Supramolecular assemblies, composed of molecular building blocks held together by reversible noncovalent interactions, offer a versatile toolbox to create well-defined architectures. Among these interactions, metal-ligand coordination is of particular interest for its directionality and controllability, enabling the construction of stimuli-responsive materials to external stimulations such as light, pH, chemicals and mechanical force. However, dual stimuli-controlled supramolecular assembly of silver(I) with pyridiyl ligand remain largely unexplored. Herein, we present the synthesis and behavior of a novel dipyridine-functionalized stiff-stilbene StPy in coordination with silver(I) ions, forming stimuli-responsive supramolecular assemblies. StPy exhibits good photochemical properties under UV-light in common organic solvents including DMSO, ACN, and THF. Upon mixing with AgBF4, StPy coordinates with Ag(I) in a 1:1 ratio and assembles into metallosupramolecular architectures, confirmed by UV–vis spectroscopy and Job's plot analysis. Under UV-light irradiation, the StPy undergoes isomerization, modulating its metal-ligand interactions and transforming the StPy-Ag assemblies from vesicles to micelles. Additionally, the addition of TBACl induces disassembly, forming silver chloride nanoparticles. This dual photo- and chemical-modulated system provides a simple strategy to create advanced supramolecular coordination complexes and smart materials.