high and continuous bubble concentrations from widespread discharge, and 3) spring, direct bubble discharge from intense seafloor degassing at a single point source. These results showed that RGES provides a good alternative for more efficient and cost-effective preliminary coastal SGD works. Additional research on areas with water-dominated discharge but no bubbling is recommended.

尽管人们对海底地下水排放(SGD)的重要性了解越来越多,但绘制其发生情况仍然是一项挑战。本研究探讨了低成本、现成的休闲级回声测深仪(RGESs)对不同类型气泡海岸SGD成像和定位点源的能力和适用性。建立了有效成像和处理的标准和系统方法。通过研究级侧扫声纳(RGSSS)、连续电阻率剖面、电导率-温度-深度铸造、MantaCam和SCUBA潜水测量,验证了RGES的使用。较低频率(77/83 kHz)的RGESs显示出更明显的气泡SGD声学特征,因为这些频率与气泡的有效共振频率几乎相同。气泡放电簇比水柱噪声具有更高的后向散射强度,从而可以确定和方便地手动检测SGD特征。因此,显示出更准确的SGD点源。根据声学行为和空间分布,确定并表征了三种已知的SGD产状:1)大面积稀疏、离散和零星放电,2)大面积放电产生的幕状、连续高气泡浓度,以及3)单点源强烈海底脱气产生的弹簧式、直接气泡放电。这些结果表明,RGES为更有效和更具成本效益的初步沿海SGD工程提供了良好的选择。建议对以水为主排放但没有冒泡的区域进行进一步研究。
{"title":"Utility of low-cost recreational-grade echosounders in imaging and characterizing bubbly coastal submarine groundwater discharge","authors":"Mary Rose P. Gabuyo,&nbsp;Fernando P. Siringan","doi":"10.1016/j.hydroa.2021.100118","DOIUrl":"10.1016/j.hydroa.2021.100118","url":null,"abstract":"<div><p>Despite the growing knowledge on the significance of submarine groundwater discharge (SGD), mapping its occurrence is a continuing challenge. This study explores the capability and applicability of low-cost, off-the-shelf, recreational-grade echosounders (RGESs) to image different types and locate point sources of bubbly coastal SGD. Standard and systematic methodologies for efficient imaging and processing were established. The use of RGES was validated using a research-grade side scan sonar (RGSSS), continuous resistivity profiling, conductivity-temperature-depth casting, and MantaCam and SCUBA diving surveys. Lower frequencies (77/83 kHz) of RGESs showed more distinct acoustic signatures of bubbly SGD, as these were nearly the same as the effective resonance frequency of the bubbles. The clusters of bubbly discharges have higher backscatter strength than the water column noise, resulting in the definitive and convenient manual detection of SGD features. Hence, showing more accurate point sources of SGD. Three types of known SGD occurrence were identified and characterized based on acoustic behavior and spatial distribution: 1) sparse, discrete and sporadic discharge over wide area, 2) curtain, high and continuous bubble concentrations from widespread discharge, and 3) spring, direct bubble discharge from intense seafloor degassing at a single point source. These results showed that RGES provides a good alternative for more efficient and cost-effective preliminary coastal SGD works. Additional research on areas with water-dominated discharge but no bubbling is recommended.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"14 ","pages":"Article 100118"},"PeriodicalIF":4.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915521000468/pdfft?md5=0df304e7b20534b2fa68391c861835e3&pid=1-s2.0-S2589915521000468-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54726242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America 北美东北部以融雪为主的大型盆地当代(2001-2018)春季水流动态控制
IF 4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.1016/j.hydroa.2021.100117
Xindi Yu , Charles P.-A. Bourque

The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (<1%, over the 17 years), predictably displaying the weakest signal (p = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America.

本研究的目的是描述2001年至2018年17个融冰季节期间大型国际河流系统(加拿大和美国)每日水流动态的主要强迫变量和系统反馈。基于极端梯度增强的分析表明,17个融冰季期间,圣约翰河上游(SJR, Wolastoq)流域4个子集水区的日流量在很大程度上受该地区季节性变暖的控制,该地区的季节性变暖与春季区域入射全球辐射的增加以及南方感热和潜热的东北平流有关。从历史上看,气温和累计雪度日数的季节性波动通过影响融雪的产生和时间,对子集水区排放的控制贡献了大约60%。地面积雪的峰值积累是第二重要的排放控制,在日时间尺度上约占总体控制的15.6%。四个子流域的累积短期和长期森林覆盖损失提供了一些控制,但在不同的水平(即4.8-14.2%)取决于森林覆盖总量损失的程度和其他子流域特征。收敛交叉制图证实了四个子集水区中三个子集水区的年森林覆盖损失与日流量之间的单向因果关系。4个子流域的年森林覆盖消失量-日流量信号强度各不相同,其中年森林覆盖损失最小的子流域(17年损失<1%)的信号可预测为最弱(p = 0.282)。森林覆盖的消失显示增加了所有子集水区的春季流量,尽管速率不同。这项工作提供了一个更全面的、机械的解释,每天融雪控制在北美东北部的溪流/河流流量动力学。
{"title":"Controls of contemporary (2001–2018) springtime waterflow dynamics in a Large, snowmelt-dominated basin in northeastern North America","authors":"Xindi Yu ,&nbsp;Charles P.-A. Bourque","doi":"10.1016/j.hydroa.2021.100117","DOIUrl":"10.1016/j.hydroa.2021.100117","url":null,"abstract":"<div><p>The objective of this study was to characterise the primary forcing variables and system feedback responsible for daily waterflow dynamics within a large, international river system (Canada and USA) during 17 melt seasons from 2001 to 2018. An analysis based on extreme gradient boosting showed that daily waterflow in four subcatchments of the upper Saint John River (SJR, Wolastoq) basin during the 17 melt seasons was to a large measure controlled by the area’s seasonal warming associated with the springtime increase in regional incident global radiation and northeasterly advection of sensible and latent heat from southerly locations. Historically, seasonal surges in air temperature and cumulative snow degree-days were shown to contribute to roughly 60% of the control on subcatchment discharge by influencing the production and timing of snowmelt. Peak accumulation of snow on the ground provided the second most important control of discharge, accounting for about 15.6% of the overall control at a daily timescale. Cumulative short- and long-term forest cover losses in the four subcatchments provided some control, but at varying levels (i.e., 4.8–14.2%) dependent on the extent of total forest cover loss and other subcatchment traits. Convergent cross mapping confirmed the unidirectional, causal relationship between annual forest cover loss and daily discharge rates at the outlet of three of the four subcatchments. The strength of the annual-forest-cover-removal-to-daily-discharge signal within the four subcatchments varied, with the subcatchment with the least annual forest cover loss (&lt;1%, over the 17 years), predictably displaying the weakest signal (<em>p</em> = 0.282). Forest cover removal was shown to increase springtime discharge for all subcatchments, albeit at different rates. This work provides a more comprehensive, mechanistic interpretation of daily snowmelt control of stream/river flow dynamics in northeastern North America.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"14 ","pages":"Article 100117"},"PeriodicalIF":4.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915521000456/pdfft?md5=b38f79fd697c822532520822fdcf8d7a&pid=1-s2.0-S2589915521000456-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43719198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Hydrology X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1