Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.
{"title":"Cross subject emotion identification from multichannel EEG sub-bands using Tsallis entropy feature and KNN classifier.","authors":"Pragati Patel, Sivarenjani Balasubramanian, Ramesh Naidu Annavarapu","doi":"10.1186/s40708-024-00220-3","DOIUrl":"10.1186/s40708-024-00220-3","url":null,"abstract":"<p><p>Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse fields, such as brain-computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for investigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4-7 Hz), alpha-α (8-15 Hz), beta-β (16-31 Hz), gamma-γ (32-55 Hz), and the overall frequency range (0-75 Hz). These Tsallis entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Furthermore, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential avenues for improvements.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-10DOI: 10.1186/s40708-024-00219-w
Wei Pei, Yan Li, Peng Wen, Fuwen Yang, Xiaopeng Ji
Sleep stage classification is a necessary step for diagnosing sleep disorders. Generally, experts use traditional methods based on every 30 seconds (s) of the biological signals, such as electrooculograms (EOGs), electrocardiograms (ECGs), electromyograms (EMGs), and electroencephalograms (EEGs), to classify sleep stages. Recently, various state-of-the-art approaches based on a deep learning model have been demonstrated to have efficient and accurate outcomes in sleep stage classification. In this paper, a novel deep convolutional neural network (CNN) combined with a long short-time memory (LSTM) model is proposed for sleep scoring tasks. A key frequency domain feature named Mel-frequency Cepstral Coefficient (MFCC) is extracted from EEG and EMG signals. The proposed method can learn features from frequency domains on different bio-signal channels. It firstly extracts the MFCC features from multi-channel signals, and then inputs them to several convolutional layers and an LSTM layer. Secondly, the learned representations are fed to a fully connected layer and a softmax classifier for sleep stage classification. The experiments are conducted on two widely used sleep datasets, Sleep Heart Health Study (SHHS) and Vincent's University Hospital/University College Dublin Sleep Apnoea (UCDDB) to test the effectiveness of the method. The results of this study indicate that the model can perform well in the classification of sleep stages using the features of the 2-dimensional (2D) MFCC feature. The advantage of using the feature is that it can be used to input a two-dimensional data stream, which can be used to retain information about each sleep stage. Using 2D data streams can reduce the time it takes to retrieve the data from the one-dimensional stream. Another advantage of this method is that it eliminates the need for deep layers, which can help improve the performance of the model. For instance, by reducing the number of layers, our seven layers of the model structure takes around 400 s to train and test 100 subjects in the SHHS1 dataset. Its best accuracy and Cohen's kappa are 82.35% and 0.75 for the SHHS dataset, and 73.07% and 0.63 for the UCDDB dataset, respectively.
{"title":"An automatic method using MFCC features for sleep stage classification.","authors":"Wei Pei, Yan Li, Peng Wen, Fuwen Yang, Xiaopeng Ji","doi":"10.1186/s40708-024-00219-w","DOIUrl":"10.1186/s40708-024-00219-w","url":null,"abstract":"<p><p>Sleep stage classification is a necessary step for diagnosing sleep disorders. Generally, experts use traditional methods based on every 30 seconds (s) of the biological signals, such as electrooculograms (EOGs), electrocardiograms (ECGs), electromyograms (EMGs), and electroencephalograms (EEGs), to classify sleep stages. Recently, various state-of-the-art approaches based on a deep learning model have been demonstrated to have efficient and accurate outcomes in sleep stage classification. In this paper, a novel deep convolutional neural network (CNN) combined with a long short-time memory (LSTM) model is proposed for sleep scoring tasks. A key frequency domain feature named Mel-frequency Cepstral Coefficient (MFCC) is extracted from EEG and EMG signals. The proposed method can learn features from frequency domains on different bio-signal channels. It firstly extracts the MFCC features from multi-channel signals, and then inputs them to several convolutional layers and an LSTM layer. Secondly, the learned representations are fed to a fully connected layer and a softmax classifier for sleep stage classification. The experiments are conducted on two widely used sleep datasets, Sleep Heart Health Study (SHHS) and Vincent's University Hospital/University College Dublin Sleep Apnoea (UCDDB) to test the effectiveness of the method. The results of this study indicate that the model can perform well in the classification of sleep stages using the features of the 2-dimensional (2D) MFCC feature. The advantage of using the feature is that it can be used to input a two-dimensional data stream, which can be used to retain information about each sleep stage. Using 2D data streams can reduce the time it takes to retrieve the data from the one-dimensional stream. Another advantage of this method is that it eliminates the need for deep layers, which can help improve the performance of the model. For instance, by reducing the number of layers, our seven layers of the model structure takes around 400 s to train and test 100 subjects in the SHHS1 dataset. Its best accuracy and Cohen's kappa are 82.35% and 0.75 for the SHHS dataset, and 73.07% and 0.63 for the UCDDB dataset, respectively.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-04DOI: 10.1186/s40708-024-00218-x
Kaida Ning, Pascale B. Cannon, Jiawei Yu, Srinesh Shenoi, Lu Wang, Joydeep Sarkar
Different aspects of cognitive functions are affected in patients with Alzheimer’s disease. To date, little is known about the associations between features from brain-imaging and individual Alzheimer’s disease (AD)-related cognitive functional changes. In addition, how these associations differ among different imaging modalities is unclear. Here, we trained and investigated 3D convolutional neural network (CNN) models that predicted sub-scores of the 13-item Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS–Cog13) based on MRI and FDG–PET brain-imaging data. Analysis of the trained network showed that each key ADAS–Cog13 sub-score was associated with a specific set of brain features within an imaging modality. Furthermore, different association patterns were observed in MRI and FDG–PET modalities. According to MRI, cognitive sub-scores were typically associated with structural changes of subcortical regions, including amygdala, hippocampus, and putamen. Comparatively, according to FDG–PET, cognitive functions were typically associated with metabolic changes of cortical regions, including the cingulated gyrus, occipital cortex, middle front gyrus, precuneus cortex, and the cerebellum. These findings brought insights into complex AD etiology and emphasized the importance of investigating different brain-imaging modalities.
{"title":"3D convolutional neural networks uncover modality-specific brain-imaging predictors for Alzheimer’s disease sub-scores","authors":"Kaida Ning, Pascale B. Cannon, Jiawei Yu, Srinesh Shenoi, Lu Wang, Joydeep Sarkar","doi":"10.1186/s40708-024-00218-x","DOIUrl":"https://doi.org/10.1186/s40708-024-00218-x","url":null,"abstract":"Different aspects of cognitive functions are affected in patients with Alzheimer’s disease. To date, little is known about the associations between features from brain-imaging and individual Alzheimer’s disease (AD)-related cognitive functional changes. In addition, how these associations differ among different imaging modalities is unclear. Here, we trained and investigated 3D convolutional neural network (CNN) models that predicted sub-scores of the 13-item Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS–Cog13) based on MRI and FDG–PET brain-imaging data. Analysis of the trained network showed that each key ADAS–Cog13 sub-score was associated with a specific set of brain features within an imaging modality. Furthermore, different association patterns were observed in MRI and FDG–PET modalities. According to MRI, cognitive sub-scores were typically associated with structural changes of subcortical regions, including amygdala, hippocampus, and putamen. Comparatively, according to FDG–PET, cognitive functions were typically associated with metabolic changes of cortical regions, including the cingulated gyrus, occipital cortex, middle front gyrus, precuneus cortex, and the cerebellum. These findings brought insights into complex AD etiology and emphasized the importance of investigating different brain-imaging modalities.","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.1186/s40708-023-00215-6
Ilaria Gigi, Rosa Senatore, Angelo Marcelli
The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements control, via their influence on thalamocortical projections. BG disorders, namely Parkinson's disease (PD), characterized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputational model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromising motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.
{"title":"The onset of motor learning impairments in Parkinson's disease: a computational investigation.","authors":"Ilaria Gigi, Rosa Senatore, Angelo Marcelli","doi":"10.1186/s40708-023-00215-6","DOIUrl":"10.1186/s40708-023-00215-6","url":null,"abstract":"<p><p>The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements control, via their influence on thalamocortical projections. BG disorders, namely Parkinson's disease (PD), characterized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputational model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromising motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-14DOI: 10.1186/s40708-023-00214-7
Muhammad Atta Othman Ahmed, Yasser Abdel Satar, Eed M. Darwish, Elnomery A. Zanaty
In the field of audiology, achieving accurate discrimination of auditory impairments remains a formidable challenge. Conditions such as deafness and tinnitus exert a substantial impact on patients’ overall quality of life, emphasizing the urgent need for precise and efficient classification methods. This study introduces an innovative approach, utilizing Multi-View Brain Network data acquired from three distinct cohorts: 51 deaf patients, 54 with tinnitus, and 42 normal controls. Electroencephalogram (EEG) recording data were meticulously collected, focusing on 70 electrodes attached to an end-to-end key with 10 regions of interest (ROI). This data is synergistically integrated with machine learning algorithms. To tackle the inherently high-dimensional nature of brain connectivity data, principal component analysis (PCA) is employed for feature reduction, enhancing interpretability. The proposed approach undergoes evaluation using ensemble learning techniques, including Random Forest, Extra Trees, Gradient Boosting, and CatBoost. The performance of the proposed models is scrutinized across a comprehensive set of metrics, encompassing cross-validation accuracy (CVA), precision, recall, F1-score, Kappa, and Matthews correlation coefficient (MCC). The proposed models demonstrate statistical significance and effectively diagnose auditory disorders, contributing to early detection and personalized treatment, thereby enhancing patient outcomes and quality of life. Notably, they exhibit reliability and robustness, characterized by high Kappa and MCC values. This research represents a significant advancement in the intersection of audiology, neuroimaging, and machine learning, with transformative implications for clinical practice and care.
{"title":"Synergistic integration of Multi-View Brain Networks and advanced machine learning techniques for auditory disorders diagnostics","authors":"Muhammad Atta Othman Ahmed, Yasser Abdel Satar, Eed M. Darwish, Elnomery A. Zanaty","doi":"10.1186/s40708-023-00214-7","DOIUrl":"https://doi.org/10.1186/s40708-023-00214-7","url":null,"abstract":"In the field of audiology, achieving accurate discrimination of auditory impairments remains a formidable challenge. Conditions such as deafness and tinnitus exert a substantial impact on patients’ overall quality of life, emphasizing the urgent need for precise and efficient classification methods. This study introduces an innovative approach, utilizing Multi-View Brain Network data acquired from three distinct cohorts: 51 deaf patients, 54 with tinnitus, and 42 normal controls. Electroencephalogram (EEG) recording data were meticulously collected, focusing on 70 electrodes attached to an end-to-end key with 10 regions of interest (ROI). This data is synergistically integrated with machine learning algorithms. To tackle the inherently high-dimensional nature of brain connectivity data, principal component analysis (PCA) is employed for feature reduction, enhancing interpretability. The proposed approach undergoes evaluation using ensemble learning techniques, including Random Forest, Extra Trees, Gradient Boosting, and CatBoost. The performance of the proposed models is scrutinized across a comprehensive set of metrics, encompassing cross-validation accuracy (CVA), precision, recall, F1-score, Kappa, and Matthews correlation coefficient (MCC). The proposed models demonstrate statistical significance and effectively diagnose auditory disorders, contributing to early detection and personalized treatment, thereby enhancing patient outcomes and quality of life. Notably, they exhibit reliability and robustness, characterized by high Kappa and MCC values. This research represents a significant advancement in the intersection of audiology, neuroimaging, and machine learning, with transformative implications for clinical practice and care.","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1186/s40708-023-00217-4
Sara Saponaro, Francesca Lizzi, Giacomo Serra, Francesca Mainas, Piernicola Oliva, Alessia Giuliano, Sara Calderoni, Alessandra Retico
Background: The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD).
Material and methods: We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework.
Results: The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain.
Conclusions: Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.
{"title":"Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders.","authors":"Sara Saponaro, Francesca Lizzi, Giacomo Serra, Francesca Mainas, Piernicola Oliva, Alessia Giuliano, Sara Calderoni, Alessandra Retico","doi":"10.1186/s40708-023-00217-4","DOIUrl":"10.1186/s40708-023-00217-4","url":null,"abstract":"<p><strong>Background: </strong>The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD).</p><p><strong>Material and methods: </strong>We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework.</p><p><strong>Results: </strong>The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain.</p><p><strong>Conclusions: </strong>Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.1186/s40708-023-00216-5
Changhong Jing, Hongzhi Kuai, Hiroki Matsumoto, Tomoharu Yamaguchi, Iman Yi Liao, Shuqiang Wang
Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.
{"title":"Addiction-related brain networks identification via Graph Diffusion Reconstruction Network.","authors":"Changhong Jing, Hongzhi Kuai, Hiroki Matsumoto, Tomoharu Yamaguchi, Iman Yi Liao, Shuqiang Wang","doi":"10.1186/s40708-023-00216-5","DOIUrl":"10.1186/s40708-023-00216-5","url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10774517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139379124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-05DOI: 10.1186/s40708-023-00212-9
Loren Koçillari, Marco Celotto, Nikolas A Francis, Shoutik Mukherjee, Behtash Babadi, Patrick O Kanold, Stefano Panzeri
Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.
功能连通性测量在促进我们了解信息如何在大脑中传输和处理方面发挥了核心作用。传统上,这些研究主要集中在识别冗余功能连通性上,即确定不同部位或神经元的活动何时相似。然而,最近的研究强调了识别协同连通性的重要性,即连通性所产生的信息并不单独包含在任何一个部位或神经元中。在这里,我们测量了小鼠初级听觉皮层神经元之间在声音辨别任务中的冗余和协同功能连接。具体来说,我们测量了同时记录钙成像的神经元之间的定向功能连接。我们使用格兰杰因果关系作为功能连通性的衡量标准。然后,我们使用部分信息分解(Partial Information Decomposition)来量化功能连接或功能未连接的神经元对所携带的关于声音的冗余和协同信息量。我们发现,与未连接的神经元对相比,功能连接的神经元对所呈现的声音冗余信息比例更高,协同信息比例更低,这表明它们的功能连接主要是冗余的。此外,当小鼠做出正确或错误的知觉判别时,协同和冗余都同时存在。然而,与不正确的行为选择相比,正确行为选择中的冗余度要高得多(无论是绝对值还是占神经元对可用信息总量的比例),而正确行为选择中的协同性绝对值要比不正确行为选择中的协同性高,但相对值要比不正确行为选择中的协同性低。此外,冗余比例能可靠地预测知觉分辨,而协同比例则没有额外的预测能力。这些结果表明,冗余对正确的知觉判别有重要贡献,这可能是由于冗余在信息传播方面的优势,同时也表明协同作用在正确判别过程中提高了信息水平。
{"title":"Behavioural relevance of redundant and synergistic stimulus information between functionally connected neurons in mouse auditory cortex.","authors":"Loren Koçillari, Marco Celotto, Nikolas A Francis, Shoutik Mukherjee, Behtash Babadi, Patrick O Kanold, Stefano Panzeri","doi":"10.1186/s40708-023-00212-9","DOIUrl":"10.1186/s40708-023-00212-9","url":null,"abstract":"<p><p>Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-03DOI: 10.1186/s40708-023-00213-8
Puskar Bhattarai, Ahmed Taha, Bhavin Soni, Deepa S Thakuri, Erin Ritter, Ganesh B Chand
Mild cognitive impairment (MCI) is a transitional stage between normal aging and early Alzheimer's disease (AD). The presence of extracellular amyloid-beta (Aβ) in Braak regions suggests a connection with cognitive dysfunction in MCI/AD. Investigating the multivariate predictive relationships between regional Aβ biomarkers and cognitive function can aid in the early detection and prevention of AD. We introduced machine learning approaches to estimate cognitive dysfunction from regional Aβ biomarkers and identify the Aβ-related dominant brain regions involved with cognitive impairment. We employed Aβ biomarkers and cognitive measurements from the same individuals to train support vector regression (SVR) and artificial neural network (ANN) models and predict cognitive performance solely based on Aβ biomarkers on the test set. To identify Aβ-related dominant brain regions involved in cognitive prediction, we built the local interpretable model-agnostic explanations (LIME) model. We found elevated Aβ in MCI compared to controls and a stronger correlation between Aβ and cognition, particularly in Braak stages III-IV and V-VII (p < 0.05) biomarkers. Both SVR and ANN, especially ANN, showed strong predictive relationships between regional Aβ biomarkers and cognitive impairment (p < 0.05). LIME integrated with ANN showed that the parahippocampal gyrus, inferior temporal gyrus, and hippocampus were the most decisive Braak regions for predicting cognitive decline. Consistent with previous findings, this new approach suggests relationships between Aβ biomarkers and cognitive impairment. The proposed analytical framework can estimate cognitive impairment from Braak staging Aβ biomarkers and delineate the dominant brain regions collectively involved in AD pathophysiology.
轻度认知障碍(MCI)是介于正常衰老和早期阿尔茨海默病(AD)之间的过渡阶段。细胞外淀粉样蛋白β (a β)在Braak区域的存在表明与MCI/AD的认知功能障碍有关。研究区域Aβ生物标志物与认知功能之间的多变量预测关系有助于AD的早期发现和预防。我们引入机器学习方法,从区域Aβ生物标志物估计认知功能障碍,并确定与Aβ相关的主导脑区域参与认知障碍。我们使用来自同一个体的Aβ生物标志物和认知测量值来训练支持向量回归(SVR)和人工神经网络(ANN)模型,并仅基于测试集上的Aβ生物标志物来预测认知表现。为了确定与a β相关的主导脑区参与认知预测,我们建立了局部可解释模型-不可知论解释(LIME)模型。我们发现,与对照组相比,MCI中a β升高,a β与认知之间存在更强的相关性,特别是在Braak III-IV期和V-VII期
{"title":"Predicting cognitive dysfunction and regional hubs using Braak staging amyloid-beta biomarkers and machine learning.","authors":"Puskar Bhattarai, Ahmed Taha, Bhavin Soni, Deepa S Thakuri, Erin Ritter, Ganesh B Chand","doi":"10.1186/s40708-023-00213-8","DOIUrl":"10.1186/s40708-023-00213-8","url":null,"abstract":"<p><p>Mild cognitive impairment (MCI) is a transitional stage between normal aging and early Alzheimer's disease (AD). The presence of extracellular amyloid-beta (Aβ) in Braak regions suggests a connection with cognitive dysfunction in MCI/AD. Investigating the multivariate predictive relationships between regional Aβ biomarkers and cognitive function can aid in the early detection and prevention of AD. We introduced machine learning approaches to estimate cognitive dysfunction from regional Aβ biomarkers and identify the Aβ-related dominant brain regions involved with cognitive impairment. We employed Aβ biomarkers and cognitive measurements from the same individuals to train support vector regression (SVR) and artificial neural network (ANN) models and predict cognitive performance solely based on Aβ biomarkers on the test set. To identify Aβ-related dominant brain regions involved in cognitive prediction, we built the local interpretable model-agnostic explanations (LIME) model. We found elevated Aβ in MCI compared to controls and a stronger correlation between Aβ and cognition, particularly in Braak stages III-IV and V-VII (p < 0.05) biomarkers. Both SVR and ANN, especially ANN, showed strong predictive relationships between regional Aβ biomarkers and cognitive impairment (p < 0.05). LIME integrated with ANN showed that the parahippocampal gyrus, inferior temporal gyrus, and hippocampus were the most decisive Braak regions for predicting cognitive decline. Consistent with previous findings, this new approach suggests relationships between Aβ biomarkers and cognitive impairment. The proposed analytical framework can estimate cognitive impairment from Braak staging Aβ biomarkers and delineate the dominant brain regions collectively involved in AD pathophysiology.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-25DOI: 10.1186/s40708-023-00210-x
Giacomo Serra, Francesca Mainas, Bruno Golosio, Alessandra Retico, Piernicola Oliva
Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires datasets of appropriate size for training, which in neuroimaging are typically obtained collecting data from multiple acquisition centers. However, analyzing large multicentric datasets can introduce bias due to differences between acquisition centers. ComBat harmonization is commonly used to address batch effects, but it can lead to data leakage when the entire dataset is used to estimate model parameters. In this study, structural and functional MRI data from the Autism Brain Imaging Data Exchange (ABIDE) collection were used to classify subjects with Autism Spectrum Disorders (ASD) compared to Typical Developing controls (TD). We compared the classical approach (external harmonization) in which harmonization is performed before train/test split, with an harmonization calculated only on the train set (internal harmonization), and with the dataset with no harmonization. The results showed that harmonization using the whole dataset achieved higher discrimination performance, while non-harmonized data and harmonization using only the train set showed similar results, for both structural and connectivity features. We also showed that the higher performances of the external harmonization are not due to larger size of the sample for the estimation of the model and hence these improved performance with the entire dataset may be ascribed to data leakage. In order to prevent this leakage, it is recommended to define the harmonization model solely using the train set.
{"title":"Effect of data harmonization of multicentric dataset in ASD/TD classification.","authors":"Giacomo Serra, Francesca Mainas, Bruno Golosio, Alessandra Retico, Piernicola Oliva","doi":"10.1186/s40708-023-00210-x","DOIUrl":"10.1186/s40708-023-00210-x","url":null,"abstract":"<p><p>Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires datasets of appropriate size for training, which in neuroimaging are typically obtained collecting data from multiple acquisition centers. However, analyzing large multicentric datasets can introduce bias due to differences between acquisition centers. ComBat harmonization is commonly used to address batch effects, but it can lead to data leakage when the entire dataset is used to estimate model parameters. In this study, structural and functional MRI data from the Autism Brain Imaging Data Exchange (ABIDE) collection were used to classify subjects with Autism Spectrum Disorders (ASD) compared to Typical Developing controls (TD). We compared the classical approach (external harmonization) in which harmonization is performed before train/test split, with an harmonization calculated only on the train set (internal harmonization), and with the dataset with no harmonization. The results showed that harmonization using the whole dataset achieved higher discrimination performance, while non-harmonized data and harmonization using only the train set showed similar results, for both structural and connectivity features. We also showed that the higher performances of the external harmonization are not due to larger size of the sample for the estimation of the model and hence these improved performance with the entire dataset may be ascribed to data leakage. In order to prevent this leakage, it is recommended to define the harmonization model solely using the train set.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"32"},"PeriodicalIF":0.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138441425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}