首页 > 最新文献

Journal of Photochemistry and Photobiology最新文献

英文 中文
Enhanced visible light photocatalytic reduction of Cr (VI) by Bi2WO6 nanosheet/CuFe2O4 nanofiber heterojunctions Bi2WO6纳米片/CuFe2O4纳米纤维异质结增强可见光催化还原Cr (VI
IF 3.261 Pub Date : 2023-04-01 DOI: 10.1016/j.jpap.2023.100166
Makiyyu Abdullahi Musa , Hong Shao , Da Xu , Feng Sun , Xiangting Dong , Raba'ah Syahidah Azis , Adamu Yunusa Ugya , Hadiza Abdullahi Ari

Heterojunction formation is among the important approaches to improve visible light activity of photocatalysts, to achieve cheaper and more sustainable pollutant removal, at larger scale. In this study, Bi2WO6 NS/x% CuFe2O4 NF (x = 1, 2, 5 and 10) composites were prepared using electrospinning and hydrothermal synthesis, to achieve improved photocatalytic Cr (VI) removal under visible light. The effects of the composite formation on their structural, optical and photocatalytic properties were studied. Pure CuFe2O4 and Bi2WO6 phases were achieved, as reflected by X-ray diffraction (XRD) analysis, with some variations in peak parameters in the Bi2WO6 NS/CuFe2O4 NF composites, which confirmed the incorporation of the CuFe2O4 NFs into the Bi2WO4 NS. From photoluminescence studies, lower emission peaks were observed in the Bi2WO6 NS/CuFe2O4 NF composites than that in pure Bi2WO6 NS, indicating the achievement of suppressed recombination of charge carriers in the composites. Hence, Cr (VI) removal rate was significantly improved with the Bi2WO4 NS/ CuFe2O4 NF composite formation, where each of them shows higher activity than both Bi2WO6 NS and CuFe2O4 NF. The highest removal rates of 90.35% and 96.04% were achieved with the sample Bi2WO4 NS/2% CuFe2O4 NF, after 60 and 120 min of visible light irradiations respectively.

异质结的形成是提高光催化剂可见光活性,实现更廉价、更可持续、更大规模去除污染物的重要途径之一。本研究采用静电纺丝和水热合成法制备了Bi2WO6 NS/x% CuFe2O4 NF (x = 1,2,5和10)复合材料,在可见光下实现了改进的光催化去除Cr (VI)。研究了复合结构对其结构、光学性能和光催化性能的影响。通过x射线衍射(XRD)分析,得到了纯净的CuFe2O4和Bi2WO6相,并且在Bi2WO6 NS/CuFe2O4 NF复合材料中峰参数发生了一些变化,这证实了CuFe2O4 NFs存在于Bi2WO4 NS中。光致发光研究发现,与纯Bi2WO6 NS相比,Bi2WO6 NS/CuFe2O4 NF复合材料的发射峰更低,表明复合材料中载流子的复合得到抑制。因此,Bi2WO4 NS/ CuFe2O4 NF复合材料对Cr (VI)的去除率显著提高,其活性均高于Bi2WO6 NS和CuFe2O4 NF。以Bi2WO4 NS/2% CuFe2O4 NF处理60 min和120 min,去除率最高,分别为90.35%和96.04%。
{"title":"Enhanced visible light photocatalytic reduction of Cr (VI) by Bi2WO6 nanosheet/CuFe2O4 nanofiber heterojunctions","authors":"Makiyyu Abdullahi Musa ,&nbsp;Hong Shao ,&nbsp;Da Xu ,&nbsp;Feng Sun ,&nbsp;Xiangting Dong ,&nbsp;Raba'ah Syahidah Azis ,&nbsp;Adamu Yunusa Ugya ,&nbsp;Hadiza Abdullahi Ari","doi":"10.1016/j.jpap.2023.100166","DOIUrl":"https://doi.org/10.1016/j.jpap.2023.100166","url":null,"abstract":"<div><p>Heterojunction formation is among the important approaches to improve visible light activity of photocatalysts, to achieve cheaper and more sustainable pollutant removal, at larger scale. In this study, Bi<sub>2</sub>WO<sub>6</sub> NS/x% CuFe<sub>2</sub>O<sub>4</sub> NF (<em>x</em> = 1, 2, 5 and 10) composites were prepared using electrospinning and hydrothermal synthesis, to achieve improved photocatalytic Cr (VI) removal under visible light. The effects of the composite formation on their structural, optical and photocatalytic properties were studied. Pure CuFe<sub>2</sub>O<sub>4</sub> and Bi<sub>2</sub>WO<sub>6</sub> phases were achieved, as reflected by X-ray diffraction (XRD) analysis, with some variations in peak parameters in the Bi<sub>2</sub>WO<sub>6</sub> NS/CuFe<sub>2</sub>O<sub>4</sub> NF composites, which confirmed the incorporation of the CuFe<sub>2</sub>O<sub>4</sub> NFs into the Bi<sub>2</sub>WO<sub>4</sub> NS. From photoluminescence studies, lower emission peaks were observed in the Bi<sub>2</sub>WO<sub>6</sub> NS/CuFe<sub>2</sub>O<sub>4</sub> NF composites than that in pure Bi<sub>2</sub>WO<sub>6</sub> NS, indicating the achievement of suppressed recombination of charge carriers in the composites. Hence, Cr (VI) removal rate was significantly improved with the Bi<sub>2</sub>WO<sub>4</sub> NS/ CuFe<sub>2</sub>O<sub>4</sub> NF composite formation, where each of them shows higher activity than both Bi<sub>2</sub>WO<sub>6</sub> NS and CuFe<sub>2</sub>O<sub>4</sub> NF. The highest removal rates of 90.35% and 96.04% were achieved with the sample Bi<sub>2</sub>WO<sub>4</sub> NS/2% CuFe<sub>2</sub>O<sub>4</sub> NF, after 60 and 120 min of visible light irradiations respectively.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"14 ","pages":"Article 100166"},"PeriodicalIF":3.261,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3272689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO UV sensor photoresponse enhancement by coating method optimization 镀膜法优化ZnO UV传感器光响应增强
IF 3.261 Pub Date : 2023-04-01 DOI: 10.1016/j.jpap.2023.100171
Mindaugas Ilickas , Mantas Marčinskas , Domantas Peckus , Rasa Mardosaitė , Brigita Abakevičienė , Tomas Tamulevičius , Simas Račkauskas

Modern high-performance photodetector research is driven by the need to simultaneously improve multiple parameters, but also fit the decreasing size of electronics and maintain low production price.  Here, we demonstrated how our synthesized ZnO tetrapod (ZnO-T) nanostructure was deposited on electrodes with variating gap by four coating methods including drop casting, microdrop casting, spray coating and slot-die coating with the same thickness. Optimizing the inter-electrode gap and coating method the record IUV/IDark ratio per unit area value of 8.73 × 106 was obtained. The fastest rise time 0.78 s and fastest decay time 0.94 s were obtained by slot-die coated sensors. High photoresponse of ZnO-Ts, the inter-electrode gap size influences formation of ZnO-T microstructure during coating process and morphology influence on photoresponse was explained. We demonstrate that even with the same optimized ZnO-T nanostructures photoresponse can be improved by 2 orders of magnitude. Our work shows the importance of coating morphology and inter-electrode gap optimization.

现代高性能光电探测器的研究是由同时提高多个参数的需要驱动的,同时还要适应电子器件尺寸的不断减小和保持较低的生产价格。本文通过滴镀、微滴镀、喷涂和槽模涂覆四种方法,将合成的ZnO四足体(ZnO- t)纳米结构沉积在具有不同间隙的电极上。通过优化电极间隙和镀膜方法,获得了单位面积IUV/IDark比值为8.73 × 106的记录值。槽模涂层传感器的最快上升时间为0.78 s,最快衰减时间为0.94 s。阐述了ZnO-T薄膜的高光响应特性,电极间隙大小影响涂层过程中ZnO-T微观结构的形成以及形貌对光响应的影响。我们证明,即使使用相同的优化ZnO-T纳米结构,光响应也可以提高2个数量级。我们的工作显示了涂层形态和电极间隙优化的重要性。
{"title":"ZnO UV sensor photoresponse enhancement by coating method optimization","authors":"Mindaugas Ilickas ,&nbsp;Mantas Marčinskas ,&nbsp;Domantas Peckus ,&nbsp;Rasa Mardosaitė ,&nbsp;Brigita Abakevičienė ,&nbsp;Tomas Tamulevičius ,&nbsp;Simas Račkauskas","doi":"10.1016/j.jpap.2023.100171","DOIUrl":"https://doi.org/10.1016/j.jpap.2023.100171","url":null,"abstract":"<div><p>Modern high-performance photodetector research is driven by the need to simultaneously improve multiple parameters, but also fit the decreasing size of electronics and maintain low production price.  Here, we demonstrated how our synthesized ZnO tetrapod (ZnO-T) nanostructure was deposited on electrodes with variating gap by four coating methods including drop casting, microdrop casting, spray coating and slot-die coating with the same thickness. Optimizing the inter-electrode gap and coating method the record <em>I<sub>UV</sub>/I<sub>Dark</sub></em> ratio per unit area value of 8.73 × 10<sup>6</sup> was obtained. The fastest rise time 0.78 s and fastest decay time 0.94 s were obtained by slot-die coated sensors. High photoresponse of ZnO-Ts, the inter-electrode gap size influences formation of ZnO-T microstructure during coating process and morphology influence on photoresponse was explained. We demonstrate that even with the same optimized ZnO-T nanostructures photoresponse can be improved by 2 orders of magnitude. Our work shows the importance of coating morphology and inter-electrode gap optimization.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"14 ","pages":"Article 100171"},"PeriodicalIF":3.261,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3272690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of opsins and light or heat activated transient receptor potential ion channels in the mechanisms of photobiomodulation and infrared therapy 视蛋白和光或热激活的瞬时受体电位离子通道在光生物调节和红外治疗机制中的作用
IF 3.261 Pub Date : 2023-02-01 DOI: 10.1016/j.jpap.2023.100160
Sulbha K. Sharma , Sakshi Sardana , Michael R. Hamblin

Photobiomodulation (otherwise known as low level light therapy) is an emerging approach for treating many diseases and conditions such as pain, inflammation, wound healing, brain disorders, hair regrowth etc. The light used in this therapy generally lies in the red and near-infrared spectral regions. Despite many positive studies for treating different conditions, this therapy still faces some skepticism, which has prevented its widespread adoption in clinics. The main reasons behind this skepticism are the lack of comprehensive information about the molecular, cellular, and tissular mechanisms of action, which underpin the positive effects of photobiomodulation. Moreover, there is also another therapeutic application using longer wavelength infrared radiation, involving either infrared saunas or heat lamps which are powered by electricity, as well as infrared emitting textiles and garments which are solely powered by the wearer's own body heat. In recent years, much knowledge has been gained about the mechanism of action underlying these treatments, which will be summarized in this review. There are three broad classes of primary chromophores, which have so far been identified. One is mitochondrial cytochromes (including cytochrome c oxidase), another is opsins and light or heat-sensitive calcium ion channels, and a third is nanostructured water clusters. Light sensitive ion channels are activated by the absorption of light by the chromophore proteins, opsin-3 and opsin-4, while mitochondrial chromophores are activated by red or near-infra red (NIR) light up to about 850 nm. However NIR light at 980 nm or longer wavelengths can activate transient receptor potential (TRP) ion channels, probably after being absorbed by nanostructured water clusters. Heat-activated TRP channels undergo a conformational change triggered by only small temperature changes. Here we will discuss the role of opsins and light or heat activated TRP channels in the mechanism of photobiomodulation and infrared therapy.

光生物调节(也被称为低水平光疗法)是一种新兴的方法,用于治疗许多疾病和条件,如疼痛,炎症,伤口愈合,脑部疾病,头发再生等。在这种治疗中使用的光通常位于红色和近红外光谱区域。尽管在治疗不同疾病方面有许多积极的研究,但这种疗法仍然面临一些质疑,这阻碍了它在诊所的广泛采用。这种怀疑背后的主要原因是缺乏关于分子、细胞和组织作用机制的全面信息,这些机制支撑着光生物调节的积极作用。此外,还有另一种使用较长波长的红外辐射的治疗应用,包括由电力供电的红外桑拿或热灯,以及仅由穿戴者自身热量供电的红外发射纺织品和服装。近年来,人们对这些治疗方法的作用机制有了很多了解,本文将对此进行综述。到目前为止已经确定的原发色团有三大类。一种是线粒体细胞色素(包括细胞色素c氧化酶),另一种是视蛋白和对光或热敏的钙离子通道,第三种是纳米结构的水簇。光敏离子通道被发色团蛋白,视蛋白-3和视蛋白-4的光吸收激活,而线粒体发色团被高达850 nm的红光或近红外(NIR)光激活。然而,980 nm或更长的近红外光可能在被纳米结构的水团吸收后激活瞬时受体电位(TRP)离子通道。热激活TRP通道仅由微小的温度变化触发构象变化。本文将讨论视蛋白和光或热激活的TRP通道在光生物调节和红外治疗中的作用。
{"title":"Role of opsins and light or heat activated transient receptor potential ion channels in the mechanisms of photobiomodulation and infrared therapy","authors":"Sulbha K. Sharma ,&nbsp;Sakshi Sardana ,&nbsp;Michael R. Hamblin","doi":"10.1016/j.jpap.2023.100160","DOIUrl":"https://doi.org/10.1016/j.jpap.2023.100160","url":null,"abstract":"<div><p>Photobiomodulation (otherwise known as low level light therapy) is an emerging approach for treating many diseases and conditions such as pain, inflammation, wound healing, brain disorders, hair regrowth etc. The light used in this therapy generally lies in the red and near-infrared spectral regions. Despite many positive studies for treating different conditions, this therapy still faces some skepticism, which has prevented its widespread adoption in clinics. The main reasons behind this skepticism are the lack of comprehensive information about the molecular, cellular, and tissular mechanisms of action, which underpin the positive effects of photobiomodulation. Moreover, there is also another therapeutic application using longer wavelength infrared radiation, involving either infrared saunas or heat lamps which are powered by electricity, as well as infrared emitting textiles and garments which are solely powered by the wearer's own body heat. In recent years, much knowledge has been gained about the mechanism of action underlying these treatments, which will be summarized in this review. There are three broad classes of primary chromophores, which have so far been identified. One is mitochondrial cytochromes (including cytochrome c oxidase), another is opsins and light or heat-sensitive calcium ion channels, and a third is nanostructured water clusters. Light sensitive ion channels are activated by the absorption of light by the chromophore proteins, opsin-3 and opsin-4, while mitochondrial chromophores are activated by red or near-infra red (NIR) light up to about 850 nm. However NIR light at 980 nm or longer wavelengths can activate transient receptor potential (TRP) ion channels, probably after being absorbed by nanostructured water clusters. Heat-activated TRP channels undergo a conformational change triggered by only small temperature changes. Here we will discuss the role of opsins and light or heat activated TRP channels in the mechanism of photobiomodulation and infrared therapy.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100160"},"PeriodicalIF":3.261,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3459385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Müller glial cell photosensitivity: A novel function bringing higher complexity to vertebrate retinal physiology 神经胶质细胞光敏性:一种新的功能,给脊椎动物视网膜生理带来更高的复杂性
IF 3.261 Pub Date : 2023-02-01 DOI: 10.1016/j.jpap.2023.100162
Natalia A. Marchese , Maximiliano N. Ríos , Mario E. Guido

The retina of vertebrates is responsible for detecting and capturing ambient light for image and non-image forming (NIF) functions through diverse projections to the brain which regulate visual processing, pupillary light responses, photic synchronization of circadian rhythms and suppression of pineal melatonin, among others. For this, vertebrates have retained through evolution at least two sets of photoreceptors specialized primarily in such visual and NIF tasks: visual photoreceptors cones and rods responsible for day/night vision, and intrinsically photosensitive retinal ganglion cells (ipRGC) together with horizontal cells in some vertebrates, expressing melanopsin (Opn4). Interestingly, Opn4 as well as encephalopsin (Opn3) and neuropsin (Opn5), responding to blue and UV light, respectively, are expressed in the inner retina and command light detection in the blue range of the visible spectra; they are responsible for a number of NIF functions still lacking characterization. Though most retinal photoreceptors are derived from ciliary or neuronal progenitor cells, in recent years Müller glial cells (MCs), the most abundant retinal glial cell type, have been shown to express different blue opsins (Opn3 and Opn5) and the photoisomerase retinal G protein-coupled receptor (RGR), and to respond directly to light. MCs display different essential functions to maintain the homeostasis and cell survival of the whole retina, contributing to glutamate metabolism and chromophore recycling. The novel photoreceptive capacity of MCs, mainly in the blue region, offers several highly intriguing possibilities that increase the complexity levels for light detection in the retina and its light-activated circuits, calling for further investigation. The goal of the present review is to discuss the state of the art of research on the principal macroglial cells in the retina, focusing mainly on the novel photic responses driven by MCs, the biochemical mechanisms triggered after light stimulation and their putative functions and implications.

脊椎动物的视网膜负责检测和捕获环境光,以实现图像和非图像形成(NIF)功能,通过向大脑的各种投影来调节视觉处理、瞳孔光反应、昼夜节律的光同步和松果体褪黑激素的抑制等。为此,脊椎动物在进化过程中保留了至少两套主要用于视觉和NIF任务的光感受器:负责昼夜视觉的视锥细胞和视杆细胞,以及一些脊椎动物的内在光敏视网膜神经节细胞(ipRGC)和水平细胞,表达黑视素(Opn4)。有趣的是,Opn4以及脑视蛋白(Opn3)和神经视蛋白(Opn5)分别在视网膜内部表达,并在可见光谱的蓝色范围内进行光检测;它们负责许多仍缺乏表征的NIF功能。虽然大多数视网膜光感受器来源于睫状体或神经元祖细胞,但近年来研究表明,最丰富的视网膜神经胶质细胞类型神经胶质细胞(MCs)表达不同的蓝色视蛋白(Opn3和Opn5)和光异构酶视网膜G蛋白偶联受体(RGR),并直接对光作出反应。MCs在维持整个视网膜的稳态和细胞存活中发挥着不同的基本功能,参与谷氨酸代谢和发色团循环。主要在蓝色区域的MCs的新光感受能力提供了几个非常有趣的可能性,增加了视网膜及其光激活电路中光探测的复杂性,需要进一步研究。本文就视网膜中主要的大胶质细胞的研究现状作一综述,重点介绍由MCs驱动的新型光反应、光刺激后引发的生化机制及其可能的功能和意义。
{"title":"Müller glial cell photosensitivity: A novel function bringing higher complexity to vertebrate retinal physiology","authors":"Natalia A. Marchese ,&nbsp;Maximiliano N. Ríos ,&nbsp;Mario E. Guido","doi":"10.1016/j.jpap.2023.100162","DOIUrl":"https://doi.org/10.1016/j.jpap.2023.100162","url":null,"abstract":"<div><p>The retina of vertebrates is responsible for detecting and capturing ambient light for image and non-image forming (NIF) functions through diverse projections to the brain which regulate visual processing, pupillary light responses, photic synchronization of circadian rhythms and suppression of pineal melatonin, among others. For this, vertebrates have retained through evolution at least two sets of photoreceptors specialized primarily in such visual and NIF tasks: visual photoreceptors cones and rods responsible for day/night vision, and intrinsically photosensitive retinal ganglion cells (ipRGC) together with horizontal cells in some vertebrates, expressing melanopsin (Opn4). Interestingly, Opn4 as well as encephalopsin (Opn3) and neuropsin (Opn5), responding to blue and UV light, respectively, are expressed in the inner retina and command light detection in the blue range of the visible spectra; they are responsible for a number of NIF functions still lacking characterization. Though most retinal photoreceptors are derived from ciliary or neuronal progenitor cells, in recent years Müller glial cells (MCs), the most abundant retinal glial cell type, have been shown to express different blue opsins (Opn3 and Opn5) and the photoisomerase retinal G protein-coupled receptor (RGR), and to respond directly to light. MCs display different essential functions to maintain the homeostasis and cell survival of the whole retina, contributing to glutamate metabolism and chromophore recycling. The novel photoreceptive capacity of MCs, mainly in the blue region, offers several highly intriguing possibilities that increase the complexity levels for light detection in the retina and its light-activated circuits, calling for further investigation. The goal of the present review is to discuss the state of the art of research on <strong>the principal macroglial cells in the retina,</strong> focusing mainly on the novel photic responses driven by MCs, the biochemical mechanisms triggered after light stimulation and their putative functions and implications.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100162"},"PeriodicalIF":3.261,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3459386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The endocannabinoid system in the visual process 视觉过程中的内源性大麻素系统
IF 3.261 Pub Date : 2023-02-01 DOI: 10.1016/j.jpap.2022.100159
Susana J. Pasquaré , Estefanía Chamorro-Aguirre , Virginia L. Gaveglio

An increasing number of articles have been published in recent years on the role of the endocannabinoid system (ECS) in different cellular processes. Here we review and discuss findings on the ECS in visual processing and present the structure of the retina. We focus on the photoreceptor cell and the events that occur in the phototransduction process, considering the conformational light-induced changes in rhodopsin and in particular its chromophore (11-cis retinal). Advances in the distribution and function of the endocannabinoid system in the retina with special reference to its function in the physiological light process are also addressed, as is the relationship between rhodopsin, retinal pathologies and the ECS.

近年来,越来越多的文章发表了关于内源性大麻素系统(ECS)在不同细胞过程中的作用。在此,我们回顾并讨论了ECS在视觉处理中的发现,并介绍了视网膜的结构。我们专注于光感受器细胞和光传导过程中发生的事件,考虑到视紫质的构象光诱导变化,特别是其发色团(11-顺式视网膜)。本文还介绍了内源性大麻素系统在视网膜中的分布和功能的研究进展,特别是其在生理光过程中的功能,以及视紫红质、视网膜病理和ECS之间的关系。
{"title":"The endocannabinoid system in the visual process","authors":"Susana J. Pasquaré ,&nbsp;Estefanía Chamorro-Aguirre ,&nbsp;Virginia L. Gaveglio","doi":"10.1016/j.jpap.2022.100159","DOIUrl":"https://doi.org/10.1016/j.jpap.2022.100159","url":null,"abstract":"<div><p>An increasing number of articles have been published in recent years on the role of the endocannabinoid system (ECS) in different cellular processes. Here we review and discuss findings on the ECS in visual processing and present the structure of the retina. We focus on the photoreceptor cell and the events that occur in the phototransduction process, considering the conformational light-induced changes in rhodopsin and in particular its chromophore (11-<em>cis</em> retinal). Advances in the distribution and function of the endocannabinoid system in the retina with special reference to its function in the physiological light process are also addressed, as is the relationship between rhodopsin, retinal pathologies and the ECS.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100159"},"PeriodicalIF":3.261,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3143688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Photodynamic therapy for glioblastoma: A light at the end of the tunnel 胶质母细胞瘤的光动力疗法:隧道尽头的光
IF 3.261 Pub Date : 2023-02-01 DOI: 10.1016/j.jpap.2023.100161
Mariana Miretti , María Antonella González Graglia , Agustín I. Suárez , César G. Prucca

Glioblastomas (GBM) are considered one of the most aggressive tumors of the central nervous system. The standard treatment for GBM-diagnosed patients implies surgery, followed by radio and chemotherapy, with a survival of 12 to 15 months after treatment. Photodynamic Therapy (PDT) is an alternative approach to treating several diseases, including tumors. The study of PDT to treat GBM has been gaining attention over the last few years. In this work, we reviewed the cellular and molecular features and current treatment modalities for GBM as well as the most used photosensitizers for GBM-PDT reported in the last five years, such as porphyrins, chlorins, and phthalocyanines, and also their precursors, as in the case of aminolaevulinic acid. Moreover, an analysis of cellular targets, mechanisms mediating the response and resistance to PDT, and clinical application of this strategy for GBM treatment have been discussed.

胶质母细胞瘤(GBM)被认为是中枢神经系统最具侵略性的肿瘤之一。诊断为gbm的患者的标准治疗方法是手术,然后是放疗和化疗,治疗后生存期为12至15个月。光动力疗法(PDT)是治疗包括肿瘤在内的几种疾病的一种替代方法。在过去的几年里,PDT治疗GBM的研究得到了越来越多的关注。在这项工作中,我们回顾了GBM的细胞和分子特征和目前的治疗方式,以及近五年来报道的GBM- pdt最常用的光敏剂,如卟啉、氯和酞菁,以及它们的前体,如氨基乙酰丙酸。此外,本文还讨论了PDT的细胞靶点、反应和耐药机制以及该策略在GBM治疗中的临床应用。
{"title":"Photodynamic therapy for glioblastoma: A light at the end of the tunnel","authors":"Mariana Miretti ,&nbsp;María Antonella González Graglia ,&nbsp;Agustín I. Suárez ,&nbsp;César G. Prucca","doi":"10.1016/j.jpap.2023.100161","DOIUrl":"https://doi.org/10.1016/j.jpap.2023.100161","url":null,"abstract":"<div><p>Glioblastomas (GBM) are considered one of the most aggressive tumors of the central nervous system. The standard treatment for GBM-diagnosed patients implies surgery, followed by radio and chemotherapy, with a survival of 12 to 15 months after treatment. Photodynamic Therapy (PDT) is an alternative approach to treating several diseases, including tumors. The study of PDT to treat GBM has been gaining attention over the last few years. In this work, we reviewed the cellular and molecular features and current treatment modalities for GBM as well as the most used photosensitizers for GBM-PDT reported in the last five years, such as porphyrins, chlorins, and phthalocyanines, and also their precursors, as in the case of aminolaevulinic acid. Moreover, an analysis of cellular targets, mechanisms mediating the response and resistance to PDT, and clinical application of this strategy for GBM treatment have been discussed.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100161"},"PeriodicalIF":3.261,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3342697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Elucidating the photosynthetic responses in chlorophyll-deficient soybean (Glycine max, L.) leaf 叶绿素缺乏大豆叶片光合响应的研究
IF 3.261 Pub Date : 2023-02-01 DOI: 10.1016/j.jpap.2022.100152
Kelvin Acebron , Nicole Salvatori , Giorgio Alberti , Onno Muller , Alessandro Peressotti , Uwe Rascher , Shizue Matsubara

Chlorophyll (Chl)-deficient plants can potentially increase global surface albedo of mono-cropping systems, and simultaneously maintain a similar photosynthetic efficiency by increasing light canopy penetration and thus lowering investment in pigments. However, some previous studies have shown that pale mutants might reduce productivity in field conditions. Such lower yields were suspected to be due to loss of photosynthetic efficiency at leaf level during light fluctuations as a consequence of reduced capacity and slower relaxation of non-photochemical quenching (NPQ) of Chl fluorescence. In this paper, we tested this hypothesis by comparing, CO2 assimilation (A), photosystem II (PSII) efficiency (ΦPSII), photochemical quenching and NPQ, electron transport rate (ETR) and fluorescence yield (Fyield) in a green soybean (Glycine max L.) cultivar (Eiko) and in a Chl-deficient (MinnGold) mutant under dynamically fluctuating light conditions. MinnGold had significantly slower induction of ETR and lower A and ETR than Eiko, but there was little difference in ΦPSII between the two genotypes, suggesting that the lower photosynthesis of MinnGold was mainly due to lower light energy absorption by a Chl-deficient leaf. The NPQ capacity was also smaller in MinnGold than in Eiko. As for the kinetics of the rapidly inducible component of NPQ, MinnGold showed slower induction, not relaxation, than Eiko. The combination of the effect of Chl-deficiency on lower photosynthesis, NPQ capacity and slower NPQ induction may explain the lower biomass accumulation of MinnGold in the field. Our physiological observations, combined with fluorescence kinetics, can serve as a basis to parameterize Chl content in modelling radiative transfer and photosynthesis for upscaling measures of plant and ecosystem productivity by a big leaf model.

叶绿素(Chl)缺乏的植物可以潜在地增加单作系统的全球表面反照率,同时通过增加光冠层穿透从而降低色素投资来保持类似的光合效率。然而,先前的一些研究表明,苍白突变体可能会降低田间条件下的生产力。这种较低的产量被怀疑是由于Chl荧光的非光化学猝灭(NPQ)能力降低和弛缓导致叶片在光波动期间光合效率的丧失。本文通过比较绿大豆(Glycine max L.)品种(Eiko)和缺氯突变体(MinnGold)在动态波动光照条件下的CO2同化(A)、光系统II (PSII)效率(ΦPSII)、光化学猝灭和NPQ、电子传递速率(ETR)和荧光产率(Fyield)来验证这一假设。与Eiko相比,MinnGold的光合速率较低,A和ETR也较低,但两种基因型的ΦPSII差异不大,说明MinnGold的光合速率较低主要是由于缺chl叶片的光能吸收较低。MinnGold的NPQ容量也小于Eiko。对于NPQ的快速诱导组分,MinnGold的诱导速度比Eiko慢,而不是弛豫。缺氯对低光合作用、低NPQ容量和低NPQ诱导的综合影响可能解释了MinnGold在田间生物量积累较低的原因。我们的生理观察,结合荧光动力学,可以作为参数化Chl含量的基础,用于模拟辐射转移和光合作用,通过大叶模型提高植物和生态系统生产力的措施。
{"title":"Elucidating the photosynthetic responses in chlorophyll-deficient soybean (Glycine max, L.) leaf","authors":"Kelvin Acebron ,&nbsp;Nicole Salvatori ,&nbsp;Giorgio Alberti ,&nbsp;Onno Muller ,&nbsp;Alessandro Peressotti ,&nbsp;Uwe Rascher ,&nbsp;Shizue Matsubara","doi":"10.1016/j.jpap.2022.100152","DOIUrl":"https://doi.org/10.1016/j.jpap.2022.100152","url":null,"abstract":"<div><p>Chlorophyll (Chl)-deficient plants can potentially increase global surface albedo of mono-cropping systems, and simultaneously maintain a similar photosynthetic efficiency by increasing light canopy penetration and thus lowering investment in pigments. However, some previous studies have shown that pale mutants might reduce productivity in field conditions. Such lower yields were suspected to be due to loss of photosynthetic efficiency at leaf level during light fluctuations as a consequence of reduced capacity and slower relaxation of non-photochemical quenching (NPQ) of Chl fluorescence. In this paper, we tested this hypothesis by comparing, CO<sub>2</sub> assimilation (<em>A</em>), photosystem II (PSII) efficiency (Φ<sub>PSII</sub>), photochemical quenching and NPQ, electron transport rate (ETR) and fluorescence yield (F<sub>yield</sub>) in a green soybean (<em>Glycin</em>e <em>max</em> L.) cultivar (Eiko) and in a Chl-deficient (MinnGold) mutant under dynamically fluctuating light conditions. MinnGold had significantly slower induction of ETR and lower <em>A</em> and ETR than Eiko, but there was little difference in Φ<sub>PSII</sub> between the two genotypes, suggesting that the lower photosynthesis of MinnGold was mainly due to lower light energy absorption by a Chl-deficient leaf. The NPQ capacity was also smaller in MinnGold than in Eiko. As for the kinetics of the rapidly inducible component of NPQ, MinnGold showed slower induction, not relaxation, than Eiko. The combination of the effect of Chl-deficiency on lower photosynthesis, NPQ capacity and slower NPQ induction may explain the lower biomass accumulation of MinnGold in the field. Our physiological observations, combined with fluorescence kinetics, can serve as a basis to parameterize Chl content in modelling radiative transfer and photosynthesis for upscaling measures of plant and ecosystem productivity by a big leaf model.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100152"},"PeriodicalIF":3.261,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3457206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micronuclei analysis in mice peripheral blood exposed to polarized polychromatic noncoherent light (Bioptron® Light) 偏振多色非相干光(Bioptron®light)下小鼠外周血微核分析
IF 3.261 Pub Date : 2023-02-01 DOI: 10.1016/j.jpap.2023.100164
Guillermo M. Zúñiga-González , Jesús O. Martínez-Sánchez , Ana L. Zamora-Perez , Martha P. Gallegos-Arreola , Blanca M. Torres-Mendoza , Juan E. Gutiérrez-Sevilla , María G. Sánchez-Parada , Angélica Barros-Hernández , Belinda C. Gómez-Meda

The increase in cancer in recent years suggests an inadvertent exposure to agents that cause genetic damage. The polarized polychromatic noncoherent light Bioptron® lamp is used to accelerate healing, among other therapeutic applications and its potential carcinogenic effects as a mitogenic agent have not been explored. The objective was to evaluate the genotoxicity of the Bioptron light therapy by means of the micronucleus assay in mouse erythrocytes. Male SKH1 hairless mice were randomly divided into six groups (5 mice/group); Group 1: negative control received ambient light; Group 2: positive control was exposed to ultraviolet light lamp A (UV-A) for 80 min; Experimental Groups 3–6 were exposed to the Bioptron lamp light for 10, 20, 40 and 80 min, respectively. Exposures in all groups were once a day for 4 days and blood smears were performed daily for 5 days and subsequently read with a microscope equipped with epifluorescence. The values of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE) and the proportion of polychromatic erythrocytes (PCE) were determined. The study group that received the UV-A light was the only one that increased MNE and MNPCE values, while in the groups exposed to the Bioptron lamp and the negative control did not show increases in any of the sampling days. In conclusion, under the conditions presented here, our results suggest that the light of the Bioptron lamp does not cause damage to the genetic material of SKH1 mice, by means of the micronucleus test in peripheral blood.

近年来癌症发病率的上升表明,人们无意中接触到了导致基因损伤的物质。偏振多色非相干光Bioptron®灯用于加速愈合,在其他治疗应用中,其作为有丝分裂剂的潜在致癌作用尚未被探索。目的是通过对小鼠红细胞的微核测定来评价生物加速器光疗的遗传毒性。雄性SKH1无毛小鼠随机分为6组(每组5只);第一组:阴性对照组接受环境光;第二组:阳性对照暴露于紫外线灯A (UV-A)下80 min;实验组3 ~ 6分别在Bioptron灯下照射10、20、40、80 min。各组每天暴露一次,连续4天,每天进行血液涂片,连续5天,随后在配备有荧光的显微镜下读取。测定小鼠微核红细胞(MNE)、微核多染红细胞(MNPCE)及多染红细胞(PCE)比例。接受UV-A光的研究组是唯一一个MNE和MNPCE值增加的研究组,而暴露于Bioptron灯和阴性对照的组在任何采样日都没有显示出增加。综上所述,在本实验条件下,通过外周血微核试验,我们的结果表明,Bioptron灯的光不会对SKH1小鼠的遗传物质造成损害。
{"title":"Micronuclei analysis in mice peripheral blood exposed to polarized polychromatic noncoherent light (Bioptron® Light)","authors":"Guillermo M. Zúñiga-González ,&nbsp;Jesús O. Martínez-Sánchez ,&nbsp;Ana L. Zamora-Perez ,&nbsp;Martha P. Gallegos-Arreola ,&nbsp;Blanca M. Torres-Mendoza ,&nbsp;Juan E. Gutiérrez-Sevilla ,&nbsp;María G. Sánchez-Parada ,&nbsp;Angélica Barros-Hernández ,&nbsp;Belinda C. Gómez-Meda","doi":"10.1016/j.jpap.2023.100164","DOIUrl":"https://doi.org/10.1016/j.jpap.2023.100164","url":null,"abstract":"<div><p>The increase in cancer in recent years suggests an inadvertent exposure to agents that cause genetic damage. The polarized polychromatic noncoherent light Bioptron® lamp is used to accelerate healing, among other therapeutic applications and its potential carcinogenic effects as a mitogenic agent have not been explored. The objective was to evaluate the genotoxicity of the Bioptron light therapy by means of the micronucleus assay in mouse erythrocytes. Male SKH1 hairless mice were randomly divided into six groups (5 mice/group); Group 1: negative control received ambient light; Group 2: positive control was exposed to ultraviolet light lamp A (UV-A) for 80 min; Experimental Groups 3–6 were exposed to the Bioptron lamp light for 10, 20, 40 and 80 min, respectively. Exposures in all groups were once a day for 4 days and blood smears were performed daily for 5 days and subsequently read with a microscope equipped with epifluorescence. The values of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE) and the proportion of polychromatic erythrocytes (PCE) were determined. The study group that received the UV-A light was the only one that increased MNE and MNPCE values, while in the groups exposed to the Bioptron lamp and the negative control did not show increases in any of the sampling days. In conclusion, under the conditions presented here, our results suggest that the light of the Bioptron lamp does not cause damage to the genetic material of SKH1 mice, by means of the micronucleus test in peripheral blood.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100164"},"PeriodicalIF":3.261,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3459387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-temperature mid-IR absorption and reaction kinetics of 2-methyl-1,3-dioxolane: An experimental and theoretical study 2-甲基-1,3-二恶氧烷的高温中红外吸收及反应动力学的实验与理论研究
IF 3.261 Pub Date : 2023-02-01 DOI: 10.1016/j.jpap.2023.100165
Mohammad Adil , Binod Raj Giri , Tam V.-T. Mai , Milán Szőri , Lam K. Huynh , Aamir Farooq

This work reports the mid-IR spectroscopy and reaction kinetics of 2-methyl-1,3-dioxolane (2M13DO). We carried out spectroscopic measurements to deduce temperature-dependent absorption cross-sections of 2M13DO over a broad wavelength range of 8.4–10.5 μm (950–1190 cm−1). For these measurements, we employed a rapidly tuning MIRcat-QT™ laser that can be operated either at a fixed wavelength or scanned mode over wide wavelength regions. By operating the laser at a fixed wavelength, we monitored the decay of 2M13DO behind reflected shock waves over T5 = 1050–1400 K and P5 = 0.7 and 2.6 bar. Our measured concentration time-histories of 2M13DO allowed us to directly extract the overall rate coefficients for the unimolecular decomposition of 2M13DO using the first-order rate law. We did not observe any pressure dependence in the measured rate coefficients, indicating that the reaction is close to the high-pressure limit. By employing the W1U composite method, we explored the important pyrolysis reaction pathways of 2M13DO in the reactive potential energy surface. Three important reaction channels, namely, 2M13DO → CH2CHOCH2CH2OH (IM1), 2M13DO → 2CH3CHO (P3), 2M13DO → CH3 + 1,3-dioxolan-2-yl (P4) were identified. Below 700 K, IM1 forming channel is dominant, whereas CH3CHO formation is dominant under our experimental conditions. Above 1500 K, the radical forming channel (CH3+P4) takes over other channels. At higher temperatures, the contribution of the radical forming channel continually increases, accounting for ∼ 99% at 2000 K. We used the stochastic RRKM-ME model to predict the pressure and temperature dependence of the rate coefficients, k(T, P), and time-resolved species profiles. Our theory showed excellent agreement with the measured rate coefficients. These are the first direct determination of the rate coefficients of the unimolecular decomposition of 2M13DO.

本文报道了2-甲基-1,3-二恶烷(2M13DO)的中红外光谱和反应动力学。我们进行了光谱测量,以推断2M13DO在8.4-10.5 μm (950-1190 cm−1)宽波长范围内的温度依赖吸收截面。对于这些测量,我们采用了快速调谐的MIRcat-QT™激光器,可以在固定波长或宽波长区域的扫描模式下操作。通过在固定波长下操作激光器,我们监测了在T5 = 1050 - 1400k和P5 = 0.7和2.6 bar条件下反射激波后2M13DO的衰减。我们测量的2M13DO的浓度时程允许我们使用一级速率定律直接提取2M13DO单分子分解的总速率系数。我们在测量的速率系数中没有观察到任何压力依赖性,表明反应接近高压极限。采用W1U复合方法,在反应势能面探索了2M13DO的重要热解反应途径。确定了2M13DO→CH2CHOCH2CH2OH (IM1)、2M13DO→2CH3CHO (P3)、2M13DO→CH3 + 1,3-二氧杂酚-2-基(P4)三个重要反应通道。在700 K以下,IM1形成通道占主导地位,CH3CHO形成通道占主导地位。在1500 K以上,自由基形成通道(CH3+P4)取代其他通道。在较高的温度下,自由基形成通道的贡献不断增加,在2000 K时占到约99%。我们使用随机RRKM-ME模型来预测速率系数、k(T, P)和时间分辨物种分布对压力和温度的依赖性。我们的理论与测量的速率系数非常吻合。这是对2M13DO单分子分解速率系数的首次直接测定。
{"title":"High-temperature mid-IR absorption and reaction kinetics of 2-methyl-1,3-dioxolane: An experimental and theoretical study","authors":"Mohammad Adil ,&nbsp;Binod Raj Giri ,&nbsp;Tam V.-T. Mai ,&nbsp;Milán Szőri ,&nbsp;Lam K. Huynh ,&nbsp;Aamir Farooq","doi":"10.1016/j.jpap.2023.100165","DOIUrl":"https://doi.org/10.1016/j.jpap.2023.100165","url":null,"abstract":"<div><p>This work reports the mid-IR spectroscopy and reaction kinetics of 2-methyl-1,3-dioxolane (2M13DO). We carried out spectroscopic measurements to deduce temperature-dependent absorption cross-sections of 2M13DO over a broad wavelength range of 8.4–10.5 μm (950–1190 cm<sup>−1</sup>). For these measurements, we employed a rapidly tuning MIRcat-QT™ laser that can be operated either at a fixed wavelength or scanned mode over wide wavelength regions. By operating the laser at a fixed wavelength, we monitored the decay of 2M13DO behind reflected shock waves over <em>T</em><sub>5</sub> = 1050–1400 K and <em>P</em><sub>5</sub> = 0.7 and 2.6 bar. Our measured concentration time-histories of 2M13DO allowed us to directly extract the overall rate coefficients for the unimolecular decomposition of 2M13DO using the first-order rate law. We did not observe any pressure dependence in the measured rate coefficients, indicating that the reaction is close to the high-pressure limit. By employing the W1U composite method, we explored the important pyrolysis reaction pathways of 2M13DO in the reactive potential energy surface. Three important reaction channels, namely, 2M13DO → CH<sub>2</sub><img>CHOCH<sub>2</sub>CH<sub>2</sub>OH (<strong>IM1</strong>), 2M13DO → 2CH<sub>3</sub>CHO (<strong>P3</strong>), 2M13DO → CH<sub>3</sub> + 1,3-dioxolan-2-yl (<strong>P4</strong>) were identified. Below 700 K, <strong>IM1</strong> forming channel is dominant, whereas CH<sub>3</sub>CHO formation is dominant under our experimental conditions. Above 1500 K, the radical forming channel (CH<sub>3</sub>+<strong>P4</strong>) takes over other channels. At higher temperatures, the contribution of the radical forming channel continually increases, accounting for ∼ 99% at 2000 K. We used the stochastic RRKM-ME model to predict the pressure and temperature dependence of the rate coefficients, <em>k</em>(<em>T, P</em>), and time-resolved species profiles. Our theory showed excellent agreement with the measured rate coefficients. These are the first direct determination of the rate coefficients of the unimolecular decomposition of 2M13DO.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"13 ","pages":"Article 100165"},"PeriodicalIF":3.261,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2370793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Energy transfer in supramolecular calix[4]arene—Perylene bisimide dye light harvesting building blocks: Resolving loss processes with simultaneous target analysis 超分子杯中的能量转移[4]芳烃-苝酰亚胺染料光收集构建块:用同步目标分析解决损失过程
IF 3.261 Pub Date : 2022-12-01 DOI: 10.1016/j.jpap.2022.100154
Ivo H.M. van Stokkum , Catharina Wohlmuth , Frank Würthner , René M. Williams

By the application of simultaneous target analysis of multiple femtosecond transient absorption data sets we have identified two loss channels within multi-chromophoric light harvesting arrays. Perylene bisimide-calix[4]arene arrays composed of up to three different types of perylene bisimide (PBI) chromophores, orange (o), red (r), and green (g) PBIs (named after their colors as solids), have previously been studied by transient absorption spectroscopy (Hippius et al., J. Phys. Chem C 112:2476, 2008) and here we present a simultaneous target analysis of those data matrices. A covalent system containing the red chromophore (r) and calix[4]arene (c), the rc system, shows extensive spectral evolution that can be described with four excited states (r1*r2*r3*r4*→ground state). In the Perylene Orange calix[4]arene system (oc), a radical pair (ocRP) can be formed by photoinduced electron transfer (Hippius et al., J. Phys. Chem C 111:13988, 2007). In a simultaneous target analysis of the multichromophoric systems ocr, rcocr and ocrco the properties of rc and oc are integrated, and excitation energy transfer (EET) from o* to r* occurs. In addition, we demonstrate that the final Species Associated Difference Spectrum (SADS) also contains o bleach features that indicate an excitonic interaction, for ocr, rcocr and ocrco. In a simultaneous target analysis of rcg and gcrcg the properties of rc are integrated, and next to EET to g* we can resolve the formation of a new rcgRP that is formed from r1* or r2*, and represents a loss of 7 and 12%, respectively. In a simultaneous target analysis of ocrcg the properties of ocr and rcg are integrated, arriving at a consistent picture with an energy transfer quantum yield of formation of the excited state of the green PBI (g*) of 80%.

通过对多个飞秒瞬态吸收数据集的同步目标分析,我们确定了多色光收集阵列中的两个损耗通道。苝二酰亚胺-杯[4]芳烃阵列由多达三种不同类型的苝二酰亚胺(PBI)发色团组成,橙色(o),红色(r)和绿色(g) PBI(以其固体的颜色命名),先前已经通过瞬态吸收光谱进行了研究(Hippius等人,J. Phys。化学C 112:2476, 2008),在这里,我们提出了这些数据矩阵的同步目标分析。含有红色发色团(r)和杯[4]芳烃(c)的共价体系rc显示出广泛的光谱演化,可以用四个激发态(r1*→r2*→r3*→r4*→基态)来描述。在苝橘杯[4]芳烃体系(oc)中,自由基对(ocRP)可以通过光诱导电子转移形成(Hippius et al., J. Phys.)。化学通报,2007(1):1 - 4。在多显色体系ocr、rcocr和occo的同步靶分析中,rc和oc的性质被整合,激发能从o*转移到r*。此外,我们还证明了最终的物种相关差谱(SADS)也包含0个漂白特征,表明ocr, rcocr和occo的激子相互作用。在rcg和gcrcg的同时靶分析中,我们综合了rc的性质,在EET和g*旁边,我们可以解析出由r1*或r2*形成的新的rcgRP,分别代表7%和12%的损失。在ocr和rcg的同时靶分析中,我们综合了ocr和rcg的特性,得到了绿色PBI激发态形成的能量转移量子产率(g*)为80%的一致结果。
{"title":"Energy transfer in supramolecular calix[4]arene—Perylene bisimide dye light harvesting building blocks: Resolving loss processes with simultaneous target analysis","authors":"Ivo H.M. van Stokkum ,&nbsp;Catharina Wohlmuth ,&nbsp;Frank Würthner ,&nbsp;René M. Williams","doi":"10.1016/j.jpap.2022.100154","DOIUrl":"https://doi.org/10.1016/j.jpap.2022.100154","url":null,"abstract":"<div><p>By the application of simultaneous target analysis of multiple femtosecond transient absorption data sets we have identified two loss channels within multi-chromophoric light harvesting arrays. Perylene bisimide-calix[4]arene arrays composed of up to three different types of perylene bisimide (PBI) chromophores, orange (<strong>o</strong>), red (<strong>r</strong>), and green (<strong>g</strong>) PBIs (named after their colors as solids), have previously been studied by transient absorption spectroscopy (Hippius et al., J. Phys. Chem C 112:2476, 2008) and here we present a simultaneous target analysis of those data matrices. A covalent system containing the red chromophore (<strong>r</strong>) and calix[4]arene (<strong>c</strong>), the <strong>rc</strong> system, shows extensive spectral evolution that can be described with four excited states (<strong>r<sub>1</sub>*</strong>→<strong>r<sub>2</sub>*</strong>→<strong>r<sub>3</sub>*</strong>→<strong>r<sub>4</sub>*</strong>→ground state). In the Perylene Orange calix[4]arene system (<strong>oc)</strong>, a radical pair (<strong>oc</strong>RP) can be formed by photoinduced electron transfer (Hippius et al., J. Phys. Chem C 111:13988, 2007). In a simultaneous target analysis of the multichromophoric systems <strong>ocr, rcocr</strong> and <strong>ocrco</strong> the properties of <strong>rc</strong> and <strong>oc</strong> are integrated, and excitation energy transfer (EET) from <strong>o*</strong> to <strong>r*</strong> occurs. In addition, we demonstrate that the final Species Associated Difference Spectrum (SADS) also contains <strong>o</strong> bleach features that indicate an excitonic interaction, for <strong>ocr, rcocr</strong> and <strong>ocrco</strong>. In a simultaneous target analysis of <strong>rcg</strong> and <strong>gcrcg</strong> the properties of <strong>rc</strong> are integrated, and next to EET to <strong>g*</strong> we can resolve the formation of a new <strong>rcgRP</strong> that is formed from <strong>r<sub>1</sub>*</strong> or <strong>r<sub>2</sub>*</strong>, and represents a loss of 7 and 12%, respectively. In a simultaneous target analysis of <strong>ocrcg</strong> the properties of <strong>ocr</strong> and <strong>rcg</strong> are integrated, arriving at a consistent picture with an energy transfer quantum yield of formation of the excited state of the green PBI (<strong>g*)</strong> of 80%.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"12 ","pages":"Article 100154"},"PeriodicalIF":3.261,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1509141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Journal of Photochemistry and Photobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1