Pub Date : 2023-11-08DOI: 10.1186/s40323-023-00253-z
Rajit Ranjan, Matthijs Langelaar, Fred Van Keulen, Can Ayas
Abstract Computational process modelling of metal additive manufacturing has gained significant research attention in recent past. The cornerstone of many process models is the transient thermal response during the AM process. Since deposition-scale modelling of the thermal conditions in AM is computationally expensive, spatial and temporal simplifications, such as simulating deposition of an entire layer or multiple layers, and extending the laser exposure times, are commonly employed in the literature. Although beneficial in reducing computational costs, the influence of these simplifications on the accuracy of temperature history is reported on a case-by-case basis. In this paper, the simplifications from the existing literature are first classified in a normalised simplification space based on assumptions made in spatial and temporal domains. Subsequently, all types of simplifications are investigated with numerical examples and compared with a high-fidelity reference model. The required numerical discretisation for each simplification is established, leading to a fair comparison of computational times. The holistic approach to the suitability of different modelling simplifications for capturing thermal history provides guidelines for the suitability of simplifications while setting up a thermal AM model.
{"title":"Classification and analysis of common simplifications in part-scale thermal modelling of metal additive manufacturing processes","authors":"Rajit Ranjan, Matthijs Langelaar, Fred Van Keulen, Can Ayas","doi":"10.1186/s40323-023-00253-z","DOIUrl":"https://doi.org/10.1186/s40323-023-00253-z","url":null,"abstract":"Abstract Computational process modelling of metal additive manufacturing has gained significant research attention in recent past. The cornerstone of many process models is the transient thermal response during the AM process. Since deposition-scale modelling of the thermal conditions in AM is computationally expensive, spatial and temporal simplifications, such as simulating deposition of an entire layer or multiple layers, and extending the laser exposure times, are commonly employed in the literature. Although beneficial in reducing computational costs, the influence of these simplifications on the accuracy of temperature history is reported on a case-by-case basis. In this paper, the simplifications from the existing literature are first classified in a normalised simplification space based on assumptions made in spatial and temporal domains. Subsequently, all types of simplifications are investigated with numerical examples and compared with a high-fidelity reference model. The required numerical discretisation for each simplification is established, leading to a fair comparison of computational times. The holistic approach to the suitability of different modelling simplifications for capturing thermal history provides guidelines for the suitability of simplifications while setting up a thermal AM model.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"78 S344","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135342543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1186/s40323-023-00252-0
Ziyi Yin, Rafael Orozco, Mathias Louboutin, Felix J. Herrmann
Abstract Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO 2 plume predictions near, and far away, from the monitoring wells.
{"title":"Solving multiphysics-based inverse problems with learned surrogates and constraints","authors":"Ziyi Yin, Rafael Orozco, Mathias Louboutin, Felix J. Herrmann","doi":"10.1186/s40323-023-00252-0","DOIUrl":"https://doi.org/10.1186/s40323-023-00252-0","url":null,"abstract":"Abstract Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO 2 plume predictions near, and far away, from the monitoring wells.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.1186/s40323-023-00250-2
Reika Nomura, S. Takase, Shuji Moriguchi, K. Terada
{"title":"On the flow conditions requiring detailed geometric modeling for multiscale evaluation of coastal forests","authors":"Reika Nomura, S. Takase, Shuji Moriguchi, K. Terada","doi":"10.1186/s40323-023-00250-2","DOIUrl":"https://doi.org/10.1186/s40323-023-00250-2","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41973370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26DOI: 10.1186/s40323-023-00248-w
N. Mitsume
{"title":"Compatible interface wave–structure interaction model for combining mesh-free particle and finite element methods","authors":"N. Mitsume","doi":"10.1186/s40323-023-00248-w","DOIUrl":"https://doi.org/10.1186/s40323-023-00248-w","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45624282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.1186/s40323-023-00245-z
A. Ordoñez, N. Tardieu, C. Kruse, Daniel Ruiz, S. Granet
{"title":"Scalable block preconditioners for saturated thermo-hydro-mechanics problems","authors":"A. Ordoñez, N. Tardieu, C. Kruse, Daniel Ruiz, S. Granet","doi":"10.1186/s40323-023-00245-z","DOIUrl":"https://doi.org/10.1186/s40323-023-00245-z","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47035875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-24DOI: 10.1186/s40323-023-00246-y
Yi Zhang, Lars Mikelsons
{"title":"Sensitivity-guided iterative parameter identification and data generation with BayesFlow and PELS-VAE for model calibration","authors":"Yi Zhang, Lars Mikelsons","doi":"10.1186/s40323-023-00246-y","DOIUrl":"https://doi.org/10.1186/s40323-023-00246-y","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48519237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-12DOI: 10.1186/s40323-023-00247-x
Hannes Fröck, Matthias Graser, M. Reich, M. Lechner, M. Merklein, O. Kessler
{"title":"Numerical modelling of the process chain for aluminium Tailored Heat-Treated Profiles","authors":"Hannes Fröck, Matthias Graser, M. Reich, M. Lechner, M. Merklein, O. Kessler","doi":"10.1186/s40323-023-00247-x","DOIUrl":"https://doi.org/10.1186/s40323-023-00247-x","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47947306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-09DOI: 10.1186/s40323-023-00240-4
Abel Sancarlos, V. Champaney, E. Cueto, F. Chinesta
{"title":"Regularized regressions for parametric models based on separated representations","authors":"Abel Sancarlos, V. Champaney, E. Cueto, F. Chinesta","doi":"10.1186/s40323-023-00240-4","DOIUrl":"https://doi.org/10.1186/s40323-023-00240-4","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"10 1","pages":"1-26"},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42256066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-24DOI: 10.1186/s40323-023-00249-9
N. Demo, M. Tezzele, G. Rozza
{"title":"A DeepONet multi-fidelity approach for residual learning in reduced order modeling","authors":"N. Demo, M. Tezzele, G. Rozza","doi":"10.1186/s40323-023-00249-9","DOIUrl":"https://doi.org/10.1186/s40323-023-00249-9","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49539218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.1186/s40323-022-00238-4
M. Kurumatani, Takumi Kato, Hiromu Sasaki
{"title":"Damage model for simulating cohesive fracture behavior of multi-phase composite materials","authors":"M. Kurumatani, Takumi Kato, Hiromu Sasaki","doi":"10.1186/s40323-022-00238-4","DOIUrl":"https://doi.org/10.1186/s40323-022-00238-4","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"10 1","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47698620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}