Pub Date : 2024-03-20DOI: 10.1016/j.coisb.2024.100516
Jordan J.A. Weaver, Amber M. Smith
Host immune responses play a pivotal role in defending against influenza viruses. The activation of various immune components, such as interferon, macrophages, and CD8+ T cells, works to limit viral spread while maintaining lung integrity. Recent mathematical modeling studies have investigated these responses, describing their regulation, efficacy, and movement within the lung. Here, we discuss these studies and their emphasis on identifying nonlinearities and multifaceted roles of different cell phenotypes that could be responsible for spatially heterogeneous infection patterns.
宿主免疫反应在抵御流感病毒的过程中发挥着关键作用。各种免疫成分(如干扰素、巨噬细胞和 CD8+ T 细胞)的激活可限制病毒传播,同时保持肺部的完整性。最近的数学建模研究对这些反应进行了调查,描述了它们在肺内的调节、功效和运动。在此,我们将讨论这些研究及其重点,即确定不同细胞表型的非线性和多方面作用,这可能是造成空间异质性感染模式的原因。
{"title":"Quantitatively mapping immune control during influenza","authors":"Jordan J.A. Weaver, Amber M. Smith","doi":"10.1016/j.coisb.2024.100516","DOIUrl":"https://doi.org/10.1016/j.coisb.2024.100516","url":null,"abstract":"<div><p>Host immune responses play a pivotal role in defending against influenza viruses. The activation of various immune components, such as interferon, macrophages, and CD8<sup>+</sup> T cells, works to limit viral spread while maintaining lung integrity. Recent mathematical modeling studies have investigated these responses, describing their regulation, efficacy, and movement within the lung. Here, we discuss these studies and their emphasis on identifying nonlinearities and multifaceted roles of different cell phenotypes that could be responsible for spatially heterogeneous infection patterns.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"38 ","pages":"Article 100516"},"PeriodicalIF":3.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245231002400012X/pdfft?md5=32f7c5e3112251b43a5b24b1786085b1&pid=1-s2.0-S245231002400012X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological recycling and valorization of plastics are promising approaches to solve global plastic waste accumulation. Out of diverse plastic materials, polyethylene terephthalate (PET) is one of the most abundant polymers with rapid development in both biodegradation and product upcycling. In this perspective, we review recent discoveries and engineering of PET-degrading enzymes together with plausible auxiliary pathways, and provide insights on how to construct better parts through systematic bioengineering (metagenome mining, protein design, and directed evolution). Then, we discuss the potential of microbial-based PET degradation and upcycling in either a single host or consortia, as well as bottom-up and top-down methods of microbial consortia engineering using novel synthetic biology tools for enhanced PET circularization.
塑料的生物回收利用和增值是解决全球塑料废物积累问题的有效方法。在各种塑料材料中,聚对苯二甲酸乙二醇酯(PET)是最丰富的聚合物之一,在生物降解和产品升级再循环方面发展迅速。在这一视角中,我们回顾了最近发现的聚对苯二甲酸乙二醇酯降解酶和工程设计,以及可信的辅助途径,并就如何通过系统生物工程(元基因组挖掘、蛋白质设计和定向进化)构建更好的部件提供了见解。然后,我们讨论了单个宿主或联合体中基于微生物的 PET 降解和升级循环的潜力,以及利用新型合成生物学工具进行微生物联合体工程的自下而上和自上而下的方法,以增强 PET 循环。
{"title":"Enzymes, auxiliaries, and cells for the recycling and upcycling of polyethylene terephthalate","authors":"Thanakrit Wongsatit , Thanate Srimora , Cholpisit Kiattisewee , Chayasith Uttamapinant","doi":"10.1016/j.coisb.2024.100515","DOIUrl":"10.1016/j.coisb.2024.100515","url":null,"abstract":"<div><p>Biological recycling and valorization of plastics are promising approaches to solve global plastic waste accumulation. Out of diverse plastic materials, polyethylene terephthalate (PET) is one of the most abundant polymers with rapid development in both biodegradation and product upcycling. In this perspective, we review recent discoveries and engineering of PET-degrading enzymes together with plausible auxiliary pathways, and provide insights on how to construct better parts through systematic bioengineering (metagenome mining, protein design, and directed evolution). Then, we discuss the potential of microbial-based PET degradation and upcycling in either a single host or consortia, as well as bottom-up and top-down methods of microbial consortia engineering using novel synthetic biology tools for enhanced PET circularization.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"38 ","pages":"Article 100515"},"PeriodicalIF":3.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140275700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.coisb.2024.100506
Janina Hesse , Nina Nelson , Angela Relógio
The growing numbers of cancer cases represent a medical and societal burden worldwide. More than half of all cancer patients are treated with chemotherapy. Yet, chemotherapeutic drugs kill not only cancer cells, but also healthy tissue, causing massive adverse side effects. Recent research on circadian medicine suggests that side-effects can be reduced, and treatment efficacy increased, by considering the biological clock of patients. Integrating circadian profiles of molecular clock markers in personalized mathematical models can simulate individual circadian dynamics of drug uptake, drug action and cellular response to chemotherapy. This requires advanced computational tools that balance prediction quality with overfitting. Personalized mathematical models will eventually lead to an optimal alignment of treatment timing with the inner circadian clock of the patient, reducing side effects, increasing efficacy and enhancing patient well-being.
{"title":"Shaping the future of precision oncology: Integrating circadian medicine and mathematical models for personalized cancer treatment","authors":"Janina Hesse , Nina Nelson , Angela Relógio","doi":"10.1016/j.coisb.2024.100506","DOIUrl":"https://doi.org/10.1016/j.coisb.2024.100506","url":null,"abstract":"<div><p>The growing numbers of cancer cases represent a medical and societal burden worldwide. More than half of all cancer patients are treated with chemotherapy. Yet, chemotherapeutic drugs kill not only cancer cells, but also healthy tissue, causing massive adverse side effects. Recent research on circadian medicine suggests that side-effects can be reduced, and treatment efficacy increased, by considering the biological clock of patients. Integrating circadian profiles of molecular clock markers in personalized mathematical models can simulate individual circadian dynamics of drug uptake, drug action and cellular response to chemotherapy. This requires advanced computational tools that balance prediction quality with overfitting. Personalized mathematical models will eventually lead to an optimal alignment of treatment timing with the inner circadian clock of the patient, reducing side effects, increasing efficacy and enhancing patient well-being.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100506"},"PeriodicalIF":3.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310024000027/pdfft?md5=ca1548e10b73e11752c874903a1363a1&pid=1-s2.0-S2452310024000027-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/S2452-3100(24)00007-6
{"title":"Editorial Board Page","authors":"","doi":"10.1016/S2452-3100(24)00007-6","DOIUrl":"https://doi.org/10.1016/S2452-3100(24)00007-6","url":null,"abstract":"","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100511"},"PeriodicalIF":3.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310024000076/pdfft?md5=dcd349d4abd3cf377c47076cacf2c924&pid=1-s2.0-S2452310024000076-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140138531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naïve CD4+ T cells can polarize into diverse functionally distinct effector cell types such as Th1, Th2, Th17 and Treg. These cell types can also interconvert among one another. The dynamics of T-cell differentiation and plasticity is driven by complex interactions involving many feedback loops among cytokines, intracellular signalling and lineage-determining transcription factors. In the past two decades, mechanistic computational models have played an instrumental role in understanding the underlying emergent dynamics. Here, we highlight the key concepts elucidated from such modelling efforts – a) multistability in underlying gene regulatory networks, b) the (co-) existence of stable hybrid cell states (Th1/Th2, Th1/Th17, Th2/Th17), and c) population-level dynamics of T-cell differentiation. These models, in close integration with experimental data, have improved our understanding of cell-state transitions and trajectories implicated in intracellular and population dynamics of T-cell plasticity.
新生的 CD4+ T 细胞可极化为各种功能不同的效应细胞类型,如 Th1、Th2、Th17 和 Treg。这些细胞类型还可以相互转化。T 细胞分化和可塑性的动态是由细胞因子、细胞内信号传导和决定细胞系的转录因子之间涉及许多反馈回路的复杂相互作用驱动的。在过去二十年中,机理计算模型在理解潜在的突发性动力学方面发挥了重要作用。在此,我们重点介绍从这些建模工作中阐明的关键概念--a) 基本基因调控网络的多稳定性;b) 稳定混合细胞状态(Th1/Th2、Th1/Th17、Th2/Th17)的(共同)存在;c) T 细胞分化的群体级动态。这些模型与实验数据紧密结合,提高了我们对细胞状态转换以及细胞内和群体动态 T 细胞可塑性相关轨迹的理解。
{"title":"Dynamics of T-helper cell differentiation and plasticity: How have computational models improved our understanding?","authors":"Pradyumna Harlapur, Atchuta Srinivas Duddu, Mohit Kumar Jolly","doi":"10.1016/j.coisb.2024.100508","DOIUrl":"https://doi.org/10.1016/j.coisb.2024.100508","url":null,"abstract":"<div><p>Naïve CD4+ T cells can polarize into diverse functionally distinct effector cell types such as Th1, Th2, Th17 and Treg. These cell types can also interconvert among one another. The dynamics of T-cell differentiation and plasticity is driven by complex interactions involving many feedback loops among cytokines, intracellular signalling and lineage-determining transcription factors. In the past two decades, mechanistic computational models have played an instrumental role in understanding the underlying emergent dynamics. Here, we highlight the key concepts elucidated from such modelling efforts – a) multistability in underlying gene regulatory networks, b) the (co-) existence of stable hybrid cell states (Th1/Th2, Th1/Th17, Th2/Th17), and c) population-level dynamics of T-cell differentiation. These models, in close integration with experimental data, have improved our understanding of cell-state transitions and trajectories implicated in intracellular and population dynamics of T-cell plasticity.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100508"},"PeriodicalIF":3.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-08DOI: 10.1016/j.coisb.2024.100509
Xinyue Ma , Anmar Khadra
Neuropathic pain is a complex condition with a huge unmet medical need. Owing to our incomplete understanding of its perplexing pathology, current therapeutic strategies for treating neuropathic pain remain limited in their efficacy. Computational modeling has emerged as a promising methodology in unraveling the intricate neural mechanisms contributing to neuropathic pain. This review serves as a bridge that links traditional experimental research in neuropathic pain to computational neuroscience. We aim to fill in the gap of knowledge between these two fields by introducing the methodology of computational modeling as well as the neurophysiological background for neuropathic pain. We provide examples of recent advances in using computational modeling at the molecular, cellular, and neural network levels to harness the understanding of pain-associated neural signaling. This integration of computational modeling has yielded crucial insights into neuropathic pain pathophysiology, with great potential to inform novel pharmacological and neurostimulation-based treatments for the disease.
{"title":"Neural signaling in neuropathic pain: A computational modeling perspective","authors":"Xinyue Ma , Anmar Khadra","doi":"10.1016/j.coisb.2024.100509","DOIUrl":"10.1016/j.coisb.2024.100509","url":null,"abstract":"<div><p>Neuropathic pain is a complex condition with a huge unmet medical need. Owing to our incomplete understanding of its perplexing pathology, current therapeutic strategies for treating neuropathic pain remain limited in their efficacy. Computational modeling has emerged as a promising methodology in unraveling the intricate neural mechanisms contributing to neuropathic pain. This review serves as a bridge that links traditional experimental research in neuropathic pain to computational neuroscience. We aim to fill in the gap of knowledge between these two fields by introducing the methodology of computational modeling as well as the neurophysiological background for neuropathic pain. We provide examples of recent advances in using computational modeling at the molecular, cellular, and neural network levels to harness the understanding of pain-associated neural signaling. This integration of computational modeling has yielded crucial insights into neuropathic pain pathophysiology, with great potential to inform novel pharmacological and neurostimulation-based treatments for the disease.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100509"},"PeriodicalIF":3.7,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310024000052/pdfft?md5=d4c0bbd6bb1f98e6ca3144aab1540c86&pid=1-s2.0-S2452310024000052-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139887002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.coisb.2024.100507
Didier Gonze
Chronotherapy aims at optimising the time of day and dosing of drugs administration. This is a promising perspective because the toxicity and efficacy of many drugs show a dependence on the time of the day at which they are administrated. Efficient cancer chronotherapy requires a good understanding of the interplay between the cell cycle and the circadian clock. Computational models offer a way to study the dynamics resulting from the coupling between these two biological oscillators and to predict successful therapeutic protocols. We review here recent advances and highlight key challenges for further developments of predictive mathematical models.
{"title":"Coupling between the cell cycle and the circadian clock: Lessons from computational modelling and consequences for cancer chronotherapy","authors":"Didier Gonze","doi":"10.1016/j.coisb.2024.100507","DOIUrl":"https://doi.org/10.1016/j.coisb.2024.100507","url":null,"abstract":"<div><p>Chronotherapy aims at optimising the time of day and dosing of drugs administration. This is a promising perspective because the toxicity and efficacy of many drugs show a dependence on the time of the day at which they are administrated. Efficient cancer chronotherapy requires a good understanding of the interplay between the cell cycle and the circadian clock. Computational models offer a way to study the dynamics resulting from the coupling between these two biological oscillators and to predict successful therapeutic protocols. We review here recent advances and highlight key challenges for further developments of predictive mathematical models.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100507"},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139738774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1016/j.coisb.2024.100505
Ye-Bin Kim , Seongmin Kim , Chungoo Park , Soo-Jin Yeom
Plastic waste has become one of the most pressing environmental issues with rapidly increased their production that also has a severe impact on individual species and ecosystem functioning.
With recycling technologies in place, the waste plastic will become a valuable resource and hence less material will be lost to the environment. In the pursuit of a sustainable approach to the treatment of plastic waste, biological processes have emerged as an eco-friendly method with significant potential. In this review, we summarize previous research on the biodegradation of polystyrene (PS) as major plastics, including a review of the analytical methods used to investigate the plastic biodegradation, the isolation of PS-degrading microbes from various environment, and the identification of potential enzymes for PS biodegradation. Based on this, we propose a potential PS biodegradation pathway, even though the specific biochemical mechanisms associated with certain enzymes have not yet been fully identified. Finally, we discuss how PS-biodegrading enzymes can be identified using a systems biology-based screening approach that combines culture-based genomic and culture-independent metagenomic methods. This strategy can be applied to searching biodegrading enzymes for other plastics.
{"title":"Biodegradation of polystyrene and systems biology-based approaches to the development of new biocatalysts for plastic degradation","authors":"Ye-Bin Kim , Seongmin Kim , Chungoo Park , Soo-Jin Yeom","doi":"10.1016/j.coisb.2024.100505","DOIUrl":"10.1016/j.coisb.2024.100505","url":null,"abstract":"<div><p>Plastic waste has become one of the most pressing environmental issues with rapidly increased their production that also has a severe impact on individual species and ecosystem functioning.</p><p>With recycling technologies in place, the waste plastic will become a valuable resource and hence less material will be lost to the environment. In the pursuit of a sustainable approach to the treatment of plastic waste, biological processes<span> have emerged as an eco-friendly method with significant potential. In this review, we summarize previous research on the biodegradation of polystyrene (PS) as major plastics, including a review of the analytical methods used to investigate the plastic biodegradation, the isolation of PS-degrading microbes from various environment, and the identification of potential enzymes<span> for PS biodegradation. Based on this, we propose a potential PS biodegradation pathway, even though the specific biochemical mechanisms<span> associated with certain enzymes have not yet been fully identified. Finally, we discuss how PS-biodegrading enzymes can be identified using a systems biology-based screening approach that combines culture-based genomic and culture-independent metagenomic methods. This strategy can be applied to searching biodegrading enzymes for other plastics.</span></span></span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100505"},"PeriodicalIF":3.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139538705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1016/j.coisb.2023.100503
Ying Tu, Akashaditya Das, Chileab Redwood-Sawyerr, Karen M. Polizzi
The successful use of mRNA vaccines during the Covid-19 pandemic has created a boom in mRNA therapeutic research and development. The efficacy of mRNA vaccines and therapies relies on the quality of the synthesized molecules – a key feature of which is the 5′-end cap modification. The development of analytical methods for assessing mRNA quality needs to be prioritized to enable manufacturing development, process control, and rapid assessment of batch quality before release. In this review, we provide an overview of the latest techniques in the analysis of mRNA 5′ capping. We also discuss future possibilities and challenges in quality control of mRNA products at scale.
{"title":"Capped or uncapped? Techniques to assess the quality of mRNA molecules","authors":"Ying Tu, Akashaditya Das, Chileab Redwood-Sawyerr, Karen M. Polizzi","doi":"10.1016/j.coisb.2023.100503","DOIUrl":"10.1016/j.coisb.2023.100503","url":null,"abstract":"<div><p>The successful use of mRNA vaccines during the Covid-19 pandemic has created a boom in mRNA therapeutic research and development. The efficacy of mRNA vaccines and therapies relies on the quality of the synthesized molecules – a key feature of which is the 5′-end cap modification. The development of analytical methods for assessing mRNA quality needs to be prioritized to enable manufacturing development, process control, and rapid assessment of batch quality before release. In this review, we provide an overview of the latest techniques in the analysis of mRNA 5′ capping. We also discuss future possibilities and challenges in quality control of mRNA products at scale.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100503"},"PeriodicalIF":3.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310023000604/pdfft?md5=f8fd4ccca79dad686e121ac534c43012&pid=1-s2.0-S2452310023000604-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139392533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1016/j.coisb.2023.100504
Junyoung Kim , Jonghyun Kim , Minhee Park
The epigenome, comprising DNA and histone modifications alongside intricate chromatin structures, has emerged as pivotal players in disease development. These factors offer promising opportunities for therapeutic interventions, expanding the avenues traditionally explored within genetic elements. Eukaryotic chromatin exhibits an impressive capacity for computation and information storage, fueled by the dynamic interplay of factors that modify the physicochemical states of chromatin. With its unique attributes, chromatin emerges as a compelling candidate for synthetic intervention and therapeutic reprogramming. In this review, we explore pioneering initiatives aimed at synthetically manipulating the epigenome, a relatively uncharted domain with transformative potential for both diagnostics and treatments.
表观基因组包括 DNA 和组蛋白修饰以及错综复杂的染色质结构,已成为疾病发展的关键因素。这些因素为治疗干预提供了大好机会,拓展了传统上在遗传因子中探索的途径。真核染色质在改变染色质理化状态的各种因素的动态相互作用下,表现出惊人的计算和信息存储能力。染色质具有独特的属性,是合成干预和治疗重编程的理想候选对象。在这篇综述中,我们将探讨旨在综合操纵表观基因组的开创性计划,这是一个相对未知的领域,在诊断和治疗方面都具有变革潜力。
{"title":"Synthetic interventions in epigenome: Unraveling chromatin's potential for therapeutic applications","authors":"Junyoung Kim , Jonghyun Kim , Minhee Park","doi":"10.1016/j.coisb.2023.100504","DOIUrl":"10.1016/j.coisb.2023.100504","url":null,"abstract":"<div><p>The epigenome, comprising DNA and histone modifications alongside intricate chromatin structures, has emerged as pivotal players in disease development. These factors offer promising opportunities for therapeutic interventions, expanding the avenues traditionally explored within genetic elements. Eukaryotic chromatin exhibits an impressive capacity for computation and information storage, fueled by the dynamic interplay of factors that modify the physicochemical states of chromatin. With its unique attributes, chromatin emerges as a compelling candidate for synthetic intervention and therapeutic reprogramming. In this review, we explore pioneering initiatives aimed at synthetically manipulating the epigenome, a relatively uncharted domain with transformative potential for both diagnostics and treatments.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"37 ","pages":"Article 100504"},"PeriodicalIF":3.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310023000616/pdfft?md5=d2fd90b0ed0b99197e5a1965c2be3e3b&pid=1-s2.0-S2452310023000616-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139455078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}