Pub Date : 2023-05-08DOI: 10.1186/s40708-023-00190-y
Christian Goelz, Eva-Maria Reuter, Stephanie Fröhlich, Julian Rudisch, Ben Godde, Solveig Vieluf, Claudia Voelcker-Rehage
The aim of this study was to extend previous findings on selective attention over a lifetime using machine learning procedures. By decoding group membership and stimulus type, we aimed to study differences in the neural representation of inhibitory control across age groups at a single-trial level. We re-analyzed data from 211 subjects from six age groups between 8 and 83 years of age. Based on single-trial EEG recordings during a flanker task, we used support vector machines to predict the age group as well as to determine the presented stimulus type (i.e., congruent, or incongruent stimulus). The classification of group membership was highly above chance level (accuracy: 55%, chance level: 17%). Early EEG responses were found to play an important role, and a grouped pattern of classification performance emerged corresponding to age structure. There was a clear cluster of individuals after retirement, i.e., misclassifications mostly occurred within this cluster. The stimulus type could be classified above chance level in ~ 95% of subjects. We identified time windows relevant for classification performance that are discussed in the context of early visual attention and conflict processing. In children and older adults, a high variability and latency of these time windows were found. We were able to demonstrate differences in neuronal dynamics at the level of individual trials. Our analysis was sensitive to mapping gross changes, e.g., at retirement age, and to differentiating components of visual attention across age groups, adding value for the diagnosis of cognitive status across the lifespan. Overall, the results highlight the use of machine learning in the study of brain activity over a lifetime.
{"title":"Classification of age groups and task conditions provides additional evidence for differences in electrophysiological correlates of inhibitory control across the lifespan.","authors":"Christian Goelz, Eva-Maria Reuter, Stephanie Fröhlich, Julian Rudisch, Ben Godde, Solveig Vieluf, Claudia Voelcker-Rehage","doi":"10.1186/s40708-023-00190-y","DOIUrl":"https://doi.org/10.1186/s40708-023-00190-y","url":null,"abstract":"<p><p>The aim of this study was to extend previous findings on selective attention over a lifetime using machine learning procedures. By decoding group membership and stimulus type, we aimed to study differences in the neural representation of inhibitory control across age groups at a single-trial level. We re-analyzed data from 211 subjects from six age groups between 8 and 83 years of age. Based on single-trial EEG recordings during a flanker task, we used support vector machines to predict the age group as well as to determine the presented stimulus type (i.e., congruent, or incongruent stimulus). The classification of group membership was highly above chance level (accuracy: 55%, chance level: 17%). Early EEG responses were found to play an important role, and a grouped pattern of classification performance emerged corresponding to age structure. There was a clear cluster of individuals after retirement, i.e., misclassifications mostly occurred within this cluster. The stimulus type could be classified above chance level in ~ 95% of subjects. We identified time windows relevant for classification performance that are discussed in the context of early visual attention and conflict processing. In children and older adults, a high variability and latency of these time windows were found. We were able to demonstrate differences in neuronal dynamics at the level of individual trials. Our analysis was sensitive to mapping gross changes, e.g., at retirement age, and to differentiating components of visual attention across age groups, adding value for the diagnosis of cognitive status across the lifespan. Overall, the results highlight the use of machine learning in the study of brain activity over a lifetime.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9795904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-24DOI: 10.1186/s40708-023-00188-6
Matthew Squires, Xiaohui Tao, Soman Elangovan, Raj Gururajan, Xujuan Zhou, U Rajendra Acharya, Yuefeng Li
Informatics paradigms for brain and mental health research have seen significant advances in recent years. These developments can largely be attributed to the emergence of new technologies such as machine learning, deep learning, and artificial intelligence. Data-driven methods have the potential to support mental health care by providing more precise and personalised approaches to detection, diagnosis, and treatment of depression. In particular, precision psychiatry is an emerging field that utilises advanced computational techniques to achieve a more individualised approach to mental health care. This survey provides an overview of the ways in which artificial intelligence is currently being used to support precision psychiatry. Advanced algorithms are being used to support all phases of the treatment cycle. These systems have the potential to identify individuals suffering from mental health conditions, allowing them to receive the care they need and tailor treatments to individual patients who are mostly to benefit. Additionally, unsupervised learning techniques are breaking down existing discrete diagnostic categories and highlighting the vast disease heterogeneity observed within depression diagnoses. Artificial intelligence also provides the opportunity to shift towards evidence-based treatment prescription, moving away from existing methods based on group averages. However, our analysis suggests there are several limitations currently inhibiting the progress of data-driven paradigms in care. Significantly, none of the surveyed articles demonstrate empirically improved patient outcomes over existing methods. Furthermore, greater consideration needs to be given to uncertainty quantification, model validation, constructing interdisciplinary teams of researchers, improved access to diverse data and standardised definitions within the field. Empirical validation of computer algorithms via randomised control trials which demonstrate measurable improvement to patient outcomes are the next step in progressing models to clinical implementation.
{"title":"Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment.","authors":"Matthew Squires, Xiaohui Tao, Soman Elangovan, Raj Gururajan, Xujuan Zhou, U Rajendra Acharya, Yuefeng Li","doi":"10.1186/s40708-023-00188-6","DOIUrl":"https://doi.org/10.1186/s40708-023-00188-6","url":null,"abstract":"<p><p>Informatics paradigms for brain and mental health research have seen significant advances in recent years. These developments can largely be attributed to the emergence of new technologies such as machine learning, deep learning, and artificial intelligence. Data-driven methods have the potential to support mental health care by providing more precise and personalised approaches to detection, diagnosis, and treatment of depression. In particular, precision psychiatry is an emerging field that utilises advanced computational techniques to achieve a more individualised approach to mental health care. This survey provides an overview of the ways in which artificial intelligence is currently being used to support precision psychiatry. Advanced algorithms are being used to support all phases of the treatment cycle. These systems have the potential to identify individuals suffering from mental health conditions, allowing them to receive the care they need and tailor treatments to individual patients who are mostly to benefit. Additionally, unsupervised learning techniques are breaking down existing discrete diagnostic categories and highlighting the vast disease heterogeneity observed within depression diagnoses. Artificial intelligence also provides the opportunity to shift towards evidence-based treatment prescription, moving away from existing methods based on group averages. However, our analysis suggests there are several limitations currently inhibiting the progress of data-driven paradigms in care. Significantly, none of the surveyed articles demonstrate empirically improved patient outcomes over existing methods. Furthermore, greater consideration needs to be given to uncertainty quantification, model validation, constructing interdisciplinary teams of researchers, improved access to diverse data and standardised definitions within the field. Empirical validation of computer algorithms via randomised control trials which demonstrate measurable improvement to patient outcomes are the next step in progressing models to clinical implementation.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9743181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-07DOI: 10.1186/s40708-023-00189-5
Isabella Kahhale, Nicholas J Buser, Christopher R Madan, Jamie L Hanson
On-going, large-scale neuroimaging initiatives can aid in uncovering neurobiological causes and correlates of poor mental health, disease pathology, and many other important conditions. As projects grow in scale with hundreds, even thousands, of individual participants and scans collected, quantification of brain structures by automated algorithms is becoming the only truly tractable approach. Here, we assessed the spatial and numerical reliability for newly deployed automated segmentation of hippocampal subfields and amygdala nuclei in FreeSurfer 7. In a sample of participants with repeated structural imaging scans (N = 928), we found numerical reliability (as assessed by intraclass correlations, ICCs) was reasonable. Approximately 95% of hippocampal subfields had "excellent" numerical reliability (ICCs ≥ 0.90), while only 67% of amygdala subnuclei met this same threshold. In terms of spatial reliability, 58% of hippocampal subfields and 44% of amygdala subnuclei had Dice coefficients ≥ 0.70. Notably, multiple regions had poor numerical and/or spatial reliability. We also examined correlations between spatial reliability and person-level factors (e.g., participant age; T1 image quality). Both sex and image scan quality were related to variations in spatial reliability metrics. Examined collectively, our work suggests caution should be exercised for a few hippocampal subfields and amygdala nuclei with more variable reliability.
{"title":"Quantifying numerical and spatial reliability of hippocampal and amygdala subdivisions in FreeSurfer.","authors":"Isabella Kahhale, Nicholas J Buser, Christopher R Madan, Jamie L Hanson","doi":"10.1186/s40708-023-00189-5","DOIUrl":"https://doi.org/10.1186/s40708-023-00189-5","url":null,"abstract":"<p><p>On-going, large-scale neuroimaging initiatives can aid in uncovering neurobiological causes and correlates of poor mental health, disease pathology, and many other important conditions. As projects grow in scale with hundreds, even thousands, of individual participants and scans collected, quantification of brain structures by automated algorithms is becoming the only truly tractable approach. Here, we assessed the spatial and numerical reliability for newly deployed automated segmentation of hippocampal subfields and amygdala nuclei in FreeSurfer 7. In a sample of participants with repeated structural imaging scans (N = 928), we found numerical reliability (as assessed by intraclass correlations, ICCs) was reasonable. Approximately 95% of hippocampal subfields had \"excellent\" numerical reliability (ICCs ≥ 0.90), while only 67% of amygdala subnuclei met this same threshold. In terms of spatial reliability, 58% of hippocampal subfields and 44% of amygdala subnuclei had Dice coefficients ≥ 0.70. Notably, multiple regions had poor numerical and/or spatial reliability. We also examined correlations between spatial reliability and person-level factors (e.g., participant age; T1 image quality). Both sex and image scan quality were related to variations in spatial reliability metrics. Examined collectively, our work suggests caution should be exercised for a few hippocampal subfields and amygdala nuclei with more variable reliability.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9275921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helmet mounted display systems (HMDs) are high-performance display devices for modern aircraft. We propose a novel method combining event-related potentials (ERPs) and BubbleView to measure cognitive load under different HMD interfaces. The distribution of the subjects' attention resources is reflected by analyzing the BubbleView, and the input of the subjects' attention resources on the interface is reflected by analyzing the ERP's P3b and P2 components. The results showed that the HMD interface with more symmetry and a simple layout had less cognitive load, and subjects paid more attention to the upper portion of the interface. Combining the experimental data of ERP and BubbleView, we can obtain a more comprehensive, objective, and reliable HMD interface evaluation result. This approach has significant implications for the design of digital interfaces and can be utilized for the iterative evaluation of HMD interfaces.
{"title":"Measuring cognitive load of digital interface combining event-related potential and BubbleView.","authors":"Shaoyu Wei, Ruiling Zheng, Rui Li, Minghui Shi, Junsong Zhang","doi":"10.1186/s40708-023-00187-7","DOIUrl":"https://doi.org/10.1186/s40708-023-00187-7","url":null,"abstract":"<p><p>Helmet mounted display systems (HMDs) are high-performance display devices for modern aircraft. We propose a novel method combining event-related potentials (ERPs) and BubbleView to measure cognitive load under different HMD interfaces. The distribution of the subjects' attention resources is reflected by analyzing the BubbleView, and the input of the subjects' attention resources on the interface is reflected by analyzing the ERP's P3b and P2 components. The results showed that the HMD interface with more symmetry and a simple layout had less cognitive load, and subjects paid more attention to the upper portion of the interface. Combining the experimental data of ERP and BubbleView, we can obtain a more comprehensive, objective, and reliable HMD interface evaluation result. This approach has significant implications for the design of digital interfaces and can be utilized for the iterative evaluation of HMD interfaces.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9083118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-02DOI: 10.1186/s40708-023-00186-8
Jenish Maharjan, Anurag Garikipati, Frank A Dinenno, Madalina Ciobanu, Gina Barnes, Ella Browning, Jenna DeCurzio, Qingqing Mao, Ritankar Das
Background: Applied behavioral analysis (ABA) is regarded as the gold standard treatment for autism spectrum disorder (ASD) and has the potential to improve outcomes for patients with ASD. It can be delivered at different intensities, which are classified as comprehensive or focused treatment approaches. Comprehensive ABA targets multiple developmental domains and involves 20-40 h/week of treatment. Focused ABA targets individual behaviors and typically involves 10-20 h/week of treatment. Determining the appropriate treatment intensity involves patient assessment by trained therapists, however, the final determination is highly subjective and lacks a standardized approach. In our study, we examined the ability of a machine learning (ML) prediction model to classify which treatment intensity would be most suited individually for patients with ASD who are undergoing ABA treatment.
Methods: Retrospective data from 359 patients diagnosed with ASD were analyzed and included in the training and testing of an ML model for predicting comprehensive or focused treatment for individuals undergoing ABA treatment. Data inputs included demographics, schooling, behavior, skills, and patient goals. A gradient-boosted tree ensemble method, XGBoost, was used to develop the prediction model, which was then compared against a standard of care comparator encompassing features specified by the Behavior Analyst Certification Board treatment guidelines. Prediction model performance was assessed via area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).
Results: The prediction model achieved excellent performance for classifying patients in the comprehensive versus focused treatment groups (AUROC: 0.895; 95% CI 0.811-0.962) and outperformed the standard of care comparator (AUROC 0.767; 95% CI 0.629-0.891). The prediction model also achieved sensitivity of 0.789, specificity of 0.808, PPV of 0.6, and NPV of 0.913. Out of 71 patients whose data were employed to test the prediction model, only 14 misclassifications occurred. A majority of misclassifications (n = 10) indicated comprehensive ABA treatment for patients that had focused ABA treatment as the ground truth, therefore still providing a therapeutic benefit. The three most important features contributing to the model's predictions were bathing ability, age, and hours per week of past ABA treatment.
Conclusion: This research demonstrates that the ML prediction model performs well to classify appropriate ABA treatment plan intensity using readily available patient data. This may aid with standardizing the process for determining appropriate ABA treatments, which can facilitate initiation of the most appropriate treatment intensity for patients with ASD and improve resource allocation.
背景:应用行为分析(ABA)被认为是治疗自闭症谱系障碍(ASD)的金标准,具有改善ASD患者预后的潜力。它可以以不同的强度提供,分为综合或集中治疗方法。综合ABA针对多个发育领域,涉及20-40小时/周的治疗。集中的ABA针对个体行为,通常涉及10-20小时/周的治疗。确定适当的治疗强度需要经过训练的治疗师对患者进行评估,然而,最终的决定是高度主观的,缺乏标准化的方法。在我们的研究中,我们检查了机器学习(ML)预测模型的能力,以分类哪种治疗强度最适合接受ABA治疗的ASD患者。方法:对359例ASD患者的回顾性数据进行分析,并纳入ML模型的训练和测试,该模型用于预测接受ABA治疗的个体的综合或集中治疗。数据输入包括人口统计、学校教育、行为、技能和患者目标。使用梯度增强树集成方法XGBoost来开发预测模型,然后将其与包含行为分析师认证委员会治疗指南指定的特征的标准护理比较器进行比较。通过受试者工作特征曲线下面积(AUROC)、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)评估预测模型的性能。结果:该预测模型在综合治疗组与重点治疗组的患者分类上取得了优异的成绩(AUROC: 0.895;95% CI 0.811-0.962),优于护理标准比较(AUROC 0.767;95% ci 0.629-0.891)。预测模型的敏感性为0.789,特异性为0.808,PPV为0.6,NPV为0.913。71例患者的数据被用来测试预测模型,只有14例发生了错误分类。大多数错误分类(n = 10)表明,将集中ABA治疗作为基本事实的患者进行综合ABA治疗,因此仍然提供治疗益处。有助于模型预测的三个最重要的特征是洗澡能力,年龄和过去ABA治疗的每周时间。结论:本研究表明,ML预测模型可以很好地利用现成的患者数据对适当的ABA治疗计划强度进行分类。这可能有助于标准化确定合适的ABA治疗的过程,从而有助于为ASD患者启动最合适的治疗强度,并改善资源分配。
{"title":"Machine learning determination of applied behavioral analysis treatment plan type.","authors":"Jenish Maharjan, Anurag Garikipati, Frank A Dinenno, Madalina Ciobanu, Gina Barnes, Ella Browning, Jenna DeCurzio, Qingqing Mao, Ritankar Das","doi":"10.1186/s40708-023-00186-8","DOIUrl":"https://doi.org/10.1186/s40708-023-00186-8","url":null,"abstract":"<p><strong>Background: </strong>Applied behavioral analysis (ABA) is regarded as the gold standard treatment for autism spectrum disorder (ASD) and has the potential to improve outcomes for patients with ASD. It can be delivered at different intensities, which are classified as comprehensive or focused treatment approaches. Comprehensive ABA targets multiple developmental domains and involves 20-40 h/week of treatment. Focused ABA targets individual behaviors and typically involves 10-20 h/week of treatment. Determining the appropriate treatment intensity involves patient assessment by trained therapists, however, the final determination is highly subjective and lacks a standardized approach. In our study, we examined the ability of a machine learning (ML) prediction model to classify which treatment intensity would be most suited individually for patients with ASD who are undergoing ABA treatment.</p><p><strong>Methods: </strong>Retrospective data from 359 patients diagnosed with ASD were analyzed and included in the training and testing of an ML model for predicting comprehensive or focused treatment for individuals undergoing ABA treatment. Data inputs included demographics, schooling, behavior, skills, and patient goals. A gradient-boosted tree ensemble method, XGBoost, was used to develop the prediction model, which was then compared against a standard of care comparator encompassing features specified by the Behavior Analyst Certification Board treatment guidelines. Prediction model performance was assessed via area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).</p><p><strong>Results: </strong>The prediction model achieved excellent performance for classifying patients in the comprehensive versus focused treatment groups (AUROC: 0.895; 95% CI 0.811-0.962) and outperformed the standard of care comparator (AUROC 0.767; 95% CI 0.629-0.891). The prediction model also achieved sensitivity of 0.789, specificity of 0.808, PPV of 0.6, and NPV of 0.913. Out of 71 patients whose data were employed to test the prediction model, only 14 misclassifications occurred. A majority of misclassifications (n = 10) indicated comprehensive ABA treatment for patients that had focused ABA treatment as the ground truth, therefore still providing a therapeutic benefit. The three most important features contributing to the model's predictions were bathing ability, age, and hours per week of past ABA treatment.</p><p><strong>Conclusion: </strong>This research demonstrates that the ML prediction model performs well to classify appropriate ABA treatment plan intensity using readily available patient data. This may aid with standardizing the process for determining appropriate ABA treatments, which can facilitate initiation of the most appropriate treatment intensity for patients with ASD and improve resource allocation.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10831962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-24DOI: 10.1186/s40708-022-00183-3
Janice M Ranson, Magda Bucholc, Donald Lyall, Danielle Newby, Laura Winchester, Neil P Oxtoby, Michele Veldsman, Timothy Rittman, Sarah Marzi, Nathan Skene, Ahmad Al Khleifat, Isabelle F Foote, Vasiliki Orgeta, Andrey Kormilitzin, Ilianna Lourida, David J Llewellyn
Progress in dementia research has been limited, with substantial gaps in our knowledge of targets for prevention, mechanisms for disease progression, and disease-modifying treatments. The growing availability of multimodal data sets opens possibilities for the application of machine learning and artificial intelligence (AI) to help answer key questions in the field. We provide an overview of the state of the science, highlighting current challenges and opportunities for utilisation of AI approaches to move the field forward in the areas of genetics, experimental medicine, drug discovery and trials optimisation, imaging, and prevention. Machine learning methods can enhance results of genetic studies, help determine biological effects and facilitate the identification of drug targets based on genetic and transcriptomic information. The use of unsupervised learning for understanding disease mechanisms for drug discovery is promising, while analysis of multimodal data sets to characterise and quantify disease severity and subtype are also beginning to contribute to optimisation of clinical trial recruitment. Data-driven experimental medicine is needed to analyse data across modalities and develop novel algorithms to translate insights from animal models to human disease biology. AI methods in neuroimaging outperform traditional approaches for diagnostic classification, and although challenges around validation and translation remain, there is optimism for their meaningful integration to clinical practice in the near future. AI-based models can also clarify our understanding of the causality and commonality of dementia risk factors, informing and improving risk prediction models along with the development of preventative interventions. The complexity and heterogeneity of dementia requires an alternative approach beyond traditional design and analytical approaches. Although not yet widely used in dementia research, machine learning and AI have the potential to unlock current challenges and advance precision dementia medicine.
{"title":"Harnessing the potential of machine learning and artificial intelligence for dementia research.","authors":"Janice M Ranson, Magda Bucholc, Donald Lyall, Danielle Newby, Laura Winchester, Neil P Oxtoby, Michele Veldsman, Timothy Rittman, Sarah Marzi, Nathan Skene, Ahmad Al Khleifat, Isabelle F Foote, Vasiliki Orgeta, Andrey Kormilitzin, Ilianna Lourida, David J Llewellyn","doi":"10.1186/s40708-022-00183-3","DOIUrl":"10.1186/s40708-022-00183-3","url":null,"abstract":"<p><p>Progress in dementia research has been limited, with substantial gaps in our knowledge of targets for prevention, mechanisms for disease progression, and disease-modifying treatments. The growing availability of multimodal data sets opens possibilities for the application of machine learning and artificial intelligence (AI) to help answer key questions in the field. We provide an overview of the state of the science, highlighting current challenges and opportunities for utilisation of AI approaches to move the field forward in the areas of genetics, experimental medicine, drug discovery and trials optimisation, imaging, and prevention. Machine learning methods can enhance results of genetic studies, help determine biological effects and facilitate the identification of drug targets based on genetic and transcriptomic information. The use of unsupervised learning for understanding disease mechanisms for drug discovery is promising, while analysis of multimodal data sets to characterise and quantify disease severity and subtype are also beginning to contribute to optimisation of clinical trial recruitment. Data-driven experimental medicine is needed to analyse data across modalities and develop novel algorithms to translate insights from animal models to human disease biology. AI methods in neuroimaging outperform traditional approaches for diagnostic classification, and although challenges around validation and translation remain, there is optimism for their meaningful integration to clinical practice in the near future. AI-based models can also clarify our understanding of the causality and commonality of dementia risk factors, informing and improving risk prediction models along with the development of preventative interventions. The complexity and heterogeneity of dementia requires an alternative approach beyond traditional design and analytical approaches. Although not yet widely used in dementia research, machine learning and AI have the potential to unlock current challenges and advance precision dementia medicine.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10848945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer's disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.
{"title":"Four-way classification of Alzheimer's disease using deep Siamese convolutional neural network with triplet-loss function.","authors":"Faizal Hajamohideen, Noushath Shaffi, Mufti Mahmud, Karthikeyan Subramanian, Arwa Al Sariri, Viswan Vimbi, Abdelhamid Abdesselam","doi":"10.1186/s40708-023-00184-w","DOIUrl":"10.1186/s40708-023-00184-w","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer's disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9937523/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10769562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-13DOI: 10.1186/s40708-023-00185-9
Kirill Milintsevich, Kairit Sirts, Gaël Dias
Major Depressive Disorder (MDD) is one of the most common and comorbid mental disorders that impacts a person's day-to-day activity. In addition, MDD affects one's linguistic footprint, which is reflected by subtle changes in speech production. This allows us to use natural language processing (NLP) techniques to build a neural classifier to detect depression from speech transcripts. Typically, current NLP systems discriminate only between the depressed and non-depressed states. This approach, however, disregards the complexity of the clinical picture of depression, as different people with MDD can suffer from different sets of depression symptoms. Therefore, predicting individual symptoms can provide more fine-grained information about a person's condition. In this work, we look at the depression classification problem through the prism of the symptom network analysis approach, which shifts attention from a categorical analysis of depression towards a personalized analysis of symptom profiles. For that purpose, we trained a multi-target hierarchical regression model to predict individual depression symptoms from patient-psychiatrist interview transcripts from the DAIC-WOZ corpus. Our model achieved results on par with state-of-the-art models on both binary diagnostic classification and depression severity prediction while at the same time providing a more fine-grained overview of individual symptoms for each person. The model achieved a mean absolute error (MAE) from 0.438 to 0.830 on eight depression symptoms and showed state-of-the-art results in binary depression estimation (73.9 macro-F1) and total depression score prediction (3.78 MAE). Moreover, the model produced a symptom correlation graph that is structurally identical to the real one. The proposed symptom-based approach provides more in-depth information about the depressive condition by focusing on the individual symptoms rather than a general binary diagnosis.
{"title":"Towards automatic text-based estimation of depression through symptom prediction.","authors":"Kirill Milintsevich, Kairit Sirts, Gaël Dias","doi":"10.1186/s40708-023-00185-9","DOIUrl":"https://doi.org/10.1186/s40708-023-00185-9","url":null,"abstract":"<p><p>Major Depressive Disorder (MDD) is one of the most common and comorbid mental disorders that impacts a person's day-to-day activity. In addition, MDD affects one's linguistic footprint, which is reflected by subtle changes in speech production. This allows us to use natural language processing (NLP) techniques to build a neural classifier to detect depression from speech transcripts. Typically, current NLP systems discriminate only between the depressed and non-depressed states. This approach, however, disregards the complexity of the clinical picture of depression, as different people with MDD can suffer from different sets of depression symptoms. Therefore, predicting individual symptoms can provide more fine-grained information about a person's condition. In this work, we look at the depression classification problem through the prism of the symptom network analysis approach, which shifts attention from a categorical analysis of depression towards a personalized analysis of symptom profiles. For that purpose, we trained a multi-target hierarchical regression model to predict individual depression symptoms from patient-psychiatrist interview transcripts from the DAIC-WOZ corpus. Our model achieved results on par with state-of-the-art models on both binary diagnostic classification and depression severity prediction while at the same time providing a more fine-grained overview of individual symptoms for each person. The model achieved a mean absolute error (MAE) from 0.438 to 0.830 on eight depression symptoms and showed state-of-the-art results in binary depression estimation (73.9 macro-F1) and total depression score prediction (3.78 MAE). Moreover, the model produced a symptom correlation graph that is structurally identical to the real one. The proposed symptom-based approach provides more in-depth information about the depressive condition by focusing on the individual symptoms rather than a general binary diagnosis.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10734475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain network analysis based on structural and functional magnetic resonance imaging (MRI) is considered as an effective method for consciousness evaluation of hydrocephalus patients, which can also be applied to facilitate the ameliorative effect of lumbar cerebrospinal fluid drainage (LCFD). Automatic brain parcellation is a prerequisite for brain network construction. However, hydrocephalus images usually have large deformations and lesion erosions, which becomes challenging for ensuring effective brain parcellation works. In this paper, we develop a novel and robust method for segmenting brain regions of hydrocephalus images. Our main contribution is to design an innovative inpainting method that can amend the large deformations and lesion erosions in hydrocephalus images, and synthesize the normal brain version without injury. The synthesized images can effectively support brain parcellation tasks and lay the foundation for the subsequent brain network construction work. Specifically, the novelty of the inpainting method is that it can utilize the symmetric properties of the brain structure to ensure the quality of the synthesized results. Experiments show that the proposed brain abnormality inpainting method can effectively aid the brain network construction, and improve the CRS-R score estimation which represents the patient's consciousness states. Furthermore, the brain network analysis based on our enhanced brain parcellation method has demonstrated potential imaging biomarkers for better interpreting and understanding the recovery of consciousness in patients with secondary hydrocephalus.
{"title":"Enhanced brain parcellation via abnormality inpainting for neuroimage-based consciousness evaluation of hydrocephalus patients by lumbar drainage.","authors":"Di Zang, Xiangyu Zhao, Yuanfang Qiao, Jiayu Huo, Xuehai Wu, Zhe Wang, Zeyu Xu, Ruizhe Zheng, Zengxin Qi, Ying Mao, Lichi Zhang","doi":"10.1186/s40708-022-00181-5","DOIUrl":"10.1186/s40708-022-00181-5","url":null,"abstract":"<p><p>Brain network analysis based on structural and functional magnetic resonance imaging (MRI) is considered as an effective method for consciousness evaluation of hydrocephalus patients, which can also be applied to facilitate the ameliorative effect of lumbar cerebrospinal fluid drainage (LCFD). Automatic brain parcellation is a prerequisite for brain network construction. However, hydrocephalus images usually have large deformations and lesion erosions, which becomes challenging for ensuring effective brain parcellation works. In this paper, we develop a novel and robust method for segmenting brain regions of hydrocephalus images. Our main contribution is to design an innovative inpainting method that can amend the large deformations and lesion erosions in hydrocephalus images, and synthesize the normal brain version without injury. The synthesized images can effectively support brain parcellation tasks and lay the foundation for the subsequent brain network construction work. Specifically, the novelty of the inpainting method is that it can utilize the symmetric properties of the brain structure to ensure the quality of the synthesized results. Experiments show that the proposed brain abnormality inpainting method can effectively aid the brain network construction, and improve the CRS-R score estimation which represents the patient's consciousness states. Furthermore, the brain network analysis based on our enhanced brain parcellation method has demonstrated potential imaging biomarkers for better interpreting and understanding the recovery of consciousness in patients with secondary hydrocephalus.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10560039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-10DOI: 10.1186/s40708-022-00182-4
Changwei Gong, Xinyi Chen, Bushra Mughal, Shuqiang Wang
Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imaging (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-relevant brain regions.
{"title":"Addictive brain-network identification by spatial attention recurrent network with feature selection.","authors":"Changwei Gong, Xinyi Chen, Bushra Mughal, Shuqiang Wang","doi":"10.1186/s40708-022-00182-4","DOIUrl":"https://doi.org/10.1186/s40708-022-00182-4","url":null,"abstract":"<p><p>Addiction in the brain is associated with adaptive changes that reshape addiction-related brain regions and lead to functional abnormalities that cause a range of behavioral changes, and functional magnetic resonance imaging (fMRI) studies can reveal complex dynamic patterns of brain functional change. However, it is still a challenge to identify functional brain networks and discover region-level biomarkers between nicotine addiction (NA) and healthy control (HC) groups. To tackle it, we transform the fMRI of the rat brain into a network with biological attributes and propose a novel feature-selected framework to extract and select the features of addictive brain regions and identify these graph-level networks. In this framework, spatial attention recurrent network (SARN) is designed to capture the features with spatial and time-sequential information. And the Bayesian feature selection(BFS) strategy is adopted to optimize the model and improve classification tasks by restricting features. Our experiments on the addiction brain imaging dataset obtain superior identification performance and interpretable biomarkers associated with addiction-relevant brain regions.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10523840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}