Pub Date : 2021-12-22DOI: 10.1186/s40323-023-00242-2
Saddam Hijazi, M. Freitag, Niels Landwehr
{"title":"POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier–Stokes equations","authors":"Saddam Hijazi, M. Freitag, Niels Landwehr","doi":"10.1186/s40323-023-00242-2","DOIUrl":"https://doi.org/10.1186/s40323-023-00242-2","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"10 1","pages":"1-38"},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42836277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.1186/s40323-022-00231-x
M. Xiao, Jun Ma, Dongcheng Lu, B. Raghavan, Weihong Zhang
{"title":"Stress-constrained topology optimization using approximate reanalysis with on-the-fly reduced order modeling","authors":"M. Xiao, Jun Ma, Dongcheng Lu, B. Raghavan, Weihong Zhang","doi":"10.1186/s40323-022-00231-x","DOIUrl":"https://doi.org/10.1186/s40323-022-00231-x","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43501253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1186/s40323-021-00212-6
E. S. Shoukralla, Nermin Saber, A. Y. Sayed
{"title":"Computational method for solving weakly singular Fredholm integral equations of the second kind using an advanced barycentric Lagrange interpolation formula","authors":"E. S. Shoukralla, Nermin Saber, A. Y. Sayed","doi":"10.1186/s40323-021-00212-6","DOIUrl":"https://doi.org/10.1186/s40323-021-00212-6","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46448070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-26DOI: 10.1186/s40323-021-00211-7
A. Pasquale, A. Ammar, A. Falcó, S. Perotto, E. Cueto, J. Duval, F. Chinesta
{"title":"A separated representation involving multiple time scales within the Proper Generalized Decomposition framework","authors":"A. Pasquale, A. Ammar, A. Falcó, S. Perotto, E. Cueto, J. Duval, F. Chinesta","doi":"10.1186/s40323-021-00211-7","DOIUrl":"https://doi.org/10.1186/s40323-021-00211-7","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65854082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-03DOI: 10.1186/s40323-021-00210-8
de Gooijer, Boukje M., Havinga, Jos, Geijselaers, Hubert J. M., van den Boogaard, Anton H.
Surrogate modelling is a powerful tool to replace computationally expensive nonlinear numerical simulations, with fast representations thereof, for inverse analysis, model-based control or optimization. For some problems, it is required that the surrogate model describes a complete output field. To construct such surrogate models, proper orthogonal decomposition (POD) can be used to reduce the dimensionality of the output data. The accuracy of the surrogate models strongly depends on the (pre)processing actions that are used to prepare the data for the dimensionality reduction. In this work, POD-based surrogate models with Radial Basis Function interpolation are used to model high-dimensional FE data fields. The effect of (pre)processing methods on the accuracy of the result field is systematically investigated. Different existing methods for surrogate model construction are compared with a novel method. Special attention is given to data fields consisting of several physical meanings, e.g. displacement, strain and stress. A distinction is made between the errors due to truncation and due to interpolation of the data. It is found that scaling the data per physical part substantially increases the accuracy of the surrogate model.
{"title":"Evaluation of POD based surrogate models of fields resulting from nonlinear FEM simulations","authors":"de Gooijer, Boukje M., Havinga, Jos, Geijselaers, Hubert J. M., van den Boogaard, Anton H.","doi":"10.1186/s40323-021-00210-8","DOIUrl":"https://doi.org/10.1186/s40323-021-00210-8","url":null,"abstract":"Surrogate modelling is a powerful tool to replace computationally expensive nonlinear numerical simulations, with fast representations thereof, for inverse analysis, model-based control or optimization. For some problems, it is required that the surrogate model describes a complete output field. To construct such surrogate models, proper orthogonal decomposition (POD) can be used to reduce the dimensionality of the output data. The accuracy of the surrogate models strongly depends on the (pre)processing actions that are used to prepare the data for the dimensionality reduction. In this work, POD-based surrogate models with Radial Basis Function interpolation are used to model high-dimensional FE data fields. The effect of (pre)processing methods on the accuracy of the result field is systematically investigated. Different existing methods for surrogate model construction are compared with a novel method. Special attention is given to data fields consisting of several physical meanings, e.g. displacement, strain and stress. A distinction is made between the errors due to truncation and due to interpolation of the data. It is found that scaling the data per physical part substantially increases the accuracy of the surrogate model.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-30DOI: 10.21203/rs.3.rs-1050987/v1
Jhouben Cuesta-Ramirez, R. Riche, O. Roustant, G. Perrin, Cédric Durantin, A. Glière
Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation. General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, the reformulation of the problem with continuous latent variables is put in competition with searches working directly in the mixed space. Among the algorithms involving latent variables and an augmented Lagrangian, a particular attention is devoted to the Lagrange multipliers for which a local and a global estimation techniques are studied. The comparisons are based on the repeated optimization of three analytical functions and a beam design problem.
{"title":"A comparison of mixed-variables Bayesian optimization approaches","authors":"Jhouben Cuesta-Ramirez, R. Riche, O. Roustant, G. Perrin, Cédric Durantin, A. Glière","doi":"10.21203/rs.3.rs-1050987/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-1050987/v1","url":null,"abstract":"Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation. General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, the reformulation of the problem with continuous latent variables is put in competition with searches working directly in the mixed space. Among the algorithms involving latent variables and an augmented Lagrangian, a particular attention is devoted to the Lagrange multipliers for which a local and a global estimation techniques are studied. The comparisons are based on the repeated optimization of three analytical functions and a beam design problem.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"9 1","pages":"1-29"},"PeriodicalIF":0.0,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44351456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-04DOI: 10.1186/s40323-021-00207-3
Barabinot, Philippe, Scanff, Ronan, Ladevèze, Pierre, Néron, David, Cauville, Bruno
Digital Twins, which tend to intervene over the entire life cycle of products from early design phase to predictive maintenance through optimization processes, are increasingly emerging as an essential component in the future of industries. To reduce the computational time reduced-order modeling (ROM) methods can be useful. However, the spread of ROM methods at an industrial level is currently hampered by the difficulty of introducing them into commercial finite element software, due to the strong intrusiveness of the associated algorithms, preventing from getting robust and reliable tools all integrated in a certified product. This work tries to circumvent this issue by introducing a weakly-invasive reformulation of the LATIN-PGD method which is intended to be directly embedded into Simcenter Samcef $$^{hbox {TM}}$$ finite element software. The originality of this approach lies in the remarkably general way of doing, allowing PGD method to deal with not only a particular application but with all facilities already included in such softwares—any non-linearities, any element types, any boundary conditions...—and thus providing a new high-performance all-inclusive non-linear solver.
{"title":"Industrial Digital Twins based on the non-linear LATIN-PGD","authors":"Barabinot, Philippe, Scanff, Ronan, Ladevèze, Pierre, Néron, David, Cauville, Bruno","doi":"10.1186/s40323-021-00207-3","DOIUrl":"https://doi.org/10.1186/s40323-021-00207-3","url":null,"abstract":"Digital Twins, which tend to intervene over the entire life cycle of products from early design phase to predictive maintenance through optimization processes, are increasingly emerging as an essential component in the future of industries. To reduce the computational time reduced-order modeling (ROM) methods can be useful. However, the spread of ROM methods at an industrial level is currently hampered by the difficulty of introducing them into commercial finite element software, due to the strong intrusiveness of the associated algorithms, preventing from getting robust and reliable tools all integrated in a certified product. This work tries to circumvent this issue by introducing a weakly-invasive reformulation of the LATIN-PGD method which is intended to be directly embedded into Simcenter Samcef $$^{hbox {TM}}$$ finite element software. The originality of this approach lies in the remarkably general way of doing, allowing PGD method to deal with not only a particular application but with all facilities already included in such softwares—any non-linearities, any element types, any boundary conditions...—and thus providing a new high-performance all-inclusive non-linear solver.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-04DOI: 10.1186/s40323-021-00208-2
Kazemzadeh-Parsi, Mohammad Javad, Ammar, Amine, Duval, Jean Louis, Chinesta, Francisco
Space separation within the Proper Generalized Decomposition—PGD—rationale allows solving high dimensional problems as a sequence of lower dimensional ones. In our former works, different geometrical transformations were proposed for addressing complex shapes and spatially non-separable domains. Efficient implementation of separated representations needs expressing the domain as a product of characteristic functions involving the different space coordinates. In the case of complex shapes, more sophisticated geometrical transformations are needed to map the complex physical domain into a regular one where computations are performed. This paper aims at proposing a very efficient route for accomplishing such space separation. A NURBS-based geometry representation, usual in computer aided design—CAD—, is retained and combined with a fully separated representation for allying efficiency (ensured by the fully separated representations) and generality (by addressing complex geometries). Some numerical examples are considered to prove the potential of the proposed methodology.
{"title":"Enhanced parametric shape descriptions in PGD-based space separated representations","authors":"Kazemzadeh-Parsi, Mohammad Javad, Ammar, Amine, Duval, Jean Louis, Chinesta, Francisco","doi":"10.1186/s40323-021-00208-2","DOIUrl":"https://doi.org/10.1186/s40323-021-00208-2","url":null,"abstract":"Space separation within the Proper Generalized Decomposition—PGD—rationale allows solving high dimensional problems as a sequence of lower dimensional ones. In our former works, different geometrical transformations were proposed for addressing complex shapes and spatially non-separable domains. Efficient implementation of separated representations needs expressing the domain as a product of characteristic functions involving the different space coordinates. In the case of complex shapes, more sophisticated geometrical transformations are needed to map the complex physical domain into a regular one where computations are performed. This paper aims at proposing a very efficient route for accomplishing such space separation. A NURBS-based geometry representation, usual in computer aided design—CAD—, is retained and combined with a fully separated representation for allying efficiency (ensured by the fully separated representations) and generality (by addressing complex geometries). Some numerical examples are considered to prove the potential of the proposed methodology.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"31 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-28DOI: 10.1186/s40323-021-00206-4
Jessica Manganotti, F. Caforio, François Kimmig, P. Moireau, S. Imperiale
{"title":"Coupling reduced-order blood flow and cardiac models through energy-consistent strategies: modeling and discretization","authors":"Jessica Manganotti, F. Caforio, François Kimmig, P. Moireau, S. Imperiale","doi":"10.1186/s40323-021-00206-4","DOIUrl":"https://doi.org/10.1186/s40323-021-00206-4","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-21DOI: 10.1186/s40323-021-00205-5
Ghnatios, Chady, Barasinski, Anais
A nonparametric method assessing the error and variability margins in solutions depicted in a separated form using experimental results is illustrated in this work. The method assess the total variability of the solution including the modeling error and the truncation error when experimental results are available. The illustrated method is based on the use of the PGD separated form solutions, enriched by transforming a part of the PGD basis vectors into probabilistic one. The constructed probabilistic vectors are restricted to the physical solution’s Stiefel manifold. The result is a real-time parametric PGD solution enhanced with the solution variability and the confidence intervals.
{"title":"A nonparametric probabilistic method to enhance PGD solutions with data-driven approach, application to the automated tape placement process","authors":"Ghnatios, Chady, Barasinski, Anais","doi":"10.1186/s40323-021-00205-5","DOIUrl":"https://doi.org/10.1186/s40323-021-00205-5","url":null,"abstract":"A nonparametric method assessing the error and variability margins in solutions depicted in a separated form using experimental results is illustrated in this work. The method assess the total variability of the solution including the modeling error and the truncation error when experimental results are available. The illustrated method is based on the use of the PGD separated form solutions, enriched by transforming a part of the PGD basis vectors into probabilistic one. The constructed probabilistic vectors are restricted to the physical solution’s Stiefel manifold. The result is a real-time parametric PGD solution enhanced with the solution variability and the confidence intervals.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}