首页 > 最新文献

Advanced Modeling and Simulation in Engineering Sciences最新文献

英文 中文
A physics-based neural network for flight dynamics modelling and simulation 基于物理的飞行动力学建模与仿真神经网络
Q1 Mathematics Pub Date : 2022-07-04 DOI: 10.1186/s40323-022-00227-7
Stachiw, Terrin, Crain, Alexander, Ricciardi, Joseph
The authors have developed a novel physics-based nonlinear autoregressive exogeneous neural network model architecture for flight modelling across the entire flight envelope, called FlyNet. When using traditional parameter estimation and output-error methods, aircraft models are captured about a single point in the flight envelope using a first-order Taylor series to approximate forces and moments. To enable analysis throughout the entire operational envelope, the traditional models can be extended by interpolating or stitching between a number of these single-condition models. This paper completes the evolutionary next step in aircraft modelling to consider all second-order Taylor series terms instead of a subset of those and by exploiting the ability of neural networks to capture more complex and nonlinear behaviour for the efficient development of a continuous flight simulation model valid across the entire envelope. This method is valid for fixed- and rotary-wing aircraft. The behaviour of a conventional model is compared to FlyNet using flight test data collected from the National Research Council of Canada’s Bell 412HP in forward flight.
作者开发了一种新的基于物理的非线性自回归外源神经网络模型架构,用于整个飞行包线的飞行建模,称为FlyNet。当使用传统的参数估计和输出误差方法时,使用一阶泰勒级数来近似力和力矩,以捕获飞行包线中单个点的飞机模型。为了在整个操作范围内进行分析,可以通过在许多这些单条件模型之间插入或拼接来扩展传统模型。本文完成了飞机建模的下一步进化,考虑了所有二阶泰勒级数项,而不是其中的一个子集,并利用神经网络的能力来捕获更复杂和非线性的行为,从而有效地开发了一个有效的连续飞行仿真模型。该方法适用于固定翼和旋翼飞机。使用从加拿大国家研究委员会收集的贝尔412HP向前飞行的飞行测试数据,将传统模型的行为与FlyNet进行比较。
{"title":"A physics-based neural network for flight dynamics modelling and simulation","authors":"Stachiw, Terrin, Crain, Alexander, Ricciardi, Joseph","doi":"10.1186/s40323-022-00227-7","DOIUrl":"https://doi.org/10.1186/s40323-022-00227-7","url":null,"abstract":"The authors have developed a novel physics-based nonlinear autoregressive exogeneous neural network model architecture for flight modelling across the entire flight envelope, called FlyNet. When using traditional parameter estimation and output-error methods, aircraft models are captured about a single point in the flight envelope using a first-order Taylor series to approximate forces and moments. To enable analysis throughout the entire operational envelope, the traditional models can be extended by interpolating or stitching between a number of these single-condition models. This paper completes the evolutionary next step in aircraft modelling to consider all second-order Taylor series terms instead of a subset of those and by exploiting the ability of neural networks to capture more complex and nonlinear behaviour for the efficient development of a continuous flight simulation model valid across the entire envelope. This method is valid for fixed- and rotary-wing aircraft. The behaviour of a conventional model is compared to FlyNet using flight test data collected from the National Research Council of Canada’s Bell 412HP in forward flight.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An energy-based study of the embedded element method for explicit dynamics 基于能量的显式动力学嵌入单元法研究
Q1 Mathematics Pub Date : 2022-07-02 DOI: 10.1186/s40323-022-00223-x
V. Martin, Reuben H. Kraft, Thomas H. Hannah, Stephen Ellis
{"title":"An energy-based study of the embedded element method for explicit dynamics","authors":"V. Martin, Reuben H. Kraft, Thomas H. Hannah, Stephen Ellis","doi":"10.1186/s40323-022-00223-x","DOIUrl":"https://doi.org/10.1186/s40323-022-00223-x","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodology to assess and improve the physics consistency of an artificial neural network regression model for engineering applications 一种评估和改进工程应用人工神经网络回归模型物理一致性的方法
Q1 Mathematics Pub Date : 2022-07-02 DOI: 10.1186/s40323-022-00224-w
E. Rajasekhar Nicodemus
{"title":"A methodology to assess and improve the physics consistency of an artificial neural network regression model for engineering applications","authors":"E. Rajasekhar Nicodemus","doi":"10.1186/s40323-022-00224-w","DOIUrl":"https://doi.org/10.1186/s40323-022-00224-w","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88603207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes 具有不同水流类型和复杂河床剖面形状的一维稳态明渠的物理信息神经网络水面可预测性
Q1 Mathematics Pub Date : 2022-06-30 DOI: 10.1186/s40323-022-00226-8
S. Cedillo, Ana-Gabriela Núñez, E. Sánchez-Cordero, L. Timbe, E. Samaniego, A. Alvarado
{"title":"Physics-Informed Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and complex bed profile shapes","authors":"S. Cedillo, Ana-Gabriela Núñez, E. Sánchez-Cordero, L. Timbe, E. Samaniego, A. Alvarado","doi":"10.1186/s40323-022-00226-8","DOIUrl":"https://doi.org/10.1186/s40323-022-00226-8","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Geometry aware physics informed neural network surrogate for solving Navier–Stokes equation (GAPINN) 求解Navier-Stokes方程(GAPINN)的几何感知物理神经网络代理
Q1 Mathematics Pub Date : 2022-06-21 DOI: 10.1186/s40323-022-00221-z
Oldenburg, Jan, Borowski, Finja, Öner, Alper, Schmitz, Klaus-Peter, Stiehm, Michael
Many real world problems involve fluid flow phenomena, typically be described by the Navier–Stokes equations. The Navier–Stokes equations are partial differential equations (PDEs) with highly nonlinear properties. Currently mostly used methods solve this differential equation by discretizing geometries. In the field of fluid mechanics the finite volume method (FVM) is widely used for numerical flow simulation, so-called computational fluid dynamics (CFD). Due to high computational costs and cumbersome generation of the discretization they are not widely used in real time applications. Our presented work focuses on advancing PDE-constrained deep learning frameworks for more real-world applications with irregular geometries without parameterization. We present a Deep Neural Network framework that generate surrogates for non-geometric boundaries by data free solely physics driven training, by minimizing the residuals of the governing PDEs (i.e., conservation laws) so that no computationally expensive CFD simulation data is needed. We named this method geometry aware physics informed neural network—GAPINN. The framework involves three network types. The first network reduces the dimensions of the irregular geometries to a latent representation. In this work we used a Variational-Auto-Encoder (VAE) for this task. We proposed the concept of using this latent representation in combination with spatial coordinates as input for PINNs. Using PINNs we showed that it is possible to train a surrogate model purely driven on the reduction of the residuals of the underlying PDE for irregular non-parametric geometries. Furthermore, we showed the way of designing a boundary constraining network (BCN) to hardly enforce boundary conditions during training of the PINN. We evaluated this concept on test cases in the fields of biofluidmechanics. The experiments comprise laminar flow (Re = 500) in irregular shaped vessels. The main highlight of the presented GAPINN is the use of PINNs on irregular non-parameterized geometries. Despite that we showed the usage of this framework for Navier Stokes equations, it should be feasible to adapt this framework for other problems described by PDEs.
许多现实世界的问题都涉及流体流动现象,通常用Navier-Stokes方程来描述。Navier-Stokes方程是一类具有高度非线性性质的偏微分方程。目前常用的求解该微分方程的方法主要是离散几何。在流体力学领域,有限体积法(FVM)被广泛用于数值流动模拟,即计算流体动力学(CFD)。由于计算成本高,离散化生成繁琐,在实时应用中没有得到广泛应用。我们提出的工作重点是推进pde约束的深度学习框架,用于更多具有不规则几何形状而没有参数化的实际应用。我们提出了一个深度神经网络框架,通过数据自由的物理驱动训练生成非几何边界的代理,通过最小化控制偏微分方程的残差(即守恒定律),因此不需要计算昂贵的CFD模拟数据。我们将这种方法命名为几何感知物理通知神经网络gapinn。该框架涉及三种网络类型。第一个网络将不规则几何图形的维度降低到一个潜在的表示。在这项工作中,我们使用了可变自动编码器(VAE)来完成这项任务。我们提出了将这种潜在表征与空间坐标相结合作为pin输入的概念。使用pinn,我们证明了可以训练一个代理模型,该模型纯粹是由不规则非参数几何的基础PDE的残差的减少驱动的。此外,我们还展示了设计边界约束网络(BCN)的方法,该网络在训练过程中几乎不强制执行边界条件。我们在生物流体力学领域的测试案例中评估了这一概念。实验包括不规则形状容器中的层流(Re = 500)。提出的GAPINN的主要亮点是在不规则的非参数化几何上使用pinn。尽管我们展示了该框架对Navier Stokes方程的使用,但将该框架用于偏微分方程描述的其他问题应该是可行的。
{"title":"Geometry aware physics informed neural network surrogate for solving Navier–Stokes equation (GAPINN)","authors":"Oldenburg, Jan, Borowski, Finja, Öner, Alper, Schmitz, Klaus-Peter, Stiehm, Michael","doi":"10.1186/s40323-022-00221-z","DOIUrl":"https://doi.org/10.1186/s40323-022-00221-z","url":null,"abstract":"Many real world problems involve fluid flow phenomena, typically be described by the Navier–Stokes equations. The Navier–Stokes equations are partial differential equations (PDEs) with highly nonlinear properties. Currently mostly used methods solve this differential equation by discretizing geometries. In the field of fluid mechanics the finite volume method (FVM) is widely used for numerical flow simulation, so-called computational fluid dynamics (CFD). Due to high computational costs and cumbersome generation of the discretization they are not widely used in real time applications. Our presented work focuses on advancing PDE-constrained deep learning frameworks for more real-world applications with irregular geometries without parameterization. We present a Deep Neural Network framework that generate surrogates for non-geometric boundaries by data free solely physics driven training, by minimizing the residuals of the governing PDEs (i.e., conservation laws) so that no computationally expensive CFD simulation data is needed. We named this method geometry aware physics informed neural network—GAPINN. The framework involves three network types. The first network reduces the dimensions of the irregular geometries to a latent representation. In this work we used a Variational-Auto-Encoder (VAE) for this task. We proposed the concept of using this latent representation in combination with spatial coordinates as input for PINNs. Using PINNs we showed that it is possible to train a surrogate model purely driven on the reduction of the residuals of the underlying PDE for irregular non-parametric geometries. Furthermore, we showed the way of designing a boundary constraining network (BCN) to hardly enforce boundary conditions during training of the PINN. We evaluated this concept on test cases in the fields of biofluidmechanics. The experiments comprise laminar flow (Re = 500) in irregular shaped vessels. The main highlight of the presented GAPINN is the use of PINNs on irregular non-parameterized geometries. Despite that we showed the usage of this framework for Navier Stokes equations, it should be feasible to adapt this framework for other problems described by PDEs.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
One-way coupled fluid–beam interaction: capturing the effect of embedded slender bodies on global fluid flow and vice versa 单向耦合流束相互作用:捕获嵌入的细长体对整体流体流动的影响,反之亦然
Q1 Mathematics Pub Date : 2022-06-21 DOI: 10.1186/s40323-022-00222-y
N. Hagmeyer, M. Mayr, I. Steinbrecher, A. Popp
{"title":"One-way coupled fluid–beam interaction: capturing the effect of embedded slender bodies on global fluid flow and vice versa","authors":"N. Hagmeyer, M. Mayr, I. Steinbrecher, A. Popp","doi":"10.1186/s40323-022-00222-y","DOIUrl":"https://doi.org/10.1186/s40323-022-00222-y","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Inverse analysis of material parameters in coupled multi-physics biofilm models 耦合多物理场生物膜模型中材料参数的逆分析
Q1 Mathematics Pub Date : 2022-06-15 DOI: 10.1186/s40323-022-00220-0
Willmann, Harald, Wall, Wolfgang A.
In this article we propose an inverse analysis algorithm to find the best fit of multiple material parameters in different coupled multi-physics biofilm models. We use a nonlinear continuum mechanical approach to model biofilm deformation that occurs in flow cell experiments. The objective function is based on a simple geometrical measurement of the distance of the fluid biofilm interface between model and experiments. A Levenberg-Marquardt algorithm based on finite difference approximation is used as an optimizer. The proposed method uses a moderate to low amount of model evaluations. For a first presentation and evaluation the algorithm is applied and tested on different numerical examples based on generated numerical results and the addition of Gaussian noise. Achieved numerical results show that the proposed method serves well for different physical effects investigated and numerical approaches chosen for the model. Presented examples show the inverse analysis for multiple parameters in biofilm models including fluid-solid interaction effects, poroelasticity, heterogeneous material properties and growth.
在本文中,我们提出了一种逆分析算法来寻找不同耦合多物理场生物膜模型中多个材料参数的最佳拟合。我们使用非线性连续力学方法来模拟流动细胞实验中发生的生物膜变形。目标函数是基于模型与实验之间流体生物膜界面距离的简单几何测量。采用基于有限差分逼近的Levenberg-Marquardt算法作为优化器。提出的方法使用适度到低的模型评估量。基于生成的数值结果和高斯噪声的加入,对该算法进行了初步的介绍和评价。数值结果表明,所提出的方法可以很好地适用于所研究的不同物理效应和所选择的模型数值方法。给出的实例显示了生物膜模型中包括流固相互作用效应、孔隙弹性、非均质材料性质和生长在内的多个参数的逆分析。
{"title":"Inverse analysis of material parameters in coupled multi-physics biofilm models","authors":"Willmann, Harald, Wall, Wolfgang A.","doi":"10.1186/s40323-022-00220-0","DOIUrl":"https://doi.org/10.1186/s40323-022-00220-0","url":null,"abstract":"In this article we propose an inverse analysis algorithm to find the best fit of multiple material parameters in different coupled multi-physics biofilm models. We use a nonlinear continuum mechanical approach to model biofilm deformation that occurs in flow cell experiments. The objective function is based on a simple geometrical measurement of the distance of the fluid biofilm interface between model and experiments. A Levenberg-Marquardt algorithm based on finite difference approximation is used as an optimizer. The proposed method uses a moderate to low amount of model evaluations. For a first presentation and evaluation the algorithm is applied and tested on different numerical examples based on generated numerical results and the addition of Gaussian noise. Achieved numerical results show that the proposed method serves well for different physical effects investigated and numerical approaches chosen for the model. Presented examples show the inverse analysis for multiple parameters in biofilm models including fluid-solid interaction effects, poroelasticity, heterogeneous material properties and growth.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayesian calibration of coupled computational mechanics models under uncertainty based on interface deformation 基于界面变形的不确定耦合计算力学模型贝叶斯定标
Q1 Mathematics Pub Date : 2022-06-10 DOI: 10.1186/s40323-022-00237-5
Harald Willmann, J. Nitzler, S. Brandstaeter, W. Wall
{"title":"Bayesian calibration of coupled computational mechanics models under uncertainty based on interface deformation","authors":"Harald Willmann, J. Nitzler, S. Brandstaeter, W. Wall","doi":"10.1186/s40323-022-00237-5","DOIUrl":"https://doi.org/10.1186/s40323-022-00237-5","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47585951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A comparison of mixed-variables Bayesian optimization approaches 混合变量贝叶斯优化方法的比较
Q1 Mathematics Pub Date : 2022-06-09 DOI: 10.1186/s40323-022-00218-8
Cuesta Ramirez, Jhouben, Le Riche, Rodolphe, Roustant, Olivier, Perrin, Guillaume, Durantin, Cédric, Glière, Alain
Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation. General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, the reformulation of the problem with continuous latent variables is put in competition with searches working directly in the mixed space. Among the algorithms involving latent variables and an augmented Lagrangian, a particular attention is devoted to the Lagrange multipliers for which a local and a global estimation techniques are studied. The comparisons are based on the repeated optimization of three analytical functions and a beam design problem.
大多数实际的优化问题都是在一个混合搜索空间中定义的,其中变量是离散的和连续的。在工程应用中,目标函数通常是通过数值昂贵的黑盒模拟来计算的。因此,一般的混合和昂贵的优化问题具有很大的实际意义,但它们的解决在很大程度上仍然是一个开放的科学问题。本文通过高斯过程,将离散变量松弛为连续潜变量,研究了代价昂贵的混合问题。与混合空间相比,经典贝叶斯优化技术更容易获得连续空间。离散变量要么在连续优化之后恢复,要么与附加的连续-离散兼容约束同时恢复,该约束由增广拉格朗日量处理。比较了这种贝叶斯混合优化器的几种可能实现。特别是,具有连续潜变量的问题的重新表述与直接在混合空间中工作的搜索相竞争。在涉及隐变量和增广拉格朗日的算法中,特别关注了拉格朗日乘子的局部估计和全局估计技术。比较是基于三个解析函数的重复优化和一个梁的设计问题。
{"title":"A comparison of mixed-variables Bayesian optimization approaches","authors":"Cuesta Ramirez, Jhouben, Le Riche, Rodolphe, Roustant, Olivier, Perrin, Guillaume, Durantin, Cédric, Glière, Alain","doi":"10.1186/s40323-022-00218-8","DOIUrl":"https://doi.org/10.1186/s40323-022-00218-8","url":null,"abstract":"Most real optimization problems are defined over a mixed search space where the variables are both discrete and continuous. In engineering applications, the objective function is typically calculated with a numerically costly black-box simulation. General mixed and costly optimization problems are therefore of a great practical interest, yet their resolution remains in a large part an open scientific question. In this article, costly mixed problems are approached through Gaussian processes where the discrete variables are relaxed into continuous latent variables. The continuous space is more easily harvested by classical Bayesian optimization techniques than a mixed space would. Discrete variables are recovered either subsequently to the continuous optimization, or simultaneously with an additional continuous-discrete compatibility constraint that is handled with augmented Lagrangians. Several possible implementations of such Bayesian mixed optimizers are compared. In particular, the reformulation of the problem with continuous latent variables is put in competition with searches working directly in the mixed space. Among the algorithms involving latent variables and an augmented Lagrangian, a particular attention is devoted to the Lagrange multipliers for which a local and a global estimation techniques are studied. The comparisons are based on the repeated optimization of three analytical functions and a beam design problem.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Physics-informed neural networks approach for 1D and 2D Gray-Scott systems 一维和二维Gray-Scott系统的物理信息神经网络方法
Q1 Mathematics Pub Date : 2022-05-25 DOI: 10.1186/s40323-022-00219-7
Giampaolo, Fabio, De Rosa, Mariapia, Qi, Pian, Izzo, Stefano, Cuomo, Salvatore
Nowadays, in the Scientific Machine Learning (SML) research field, the traditional machine learning (ML) tools and scientific computing approaches are fruitfully intersected for solving problems modelled by Partial Differential Equations (PDEs) in science and engineering applications. Challenging SML methodologies are the new computational paradigms named Physics-Informed Neural Networks (PINNs). PINN has revolutionized the classical adoption of ML in scientific computing, representing a novel class of promising algorithms where the learning process is constrained to satisfy known physical laws described by differential equations. In this paper, we propose a PINN-based computational study to deal with a non-linear partial differential equations system. In particular, using this approach, we solve the Gray-Scott model, a reaction–diffusion system that involves an irreversible chemical reaction between two reactants. In the unstable region of the model, we consider some a priori information related to dynamical behaviors, i. e. a supervised approach that relies on a finite difference method (FDM). Finally, simulation results show that PINNs can successfully provide an approximated Grey-Scott system solution, reproducing the characteristic Turing patterns for different parameter configurations.
目前,在科学机器学习(SML)研究领域,传统的机器学习(ML)工具和科学计算方法在解决科学和工程应用中的偏微分方程(PDEs)建模问题方面取得了丰硕的成果。具有挑战性的SML方法是新的计算范式,称为物理信息神经网络(pinn)。PINN彻底改变了ML在科学计算中的经典应用,代表了一类新的有前途的算法,其中学习过程受到约束,以满足由微分方程描述的已知物理定律。本文提出了一种基于pup的非线性偏微分方程组的计算方法。特别是,使用这种方法,我们解决了Gray-Scott模型,这是一个涉及两个反应物之间不可逆化学反应的反应扩散系统。在模型的不稳定区域,我们考虑了一些与动力学行为相关的先验信息,即依赖于有限差分法(FDM)的监督方法。最后,仿真结果表明,pinn可以成功地提供近似的gray - scott系统解,再现不同参数配置下的特征图灵模式。
{"title":"Physics-informed neural networks approach for 1D and 2D Gray-Scott systems","authors":"Giampaolo, Fabio, De Rosa, Mariapia, Qi, Pian, Izzo, Stefano, Cuomo, Salvatore","doi":"10.1186/s40323-022-00219-7","DOIUrl":"https://doi.org/10.1186/s40323-022-00219-7","url":null,"abstract":"Nowadays, in the Scientific Machine Learning (SML) research field, the traditional machine learning (ML) tools and scientific computing approaches are fruitfully intersected for solving problems modelled by Partial Differential Equations (PDEs) in science and engineering applications. Challenging SML methodologies are the new computational paradigms named Physics-Informed Neural Networks (PINNs). PINN has revolutionized the classical adoption of ML in scientific computing, representing a novel class of promising algorithms where the learning process is constrained to satisfy known physical laws described by differential equations. In this paper, we propose a PINN-based computational study to deal with a non-linear partial differential equations system. In particular, using this approach, we solve the Gray-Scott model, a reaction–diffusion system that involves an irreversible chemical reaction between two reactants. In the unstable region of the model, we consider some a priori information related to dynamical behaviors, i. e. a supervised approach that relies on a finite difference method (FDM). Finally, simulation results show that PINNs can successfully provide an approximated Grey-Scott system solution, reproducing the characteristic Turing patterns for different parameter configurations.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Advanced Modeling and Simulation in Engineering Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1