Floods occur everywhere and in every season. Yet, most studies have focused only on annual maximum floods (AMFs), their climatology, and the associated impacts. Given that monthly/seasonal floods also cause significant damage and disruptions to daily life, this study may be the first to explore winter flood hydroclimatology, a predominantly a non-AMF season, and its associated large-scale climate drivers over the Coterminous US (CONUS). Using a mixed-effects model, we find that the influence of various hydroclimate predictors on winter floods is largely consistent within subregions. Antecedent land-surface conditions are crucial for winter floods in inland areas, while the Pacific sea surface temperatures (SSTs) significantly affects coastal watersheds. The Atlantic SSTs impact winter floods in the south and northeast, while atmospheric conditions influence the Midwest and California. Additional analysis reveals that damage from winter floods is more widespread compared to AMFs across the nation, affecting the entire eastern seaboard, Southwest US, and over the Great Lakes region. Thus, a comprehensive understanding of floods across all seasons (non-AMFs) is critical for developing effective mitigation measures, as it provides information on impacts and required compensation for smaller return period floods.
扫码关注我们
求助内容:
应助结果提醒方式:
