Herein, we intend to develop the facile and scalable synthesis of graphene oxide (GO) using an improved Hummer's method by optimizing the temperatures at 55 °C (GO-1) and 40°C (GO-2) without using a reducing agent. The structural and morphology of the exfoliated graphene oxide were characterized using XRD, FTIR, RAMAN, SEM with EDAX, and TEM. The structural and morphological investigation indicates that GO-1 exhibits significantly fewer surface defects on the graphene oxide basal plane than GO-2. Moreover, the temperature of 55 °C, produces very few GO layers while achieving a significantly high yield, thereby boosting scalability. The electrochemical performance of GO-1 and GO-2 was performed in KOH electrolyte using three electrode configurations. GO-1 achieves a specific capacitance of approximately 134 F/g higher than GO-2 due to the impregnation of electrolytic ions inside the exfoliated structure. This work will give new insight into developing the prototype to control time consumption for the production of a few layers of GO with a minimal surface defect during the exfoliation process.
{"title":"Optimized hummer's method for graphene oxide: Structural properties and electrochemical applications","authors":"Saraswathi M Vanumamalai , Sabarinathan Venkatachalam , Nagarajan Srinivasan , Gnanaprakasam Dhinakar","doi":"10.1016/j.jorganchem.2025.123577","DOIUrl":"10.1016/j.jorganchem.2025.123577","url":null,"abstract":"<div><div>Herein, we intend to develop the facile and scalable synthesis of graphene oxide (GO) using an improved Hummer's method by optimizing the temperatures at 55 °C (GO-1) and 40°C (GO-2) without using a reducing agent. The structural and morphology of the exfoliated graphene oxide were characterized using XRD, FTIR, RAMAN, SEM with EDAX, and TEM. The structural and morphological investigation indicates that GO-1 exhibits significantly fewer surface defects on the graphene oxide basal plane than GO-2. Moreover, the temperature of 55 °C, produces very few GO layers while achieving a significantly high yield, thereby boosting scalability. The electrochemical performance of GO-1 and GO-2 was performed in KOH electrolyte using three electrode configurations. GO-1 achieves a specific capacitance of approximately 134 F/g higher than GO-2 due to the impregnation of electrolytic ions inside the exfoliated structure. This work will give new insight into developing the prototype to control time consumption for the production of a few layers of GO with a minimal surface defect during the exfoliation process.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1031 ","pages":"Article 123577"},"PeriodicalIF":2.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-19DOI: 10.1016/j.jorganchem.2025.123574
Ganesh M. Kumbhar, Ashwini S. Patil, Sanjay S. Chavan
A series of Cu(I)/Fe(II) hybrid complexes with the formula [Cu(Fc-CHNC9H6N)(PPh3)2]X (2–5) and [Cu(Fc-CHNC9H6N)(dppe)]X(6–9) [where Fc=Ferrocene, PPh3 = triphenylphosphine, dppe = 1,2-bis(diphenylphosphino)ethane, and X = NO3-, ClO4-, BF4-, and PF6-] have been prepared and characterized on the basis of elemental analyses, IR, UV–visible, 1H NMR,13P NMR and Mass spectral studies. Thermal stability of 2–5 and 6–9 has been investigated by using thermogravimetric analysis (TGA). Cyclic voltammetry of the all complexes revealed quasireversible redox behavior for the Cu(I)/Cu(II) and Fe(II)/Fe(III) pairs and it is sensitive to phosphine ligand. Red shifted emission in all complexes attributed to ligand-ligand charge transfer (LLCT), metal-ligand charge transfer (MLCT), or both and vary markedly with size of the counter anion and nature of phosphine ligand. All the complexes were tested for catalytic activity and it reveals that complexes with dppe ancillary ligand shows greater activity for the CC coupling of phenylacetylene with aryl iodides as compared to PPh3 ligand. Additionally, the counter ions significantly affected the yield of the coupling product.
{"title":"Synthesis, characterization, luminescence and catalytic properties of heterobimetallic quinoline based Cu(I)/Fe(II) hybrid complexes","authors":"Ganesh M. Kumbhar, Ashwini S. Patil, Sanjay S. Chavan","doi":"10.1016/j.jorganchem.2025.123574","DOIUrl":"10.1016/j.jorganchem.2025.123574","url":null,"abstract":"<div><div>A series of Cu(I)/Fe(II) hybrid complexes with the formula [Cu(Fc-CH<img>NC<sub>9</sub>H<sub>6</sub>N)(PPh<sub>3</sub>)<sub>2</sub>]X <strong>(2–5)</strong> and [Cu(Fc-CH<img>NC<sub>9</sub>H<sub>6</sub>N)(dppe)]X<strong>(6–9)</strong> [where Fc=Ferrocene, PPh<sub>3</sub> = triphenylphosphine, dppe = 1,2-bis(diphenylphosphino)ethane, and <em>X</em> = NO<sub>3</sub><sup>-</sup>, ClO<sub>4</sub><sup>-</sup>, BF<sub>4</sub><sup>-</sup>, and PF<sub>6</sub><sup>-</sup>] have been prepared and characterized on the basis of elemental analyses, IR, UV–visible, <sup>1</sup>H NMR,<sup>13</sup>P NMR and Mass spectral studies. Thermal stability of <strong>2–5</strong> and <strong>6–9</strong> has been investigated by using thermogravimetric analysis (TGA). Cyclic voltammetry of the all complexes revealed quasireversible redox behavior for the Cu(I)/Cu(II) and Fe(II)/Fe(III) pairs and it is sensitive to phosphine ligand. Red shifted emission in all complexes attributed to ligand-ligand charge transfer (LLCT), metal-ligand charge transfer (MLCT), or both and vary markedly with size of the counter anion and nature of phosphine ligand. All the complexes were tested for catalytic activity and it reveals that complexes with dppe ancillary ligand shows greater activity for the C<img>C coupling of phenylacetylene with aryl iodides as compared to PPh<sub>3</sub> ligand. Additionally, the counter ions significantly affected the yield of the coupling product.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1031 ","pages":"Article 123574"},"PeriodicalIF":2.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The preparation of gold(I) complexes with benzothiazolin-2-ylidene ligands is described herein. These previously unreported complexes can be conveniently prepared from the corresponding benzothiazolium precursors using the so-called weak base route and have been spectroscopically and structurally characterized. Combined structural and computational analysis confirms enhanced π-accepting character of benzothiazolin-2-ylidine ligands in comparison with conventional (benz)imidazolin-based NHCs. The obtained complexes are reasonably stable and have been used as precursors for ligand-stabilized gold nanoparticles by controlled reduction with potassium hydride. The reaction produces 3 nm sized gold nanoparticles that are stable in solution as well as in the solid state and can be characterized both spectroscopically (NMR, UV–Vis) and by transmission electron microscopy (TEM).
{"title":"Benzothiazolin-2-ylidene gold(I) complexes as precursors for gold nanoparticles","authors":"Matteo Bevilacqua , Giulia Saggiotti , Piermaria Pinter , Bernd Morgenstern , Dominik Munz , Andrea Biffis","doi":"10.1016/j.jorganchem.2025.123575","DOIUrl":"10.1016/j.jorganchem.2025.123575","url":null,"abstract":"<div><div>The preparation of gold(I) complexes with benzothiazolin-2-ylidene ligands is described herein. These previously unreported complexes can be conveniently prepared from the corresponding benzothiazolium precursors using the so-called weak base route and have been spectroscopically and structurally characterized. Combined structural and computational analysis confirms enhanced π-accepting character of benzothiazolin-2-ylidine ligands in comparison with conventional (benz)imidazolin-based NHCs. The obtained complexes are reasonably stable and have been used as precursors for ligand-stabilized gold nanoparticles by controlled reduction with potassium hydride. The reaction produces 3 nm sized gold nanoparticles that are stable in solution as well as in the solid state and can be characterized both spectroscopically (NMR, UV–Vis) and by transmission electron microscopy (TEM).</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123575"},"PeriodicalIF":2.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metal-organic frameworks (MOFs) are promising materials for photocatalytic applications, particularly in degrading organic dyes in wastewater. This review focuses on zinc-based MOFs (Zn-MOFs), emphasizing their synthesis, characterization, and photocatalytic mechanisms in pollutant degradation. A detailed examination of Zn-MOFs photocatalytic degradation mechanisms highlights critical steps, including light absorption, electron-hole pair formation, charge separation, and reactive radical generation, which collectively drive efficient pollutant breakdown. The unique structural and chemical properties of Zn-MOFs, such as their high surface area, tunable bandgap, and coordinated action of organic linkers and metal nodes, are explored in the context of their photocatalytic efficiency. Key synthetic methods–hydrothermal, solvothermal, and microwave-assisted techniques–are discussed alongside characterization approaches like X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, and UV–Vis spectroscopy, which elucidate the structural, surface, and optical properties of Zn-MOFs. Factors influencing photocatalytic performance, such as dye concentration, pH, photocatalyst dosage, and temperature, are analyzed to optimize their application. A comparative analysis with other MOFs underscores the strengths and limitations of Zn-MOFs, while the conclusion addresses current challenges and future directions, emphasizing their potential in sustainable water purification and environmental remediation.
{"title":"Innovative pathways in Zn-based metal-organic frameworks: Synthesis, characterization, and photocatalytic efficiency for organic dye degradation","authors":"Nadhir N.A. Jafar , Rafid Jihad Albadr , Waam Mohammed Taher , Vicky Jain , Subhash Chandra , Rekha M M , Mayank Kundlas , Girish Chandra Sharma , Anita Devi , Mariem Alwan , Mahmood Jasem Jawad , Hiba Mushtaq , Khursheed Muzammil , Aseel Smerat","doi":"10.1016/j.jorganchem.2025.123572","DOIUrl":"10.1016/j.jorganchem.2025.123572","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are promising materials for photocatalytic applications, particularly in degrading organic dyes in wastewater. This review focuses on zinc-based MOFs (Zn-MOFs), emphasizing their synthesis, characterization, and photocatalytic mechanisms in pollutant degradation. A detailed examination of Zn-MOFs photocatalytic degradation mechanisms highlights critical steps, including light absorption, electron-hole pair formation, charge separation, and reactive radical generation, which collectively drive efficient pollutant breakdown. The unique structural and chemical properties of Zn-MOFs, such as their high surface area, tunable bandgap, and coordinated action of organic linkers and metal nodes, are explored in the context of their photocatalytic efficiency. Key synthetic methods–hydrothermal, solvothermal, and microwave-assisted techniques–are discussed alongside characterization approaches like X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, and UV–Vis spectroscopy, which elucidate the structural, surface, and optical properties of Zn-MOFs. Factors influencing photocatalytic performance, such as dye concentration, pH, photocatalyst dosage, and temperature, are analyzed to optimize their application. A comparative analysis with other MOFs underscores the strengths and limitations of Zn-MOFs, while the conclusion addresses current challenges and future directions, emphasizing their potential in sustainable water purification and environmental remediation.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123572"},"PeriodicalIF":2.1,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-15DOI: 10.1016/j.jorganchem.2025.123568
Li Xiang, Beibei Mao, Dan Lv, Wensheng Fu
Two new bis(β-diketiminato) ligands, bridged by flexible linkers (1,2-ethylene and 1,3-propylene), were designed and synthesized. Using these ligands, divalent ytterbium complex L1Yb (1; L1 = [μ-(1,2–CH2CH2)][N(Me)CH2CH2NC(Me)CHC(Me)NDipp]22−, Dipp = 2,6-(iPr)2C6H3) and divalent samarium complexes L1Sm (2) and L2Sm (3; L2 = [μ-(1,3-CH2CH2CH2)][N(Me)CH2CH2NC(Me)CHC(Me)NDipp]22−) were synthesized and structurally characterized. The divalent samarium complexes 2 and 3 exhibited efficient catalytic activity with 0.1 mol% loading in the guanylation reactions. A systematic study revealed that the reactivity of these complexes is influenced by both the central metal and the nature of the bridging ligands.
{"title":"Divalent rare-earth metal complexes supported by new alkylene bridged bis(β-diketiminato) ligands: Synthesis, structure and catalytic guanylation of carbodiimides","authors":"Li Xiang, Beibei Mao, Dan Lv, Wensheng Fu","doi":"10.1016/j.jorganchem.2025.123568","DOIUrl":"10.1016/j.jorganchem.2025.123568","url":null,"abstract":"<div><div>Two new bis(<em>β</em>-diketiminato) ligands, bridged by flexible linkers (1,2-ethylene and 1,3-propylene), were designed and synthesized. Using these ligands, divalent ytterbium complex <strong>L1Yb</strong> (<strong>1</strong>; L1 = [<em>μ</em>-(1,2–CH<sub>2</sub>CH<sub>2</sub>)][N(Me)CH<sub>2</sub>CH<sub>2</sub>NC(Me)CHC(Me)NDipp]<sub>2</sub><sup>2−</sup>, Dipp = 2,6-(<em><sup>i</sup></em>Pr)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) and divalent samarium complexes <strong>L1Sm</strong> (<strong>2</strong>) and <strong>L2Sm</strong> (<strong>3</strong>; L2 = [<em>μ</em>-(1,3-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>)][N(Me)CH<sub>2</sub>CH<sub>2</sub>NC(Me)CHC(Me)NDipp]<sub>2</sub><sup>2−</sup>) were synthesized and structurally characterized. The divalent samarium complexes <strong>2</strong> and <strong>3</strong> exhibited efficient catalytic activity with 0.1 mol% loading in the guanylation reactions. A systematic study revealed that the reactivity of these complexes is influenced by both the central metal and the nature of the bridging ligands.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123568"},"PeriodicalIF":2.1,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.1016/j.jorganchem.2025.123573
Abolfazl Bezaatpour , Mandana Amiri , Heinrich Vocke , Anise Akhundi , Michael Wark
In this research work, α-Fe2O3/CeBi2O2CO3-Pd was prepared using hydrothermal method and characterized using different physical techniques. It was used as photocatalyst for the CC Suzuki-Miyaura coupling reactions between halobenzene and phenylboronic acid with electron-withdrawing and electro-donating groups on the reactants. The photocatalytic CC Suzuki-Miyaura coupling reaction was carried out in the mixed solvent (H2O/EtOH, 1:1) at room temperature under visible light irradiation. The results showed that, the presence of the electron-withdrawing groups (-CF3) on iodobenzene as well as those of electron-donating groups (-CH3) on the arylboronic acids leads to excellent conversion (100 %) in 10 min, whereas the opposite; i.e., electron-donating groups (-CH3) on iodobenzene and electron-withdrawing groups (-CF3) on the arylboronic acids lowers the conversion drastically to only 77 % in 4 h. The prepared catalyst has a good stability that does not make a significant change in the efficiency of the catalyst after 6th runs.
{"title":"α-Fe2O3/CeBi2O2CO3 decorated with Pd as an efficient photo-assisted catalyst for Suzuki-Miyaura coupling (SMC) under visible light irradiation","authors":"Abolfazl Bezaatpour , Mandana Amiri , Heinrich Vocke , Anise Akhundi , Michael Wark","doi":"10.1016/j.jorganchem.2025.123573","DOIUrl":"10.1016/j.jorganchem.2025.123573","url":null,"abstract":"<div><div>In this research work, α-Fe<sub>2</sub>O<sub>3</sub>/CeBi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>-Pd was prepared using hydrothermal method and characterized using different physical techniques. It was used as photocatalyst for the C<img>C Suzuki-Miyaura coupling reactions between halobenzene and phenylboronic acid with electron-withdrawing and electro-donating groups on the reactants. The photocatalytic C<img>C Suzuki-Miyaura coupling reaction was carried out in the mixed solvent (H<sub>2</sub>O/EtOH, 1:1) at room temperature under visible light irradiation. The results showed that, the presence of the electron-withdrawing groups (-CF<sub>3</sub>) on iodobenzene as well as those of electron-donating groups (-CH<sub>3</sub>) on the arylboronic acids leads to excellent conversion (100 %) in 10 min, whereas the opposite; i.e., electron-donating groups (-CH<sub>3</sub>) on iodobenzene and electron-withdrawing groups (-CF<sub>3</sub>) on the arylboronic acids lowers the conversion drastically to only 77 % in 4 h. The prepared catalyst has a good stability that does not make a significant change in the efficiency of the catalyst after 6th runs.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123573"},"PeriodicalIF":2.1,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13DOI: 10.1016/j.jorganchem.2025.123569
Dana A. Kader , Mohammed Koksh Sidiq , Salam Ghafour Taher , Dara Muhammed Aziz
The Suzuki-Miyaura cross-coupling reaction is a landmark in synthetic chemistry for its effective ability to form carbon-carbon bonds. This palladium-catalyzed reaction, which couples boronic acids with halides or pseudohalides, has drastically simplified the synthesis of complex organic compounds. It is already playing a major role in the production of pharmaceutical products as well as agricultural chemicals and biomaterials, thus significantly changing modern industry by promoting cleaner, more sustainable ways to operate chemical plants. In this paper, we provide a comprehensive overview of recent developments in palladium-catalyzed systems from 2020 to 2024, focusing on reaction parameters, and ligand variants, shedding light on their impact on yield, selectivity, kinetics, and purity. Our findings about the manifold potential of the Suzuki-Miyaura reaction to enhance reaction conditions and catalyst design underscore its flexibility. That makes possible a wide variety of uses.
{"title":"Recent advances in palladium-catalyzed Suzuki-Miyaura cross-coupling reactions: Exploration of catalytic systems, reaction parameters, and ligand influences: A review","authors":"Dana A. Kader , Mohammed Koksh Sidiq , Salam Ghafour Taher , Dara Muhammed Aziz","doi":"10.1016/j.jorganchem.2025.123569","DOIUrl":"10.1016/j.jorganchem.2025.123569","url":null,"abstract":"<div><div>The Suzuki-Miyaura cross-coupling reaction is a landmark in synthetic chemistry for its effective ability to form carbon-carbon bonds. This palladium-catalyzed reaction, which couples boronic acids with halides or pseudohalides, has drastically simplified the synthesis of complex organic compounds. It is already playing a major role in the production of pharmaceutical products as well as agricultural chemicals and biomaterials, thus significantly changing modern industry by promoting cleaner, more sustainable ways to operate chemical plants. In this paper, we provide a comprehensive overview of recent developments in palladium-catalyzed systems from 2020 to 2024, focusing on reaction parameters, and ligand variants, shedding light on their impact on yield, selectivity, kinetics, and purity. Our findings about the manifold potential of the Suzuki-Miyaura reaction to enhance reaction conditions and catalyst design underscore its flexibility. That makes possible a wide variety of uses.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123569"},"PeriodicalIF":2.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13DOI: 10.1016/j.jorganchem.2025.123571
Jie Xu , Ceyao Yang , Qi Yu
Cancer immunotherapy has been emerging as promising modality to treat malignant tumors, but the solid tumors with the “immune-cold” or immune-excluded nature induce the presence of the individual therapy discrepancy among patients. Pyroptosis, launched by gasdermin proteins, is favorable to trigger membrane perforation followed by the release of pro-inflammatory cytokines, which further induces antitumor immunity. Significantly, organometallic-based structures have been recently developed and exhibited the capacity of the pyroptotic activation through the acute redox homeostasis, which has been rising as an effective strategy for cancer immunotherapy. Up to date, few review has focused on this field. Therefore, this review provides a concentrated summary and discussion of the most recent works about organometallic-based pyroptotic activation. We hope that this review will be helpful to the readership who are interested in learning more about pyroptosis and the development of metal based pyroptotic inducers to efficiently augment the therapeutic efficacy.
{"title":"Organometallic-based pyroptotic inducers for cancer immunotherapy","authors":"Jie Xu , Ceyao Yang , Qi Yu","doi":"10.1016/j.jorganchem.2025.123571","DOIUrl":"10.1016/j.jorganchem.2025.123571","url":null,"abstract":"<div><div>Cancer immunotherapy has been emerging as promising modality to treat malignant tumors, but the solid tumors with the “immune-cold” or immune-excluded nature induce the presence of the individual therapy discrepancy among patients. Pyroptosis, launched by gasdermin proteins, is favorable to trigger membrane perforation followed by the release of pro-inflammatory cytokines, which further induces antitumor immunity. Significantly, organometallic-based structures have been recently developed and exhibited the capacity of the pyroptotic activation through the acute redox homeostasis, which has been rising as an effective strategy for cancer immunotherapy. Up to date, few review has focused on this field. Therefore, this review provides a concentrated summary and discussion of the most recent works about organometallic-based pyroptotic activation. We hope that this review will be helpful to the readership who are interested in learning more about pyroptosis and the development of metal based pyroptotic inducers to efficiently augment the therapeutic efficacy.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123571"},"PeriodicalIF":2.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.1016/j.jorganchem.2025.123567
Mintu Das , Aparajita Mukherjee , Anannya Saha , Samaresh Bhattacharya
In this paper we report the successful utilization of ruthenium(0) for phenolic OH followed by aryl CH bond activations leading to the formation of ruthenium-hydrido and cycloruthenated complexes; and catalytic efficiency of these complexes towards transfer-hydrogenation (TH) of selected substrates. Reaction of [Ru0(CO)3(PPh3)2] with 2-(arylazo)phenol (L-R; R = OCH3, CH3, H, Cl and NO2) in refluxing toluene affords two products: a Ru-hydrido complex (depicted as 1-R) formed via activation of the phenolic OH bond; and a cycloruthenated complex (depicted as 2-R) via successive phenolic OH and aryl CH bond activations. The formation mechanism of the two types of complexes was probed with DFT calculations, which revealed that initial phenolic OH bond activation by Ru(0) center produces 1-R. Then 1-R converts, via absorption of thermal energy provided by the refluxing solvent, into its geometrical isomer with change in mutual disposition of the coordinated carbonyl and hydride. Finally, aryl CH bond activation takes place, assisted by the coordinated hydride, to form the cycloruthenated complex 2-R via elimination of molecular hydrogen. Exclusive formation of 1-R or 2-R complexes could also be achieved by carrying out the synthetic reaction respectively in refluxing acetone and ortho-xylene. Crystal structures of selected members from both the 1-R and 2-R families have been determined by X-ray diffraction method. The hydrido (1-R) complexes were found to efficiently catalyze TH of aryl/alkyl aldehydes and ketones to the corresponding alcohols, using 2-propanol as the provider of hydrogen. A solvent coordinated hydrido species (A), generated in situ via displacement of a PPh3 from 1-R by 2-propanol, is believed to function as the catalytically active species. The cycloruthenated (2-R) complexes, which do not contain any Ru-H moiety in them, are also found to catalyze similar TH with equal efficiency. Through electronic spectral studies it has been realized that the same catalytically active Ru-hydrido species (A) is generated in situ from the 2-R complexes via 2-propanol assisted cleavage of the Ru-C bond.
{"title":"Utilization of ruthenium(0) for σ-bond activation: Formation of organoruthenium complexes and emergence of their catalytic activity via in situ Ru-C bond cleavage","authors":"Mintu Das , Aparajita Mukherjee , Anannya Saha , Samaresh Bhattacharya","doi":"10.1016/j.jorganchem.2025.123567","DOIUrl":"10.1016/j.jorganchem.2025.123567","url":null,"abstract":"<div><div>In this paper we report the successful utilization of ruthenium(0) for phenolic O<img>H followed by aryl C<img>H bond activations leading to the formation of ruthenium-hydrido and cycloruthenated complexes; and catalytic efficiency of these complexes towards transfer-hydrogenation (TH) of selected substrates. Reaction of [Ru<sup>0</sup>(CO)<sub>3</sub>(PPh<sub>3</sub>)<sub>2</sub>] with 2-(arylazo)phenol (<strong>L-R</strong>; <em>R</em> = OCH<sub>3</sub>, CH<sub>3</sub>, H, Cl and NO<sub>2</sub>) in refluxing toluene affords two products: a Ru-hydrido complex (depicted as <strong>1-R</strong>) formed via activation of the phenolic O<img>H bond; and a cycloruthenated complex (depicted as <strong>2-R</strong>) via successive phenolic O<img>H and aryl C<img>H bond activations. The formation mechanism of the two types of complexes was probed with DFT calculations, which revealed that initial phenolic O<img>H bond activation by Ru(0) center produces <strong>1-R</strong>. Then <strong>1-R</strong> converts, via absorption of thermal energy provided by the refluxing solvent, into its geometrical isomer with change in mutual disposition of the coordinated carbonyl and hydride. Finally, aryl C<img>H bond activation takes place, assisted by the coordinated hydride, to form the cycloruthenated complex <strong>2-R</strong> via elimination of molecular hydrogen. Exclusive formation of <strong>1-R</strong> or <strong>2-R</strong> complexes could also be achieved by carrying out the synthetic reaction respectively in refluxing acetone and <em>ortho</em>-xylene. Crystal structures of selected members from both the <strong>1-R</strong> and <strong>2-R</strong> families have been determined by X-ray diffraction method. The hydrido (<strong>1-R</strong>) complexes were found to efficiently catalyze TH of aryl/alkyl aldehydes and ketones to the corresponding alcohols, using 2-propanol as the provider of hydrogen. A solvent coordinated hydrido species (<strong>A</strong>), generated <em>in situ</em> via displacement of a PPh<sub>3</sub> from <strong>1-R</strong> by 2-propanol, is believed to function as the catalytically active species. The cycloruthenated (<strong>2-R</strong>) complexes, which do not contain any Ru-H moiety in them, are also found to catalyze similar TH with equal efficiency. Through electronic spectral studies it has been realized that the same catalytically active Ru-hydrido species (<strong>A</strong>) is generated <em>in situ</em> from the <strong>2-R</strong> complexes via 2-propanol assisted cleavage of the Ru-C bond.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123567"},"PeriodicalIF":2.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143463414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12DOI: 10.1016/j.jorganchem.2025.123570
Zahra Nasresfahani
Nitrogen-doped mesoporous carbon containing Ni nanoparticles (Ni/NOMC) were prepared and thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersion X-ray spectroscopy, and N2 adsorption-desorption analysis. The prepared Ni/NOMC composite was a highly efficient catalyst for direct C- and N- alkylation of ketones and amines with alcohols under hydrogen-borrowing conditions. Based on this protocol, a broad range of ketones and amines could be efficiently alkylated with a set of primary alcohols to obtain their corresponding products in good to excellent isolated yields. Furthermore, this catalytic system could be applied to synthesize quinoline derivatives using 2-aminobenzyl alcohol as an alkylating agent. Satisfyingly, the Ni/NOMC catalyst reused up to 6 runs without significant loss of activities.
{"title":"Ni nanoparticle/Nitrogen-doped ordered mesoporous carbon as catalyst for C- and N-alkylation of ketones and amines with primary alcohols","authors":"Zahra Nasresfahani","doi":"10.1016/j.jorganchem.2025.123570","DOIUrl":"10.1016/j.jorganchem.2025.123570","url":null,"abstract":"<div><div>Nitrogen-doped mesoporous carbon containing Ni nanoparticles (Ni/N<img>OMC) were prepared and thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersion X-ray spectroscopy, and N<sub>2</sub> adsorption-desorption analysis. The prepared Ni/N<img>OMC composite was a highly efficient catalyst for direct C- and N- alkylation of ketones and amines with alcohols under hydrogen-borrowing conditions. Based on this protocol, a broad range of ketones and amines could be efficiently alkylated with a set of primary alcohols to obtain their corresponding products in good to excellent isolated yields. Furthermore, this catalytic system could be applied to synthesize quinoline derivatives using 2-aminobenzyl alcohol as an alkylating agent. Satisfyingly, the Ni/N<img>OMC catalyst reused up to 6 runs without significant loss of activities.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1031 ","pages":"Article 123570"},"PeriodicalIF":2.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}