首页 > 最新文献

Rastitel''nost'' Rossii最新文献

英文 中文
Syntaxonomy of psammophytic communities of the Black and Azov Sea coasts (Krasnodar Territory) 黑海和亚速海沿岸(克拉斯诺达尔地区)沙生植物群落的分类学
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.43.23
N. Grechushkina, A. V. Chuvashov, V. B. Golub
The psammophytic communities on sandy accumulative coasts of the Black and Azov Seas were studied in the Krasnodar Territory (Russia) in 2004, 2006 and 2009, when 1610 relevés were made. Of these, 203 relevés were previously classified and published. In this paper based on 23 relevés two new associations and two new subassociations of the class Ammophiletea Br.-Bl. et Tx. ex Westhoff et al. 1946 and one rankless transitional community (Fig. 1) are described according to Braun-Blanquet approach. The abundance of plants estimated in the field as a percentage of the projective cover was converted to scale points: 5 — > 50 %, 4 — 26–50 %, 3 — 16–25 %, 2 — 6–15 %, 1 — 1–5 %, + — < 1 %. Clustering of the relevés (phytocenon isolation) was carried out by flexible beta linkage (β = –0.25) based on the Sørensen coefficient in PC-ORD 5.0, available through the JUICE 7.1 software package (Tichý, Jason, 2006). As a result four phytocenons were established. Their species composition was compared with the species lists of the lower 676 coastal syntaxa of the Azov-Black Sea region, taken from literature and stored in authors’ syntaxon database (GIVD ID EU-RU-005) based on the TURBOVEG program (Hennekens, Schaminée, 2001). An initial assessment of the similarity of littoral syntaxa and phytocenons was performed using several methods available in the JUICE 7.1 software package. In all cases bryophytes and lichens as well as vascular plant species with frequency less than 20 % in any community were excluded from the analysis. All these excluded species are present in Tables 1 and 2. To classify the established phytocenons, their species composition was compared with similar protologues of the lower syntaxa (Table 1). The vascular plant taxa names are by Tutin et al., (2001). In naming the taxa below, a broad understanding of species (s. l.), their aggregation (agg.), or the combination of several species (with “+”) are used: Artemisia campestris+A. tschernieviana, Cakile maritima s. l. (C. maritima, C. maritima subsp. euxina), Centaurea arenaria s. l.(C. arenaria, C. arenaria subsp. odessana), Leymus racemosus s. l. (L. racemosus, L. racemosus subsp. sabulosus); S. kali aggr. (Salsola kali, S. kali subsp. ruthenica or S. kali subsp. tragus) based on P. Uotila (2011) and S. L. Mosyakin (2017); Xanthium strumarium s. l. (X. strumarium, X. strumarium subsp. italicum, X. strumarium subsp. strumarium × subsp. italicum). Few bryophyte and lichen taxa are given with their authors. The names of the new syntaxa are formed according to the ICPN rules (Theurillat et al., 2021). The terrain in the study area is flat. The natural banks are represented by abrasion and accumulative types. The latter is often in the form of sandy or sandy-shelly spits. There are low-lying near-mouth and delta accumulative banks at the mouths of large rivers. Widespread are solonchaks both not vegetated or with halophytic communities. The climate is temperate with continental features. The mont
2004年、2006年和2009年在俄罗斯克拉斯诺达尔地区对黑海和亚速海沙质堆积海岸的沙生植物群落进行了研究,共进行了1610次相关采样。其中,203份相关文件先前已分类并公布。本文在23篇文献的基础上,对嗜Ammophiletea Br.-Bl纲的2个新属和2个新亚属进行了综述。et txex Westhoff et al. 1946和一个无秩过渡群落(图1)是根据布朗-布兰凯方法描述的。将估算的植物丰度与投影覆盖的百分比转换为以下尺度点:5 - 50 %、4 - 26-50 %、3 - 16-25 %、2 - 6-15 %、1 - 1 - 5 %、+ - < 1 %。通过JUICE 7.1软件包(Tichý, Jason, 2006),基于PC-ORD 5.0中的Sørensen系数,通过灵活的β链接(β = -0.25)对相关的<s:1> <s:1> <s:1> <s:1> <s:1>化学物质(phytocenon分离)进行聚类。结果建立了四个植物群落。将它们的物种组成与基于TURBOVEG程序(Hennekens, schamin<s:1>, 2001)的作者语法数据库(GIVD ID EU-RU-005)中文献中676个亚速海-黑海沿岸低级句法类群的物种表进行比较。使用JUICE 7.1软件包中提供的几种方法对沿海句法群和植物群落的相似性进行了初步评估。在所有情况下,在任何群落中,苔藓植物、地衣和维管植物物种的频率低于20%,均被排除在分析之外。所有这些被排除的物种都出现在表1和表2中。为了对已建立的植物类群进行分类,将它们的物种组成与低等植物类群的相似原生生物进行了比较(表1)。维管植物类群的名称由Tutin et al.,(2001)提供。在命名下面的分类群时,使用了对物种(s. l.),它们的聚集(agg.)或几个物种的组合(带“+”)的广泛理解:Artemisia campestris+ a。(1)海棠花,海棠花子;半人马花(Centaurea arenaria);砂藻,砂藻亚种。总状羊草(l.总状羊草,l.总状羊草亚种);sabulosus);锦葵。酸菜,酸菜亚种;真丝孢菌或菌类。P. Uotila(2011)和S. L. Mosyakin (2017);苍耳菌(X. strumarium, X. strumarium)柱头属,柱头属。瘤x亚种italicum)。苔藓植物和地衣植物的分类很少,作者也很少。新句法的名称是根据ICPN规则形成的(Theurillat et al., 2021)。研究区的地形是平坦的。天然河岸以磨蚀型和堆积型为代表。后者通常以沙状或雪状唾液的形式出现。大河入海口处有低洼的近河口滩和三角洲堆积滩。广泛分布的是无植被或有盐生植物群落的独刺林。气候属温带大陆性气候。在物种组成上,与已建立的植物群落最接近的是在俄罗斯、罗马尼亚和乌克兰描述的较低的合成类(在原生类群中)(表1),它们的作者将其归因于Elymion gigantei Morariu 1957(类Ammophiletea Br.-Bl)。et Tx. ex Westhoff et al. 1946)。然而,已鉴定的物种差异不允许我们将植物分类学单位(表1)分配给这些单位。所有植物群落都被归类为新句法(表2)。表1中较低句法的地理位置见图3。海绵草-沙绵草:表2,rel. 1-13,图4;holotypus:表2,第6卷,克拉斯诺达尔地区,布拉戈维申斯卡亚定居点对面的阿纳帕沙洲(黑海海岸),远离大海的固定沙丘,2004年8月25日。诊断分类群(d.t .):黄花蒿+黄花蒿。该协会包括固定和流动沙质基质上的沙生草本-矮-半灌木群落。Subass。海燕草-海燕草。11月:表2,rel. 1-7;holotypus:表2,rel. 6,图5。典型子关联团体的诊断属性与关联相同。亚群落的植物群落栖息在黑海和亚速海积聚海岸的流动和弱固定的沙质沉积物中。Subass。海鲈-海鲈。11月:表2,rel. 8-13,图6;holotypus:表2,第10期,Krasnodar领土,距Golubitskaya定居点东北4公里,Temryuk湾(亚速海)海岸,低沙丘(1.5-2米高),2004年9月4日,亚群博士:Crambe maritima, Lactuca tatarica。群落出现在累积河岸的固定沙上。 2004年、2006年和2009年在俄罗斯克拉斯诺达尔地区对黑海和亚速海沙质堆积海岸的沙生植物群落进行了研究,共进行了1610次相关采样。其中,203份相关文件先前已分类并公布。本文在23篇文献的基础上,对嗜Ammophiletea Br.-Bl纲的2个新属和2个新亚属进行了综述。et txex Westhoff et al. 1946和一个无秩过渡群落(图1)是根据布朗-布兰凯方法描述的。将估算的植物丰度与投影覆盖的百分比转换为以下尺度点:5 - 50 %、4 - 26-50 %、3 - 16-25 %、2 - 6-15 %、1 - 1 - 5 %、+ - < 1 %。通过JUICE 7.1软件包(Tichý, Jason, 2006),基于PC-ORD 5.0中的Sørensen系数,通过灵活的β链接(β = -0.25)对相关的<s:1> <s:1> <s:1> <s:1> <s:1>化学物质(phytocenon分离)进行聚类。结果建立了四个植物群落。将它们的物种组成与基于TURBOVEG程序(Hennekens, schamin<s:1>, 2001)的作者语法数据库(GIVD ID EU-RU-005)中文献中676个亚速海-黑海沿岸低级句法类群的物种表进行比较。使用JUICE 7.1软件包中提供的几种方法对沿海句法群和植物群落的相似性进行了初步评估。在所有情况下,在任何群落中,苔藓植物、地衣和维管植物物种的频率低于20%,均被排除在分析之外。所有这些被排除的物种都出现在表1和表2中。为了对已建立的植物类群进行分类,将它们的物种组成与低等植物类群的相似原生生物进行了比较(表1)。维管植物类群的名称由Tutin et al.,(2001)提供。在命名下面的分类群时,使用了对物种(s. l.),它们的聚集(agg.)或几个物种的组合(带“+”)的广泛理解:Artemisia campestris+ a。(1)海棠花,海棠花子;半人马花(Centaurea arenaria);砂藻,砂藻亚种。总状羊草(l.总状羊草,l.总状羊草亚种);sabulosus);锦葵。酸菜,酸菜亚种;真丝孢菌或菌类。P. Uotila(2011)和S. L. Mosyakin (2017);苍耳菌(X. strumarium, X. strumarium)柱头属,柱头属。瘤x亚种italicum)。苔藓植物和地衣植物的分类很少,作者也很少。新句法的名称是根据ICPN规则形成的(Theurillat et al., 2021)。研究区的地形是平坦的。天然河岸以磨蚀型
{"title":"Syntaxonomy of psammophytic communities of the Black and Azov Sea coasts (Krasnodar Territory)","authors":"N. Grechushkina, A. V. Chuvashov, V. B. Golub","doi":"10.31111/vegrus/2022.43.23","DOIUrl":"https://doi.org/10.31111/vegrus/2022.43.23","url":null,"abstract":"The psammophytic communities on sandy accumulative coasts of the Black and Azov Seas were studied in the Krasnodar Territory (Russia) in 2004, 2006 and 2009, when 1610 relevés were made. Of these, 203 relevés were previously classified and published. In this paper based on 23 relevés two new associations and two new subassociations of the class Ammophiletea Br.-Bl. et Tx. ex Westhoff et al. 1946 and one rankless transitional community (Fig. 1) are described according to Braun-Blanquet approach. The abundance of plants estimated in the field as a percentage of the projective cover was converted to scale points: 5 — > 50 %, 4 — 26–50 %, 3 — 16–25 %, 2 — 6–15 %, 1 — 1–5 %, + — < 1 %. Clustering of the relevés (phytocenon isolation) was carried out by flexible beta linkage (β = –0.25) based on the Sørensen coefficient in PC-ORD 5.0, available through the JUICE 7.1 software package (Tichý, Jason, 2006). As a result four phytocenons were established. Their species composition was compared with the species lists of the lower 676 coastal syntaxa of the Azov-Black Sea region, taken from literature and stored in authors’ syntaxon database (GIVD ID EU-RU-005) based on the TURBOVEG program (Hennekens, Schaminée, 2001). An initial assessment of the similarity of littoral syntaxa and phytocenons was performed using several methods available in the JUICE 7.1 software package. In all cases bryophytes and lichens as well as vascular plant species with frequency less than 20 % in any community were excluded from the analysis. All these excluded species are present in Tables 1 and 2. To classify the established phytocenons, their species composition was compared with similar protologues of the lower syntaxa (Table 1). The vascular plant taxa names are by Tutin et al., (2001). In naming the taxa below, a broad understanding of species (s. l.), their aggregation (agg.), or the combination of several species (with “+”) are used: Artemisia campestris+A. tschernieviana, Cakile maritima s. l. (C. maritima, C. maritima subsp. euxina), Centaurea arenaria s. l.(C. arenaria, C. arenaria subsp. odessana), Leymus racemosus s. l. (L. racemosus, L. racemosus subsp. sabulosus); S. kali aggr. (Salsola kali, S. kali subsp. ruthenica or S. kali subsp. tragus) based on P. Uotila (2011) and S. L. Mosyakin (2017); Xanthium strumarium s. l. (X. strumarium, X. strumarium subsp. italicum, X. strumarium subsp. strumarium × subsp. italicum). Few bryophyte and lichen taxa are given with their authors. The names of the new syntaxa are formed according to the ICPN rules (Theurillat et al., 2021). The terrain in the study area is flat. The natural banks are represented by abrasion and accumulative types. The latter is often in the form of sandy or sandy-shelly spits. There are low-lying near-mouth and delta accumulative banks at the mouths of large rivers. Widespread are solonchaks both not vegetated or with halophytic communities. The climate is temperate with continental features. The mont","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To the syntaxonomy of weed vegetation in the North-West of the Russian Federation 标题俄罗斯联邦西北部杂草植被的分类学
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.45.95
N. Luneva, Yevgenia Mysnik, S. Yamalov, G. Khasanova, M. Lebedeva
The tendency to gradual reduction of crop is observed now in the North-West of the Russian Federation. From 2010 for 2021 the total area under crops in four regions (Leningrad, Novgorod, Pskov, Vologda) has decreased from 1150.7 to 907.5 thousand hectares. Studies of specific structure of weed communities of the North-West of the Russian Federation started in the first decade of the XX century with inspections of crops by A. I. Maltsev in the St. Petersburg region (Maltsev, 1908, 1909). Since the beginning of the XXI the study of weed plants were focused at the All-Russian Institute of Plant Protectionwhere monitoring of crops of the North-West of the Russian Federation (Mysnik, 2012; Luneva, Mysnik, 2016, 2017, Luneva et al., 2009) has became the priority direction. In spite of previous wide floristic researches, the diversity of weed communities of this region is still not established. The first results of the floristic classification of weed vegetation in the North-East of the Russian Federation are presented. The dataset is based on 278 relevés made by N. N. Luneva, I. N. Nadtochiy, E. V. Filippova, T. D. Sokolova, Yu. V. Eroshina for field seasons in 1999–2916. The research area covered Leningrad, Novgorod, Pskov and Vologda regions. Data processing was carried out according floristic classification approach (Westhoff, Maarel, 1978), using TWINSPAN algoritm in JUICE software packages (Tichy, 2002). The new syntaxa are named in accordance with the rules of the International Code of Phytosociological Nomenclature (Theurillat et al., 2021). DCA-ordination using the CANOCO 4.5 software package (Ter Braak, Smilauer, 2002) was produced to identify patterns of environmental differentiation. The habitat moisture and soil richness-salinity scales status of communities (Ramenskiy et al., 1956) was calculated and basic agroclimatic parameters were identified to characterize the ecological variability of habitats. The communities were classified within the order of Aperetalia spica-venti J. Tx. et Tx. in Malato-Beliz et al. 1960 of the class Papaveretea rhoeadis S. Brulo et al. 2001 and were assigned to the alliance Scleranthion annui (Kruseman et Vlieger 1939) Sissingh in Westhoff et al. 1946), which unites the most mesophytic weed communities distributed mainly on gray forest, sod-podzolic, podzolic and other types of soils of the forest zone. The alliance diagnostic species are Stellaria media, Tripleurospermum inodorum, Capsella bursa-pastoris, Lepidotheca suaveolens, Thlaspi arvense, Centaurea cyanus. Three species from the diagnostic groups of ruderal vegetation classes are also active in their cenoflora — Elytrigia repens, Viola arvensis, Taraxacum officinale. From the diagnostic group of the Papaveretea rhoeadis class and the order Aperetalia spica-venti with high constancy, species are found Cirsium setosum, Chenopodium album, Sonchus arvensis, less often are Fallopia convolvulus. The group of species of the alliance Scleranthion annui inclu
现在在俄罗斯联邦的西北部可以观察到作物逐渐减少的趋势。从2010年到2021年,四个地区(列宁格勒、诺夫哥罗德、普斯科夫、沃洛格达)的作物种植总面积从1150.7万公顷减少到90.75万公顷。俄罗斯联邦西北部杂草群落特定结构的研究始于20世纪头十年,由A. I. Maltsev在圣彼得堡地区对作物进行考察(Maltsev, 1908, 1909)。自21世纪初以来,杂草植物的研究集中在全俄植物保护研究所,该研究所监测俄罗斯联邦西北部的作物(Mysnik, 2012;Luneva, Mysnik, 2016, 2017, Luneva et al., 2009)已成为优先方向。尽管已有广泛的植物区系研究,但该地区杂草群落的多样性尚未建立。本文介绍了俄罗斯联邦东北部杂草植被区系分类的初步结果。该数据集基于N. N. Luneva, I. N. Nadtochiy, E. V. Filippova, T. D. Sokolova, Yu所做的278份相关的数据。V. Eroshina, 1999 - 1996年野外季节。研究地区包括列宁格勒、诺夫哥罗德、普斯科夫和沃洛格达地区。数据处理采用植物区系分类方法(Westhoff, Maarel, 1978),使用JUICE软件包中的TWINSPAN算法(Tichy, 2002)。根据《国际植物社会学命名法》(Theurillat et al., 2021)的规则对新句法群进行命名。使用CANOCO 4.5软件包(Ter Braak, Smilauer, 2002)进行dca排序,以确定环境分化的模式。计算群落的生境湿度和土壤富盐度尺度状态(Ramenskiy et al., 1956),确定基本农业气候参数,表征生境的生态变异性。这些群落在Malato-Beliz etal . 1960中的Papaveretea rhoeadis S. Brulo etal . 2001中的Aperetalia spica-venti J. txt . et txt .分类为Papaveretea rhoeadis S. Brulo etal . 2001中的Aperetalia spica-venti目,并归属于Scleranthion annui联盟(Kruseman et Vlieger 1939) Sissingh in westthoff etal . 1946),该联盟将主要分布在森林地带灰色森林、草灰、灰土和其他类型土壤上的大多数叶生杂草群落联合起来。联盟诊断种为中星属、三胸草属、荠菜属、suaveolens、Thlaspi arvense、centaurrea cyanus。在野外植被分类的诊断群中,有3个物种在其新植物区系中也很活跃——鞘翅草(Elytrigia repens)、堇菜(Viola arvensis)和蒲公英(Taraxacum officinale)。在常见性较高的罂粟类和罂粟目的诊断组中,种数较多的有卷叶菊(Cirsium setosum)、Chenopodium album、Sonchus arvensis,较少的有卷叶菊(Fallopia convolvulus)。该属植物群包括星属、三胸草属、荠菜属、鳞翅果属、凤仙花属、半人马属。与俄罗斯联邦其他地区的杂草群落不同(Khasanova et al., 2021 Yamalov et al., 2021a, b),蕨类植物在小叶植物中不明显存在,但像Elytrigia repens、Viola arvensis、Taraxacum officinale这样的草本植物是活跃的。在作物亲和性和农业机械系统、土壤类型和热条件方面,已确定的协会和群落在地理上是不同的。分布最广的是Tussilagi farfarae-Centauretum cyani的群落,它们出现在列宁格勒、诺夫哥罗德、普斯科夫和沃洛格达地区。Galeopsetum bifidae (Novgorod、Pskov和Vologda地区)和Lamio purpurei-Persicarietum lapathifolii(列宁格勒、Novgorod和Pskov地区)的类群范围稍小。根据生境热条件的高低,分类学由高级(Echinochloo crusgalis - galietum aparinis)、低级(Lamio purpurei-Persicarietum lapathifolii)到低级(Fumaria officinalis)。在沼泽、泥炭和灰化土-沼泽土壤上形成了Echinochloo crusgalli-Galietum aparinis和Lamio purpurei-Persicarietum lapathifolii群落。在弱灰化土和中度灰化土以及半灰化土上均可形成小黄蓼群落和小黄蕨群落。其他构词类则局限于碳酸盐岩土壤。从作物光谱上看,其群落分布如下:丛枝松果(Echinochloo crusgaloli - galietum aparinis)、薄荷(Mentho arvensis) -松果(sonchetum arvensis)、紫叶松果(Lamio purpuretum persicarietum lapathifolii)和丛枝蓼(Polygonum aviculis)群落主要分布在蔬菜作物(马铃薯、胡萝卜、卷心菜、甜菜等)的田间。 现在在俄罗斯联邦的西北部可以观察到作物逐渐减少的趋势。从2010年到2021年,四个地区(列宁格勒、诺夫哥罗德、普斯科夫、沃洛格达)的作物种植总面积从1150.7万公顷减少到90.75万公顷。俄罗斯联邦西北部杂草群落特定结构的研究始于20世纪头十年,由A. I. Maltsev在圣彼得堡地区对作物进行考察(Maltsev, 1908, 1909)。自21世纪初以来,杂草植物的研究集中在全俄植物保护研究所,该研究所监测俄罗斯联邦西北部的作物(Mysnik, 2012;Luneva, Mysnik, 2016, 2017, Luneva et al., 2009)已成为优先方向。尽管已有广泛的植物区系研究,但该地区杂草群落的多样性尚未建立。本文介绍了俄罗斯联邦东北部杂草植被区系分类的初步结果。该数据集基于N. N. Luneva, I. N. Nadtochiy, E. V. Filippova, T. D. Sokolova, Yu所做的278份相关的数据。V. Eroshina, 1999 - 1996年野外季节。研究地区包括列宁格勒、诺夫哥罗德、普斯科夫和沃洛格达地区。数据处理采用植物区系分类方法(Westhoff, Maarel, 1978),使用JUICE软件包中的TWINSPAN算法(Tichy, 2002)。根据《国际植物社会学命名法》(Theurillat et al., 2021)的规则对新句法群进行命名。使用CANOCO 4.5软件包(Ter Braak, Smilauer, 2002)进行dca排序,以确定环境分化的模式。计算群落的生境湿度和土壤富盐度尺度状态(Ramenskiy et al., 1956),确定基本农业气候参数,表征生境的生态变
{"title":"To the syntaxonomy of weed vegetation in the North-West of the Russian Federation","authors":"N. Luneva, Yevgenia Mysnik, S. Yamalov, G. Khasanova, M. Lebedeva","doi":"10.31111/vegrus/2022.45.95","DOIUrl":"https://doi.org/10.31111/vegrus/2022.45.95","url":null,"abstract":"The tendency to gradual reduction of crop is observed now in the North-West of the Russian Federation. From 2010 for 2021 the total area under crops in four regions (Leningrad, Novgorod, Pskov, Vologda) has decreased from 1150.7 to 907.5 thousand hectares. Studies of specific structure of weed communities of the North-West of the Russian Federation started in the first decade of the XX century with inspections of crops by A. I. Maltsev in the St. Petersburg region (Maltsev, 1908, 1909). Since the beginning of the XXI the study of weed plants were focused at the All-Russian Institute of Plant Protectionwhere monitoring of crops of the North-West of the Russian Federation (Mysnik, 2012; Luneva, Mysnik, 2016, 2017, Luneva et al., 2009) has became the priority direction. In spite of previous wide floristic researches, the diversity of weed communities of this region is still not established. The first results of the floristic classification of weed vegetation in the North-East of the Russian Federation are presented. The dataset is based on 278 relevés made by N. N. Luneva, I. N. Nadtochiy, E. V. Filippova, T. D. Sokolova, Yu. V. Eroshina for field seasons in 1999–2916. The research area covered Leningrad, Novgorod, Pskov and Vologda regions. Data processing was carried out according floristic classification approach (Westhoff, Maarel, 1978), using TWINSPAN algoritm in JUICE software packages (Tichy, 2002). The new syntaxa are named in accordance with the rules of the International Code of Phytosociological Nomenclature (Theurillat et al., 2021). DCA-ordination using the CANOCO 4.5 software package (Ter Braak, Smilauer, 2002) was produced to identify patterns of environmental differentiation. The habitat moisture and soil richness-salinity scales status of communities (Ramenskiy et al., 1956) was calculated and basic agroclimatic parameters were identified to characterize the ecological variability of habitats. The communities were classified within the order of Aperetalia spica-venti J. Tx. et Tx. in Malato-Beliz et al. 1960 of the class Papaveretea rhoeadis S. Brulo et al. 2001 and were assigned to the alliance Scleranthion annui (Kruseman et Vlieger 1939) Sissingh in Westhoff et al. 1946), which unites the most mesophytic weed communities distributed mainly on gray forest, sod-podzolic, podzolic and other types of soils of the forest zone. The alliance diagnostic species are Stellaria media, Tripleurospermum inodorum, Capsella bursa-pastoris, Lepidotheca suaveolens, Thlaspi arvense, Centaurea cyanus. Three species from the diagnostic groups of ruderal vegetation classes are also active in their cenoflora — Elytrigia repens, Viola arvensis, Taraxacum officinale. From the diagnostic group of the Papaveretea rhoeadis class and the order Aperetalia spica-venti with high constancy, species are found Cirsium setosum, Chenopodium album, Sonchus arvensis, less often are Fallopia convolvulus. The group of species of the alliance Scleranthion annui inclu","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The higher units of dark coniferous forests of eastern part of Europe, Southern Urals and Western Siberia in the Braun-Blanquet system 位于欧洲东部、乌拉尔南部和西伯利亚西部的布劳恩-布兰凯体系中的暗针叶林的高级单位
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.44.76
N. Ermakov, V. Martynenko
Classification of dark coniferous forests of the Eastern part of Europe, Southern Urals and Western Siberia was performed using data set of 55 low-rank syntaxa (association, subassociation and variant), results of cluster analysis (Ward method, Euclidian distance) and DCA ordination (Fig. 1, 2). The synoptic table of dark coniferous forests syntaxa (Table) was developed and clarification of their diagnostic features was made. In accordance with the “Vegetation of Europe ….” (Mucina et al., 2016), the entire diversity of the higher units of the dark coniferous forests was classified into two classes, two orders and eight alliances. At the highest hierarchical level, two classes were clearly distinguished — the Asaro europaei–Abietetea sibiricae Ermakov et al. in Willner et al. 2016 and Vaccinio-Piceetea Br.-Bl. in Br. Bl. et al. 1939. The class Asaro europaei–Abietetea sibiricae includes subnemoral dark coniferous forests occurring in southern part of forest zone in the Southern Urals and Western Siberia. These forests combine some important features of boreal and nemoral vegetation in the phytocoenotic structure (physiognomy) and floristic composition. Therefore, the diagnosis of the class Asaro europaei–Abietetea sibiricae is based on a combination of the following criteria. 1. The absolute predominance of cold-resistant boreal tree species (Picea obovata, Pinus sibirica, Abies sibirica) in the higher layer makes it impossible to assign them to the higher units of nemoral vegetation and fundamentally distinguishes them from the class Carpino–Fagetea sylvaticae Jakucs ex Passarge 1968. 2. The high constancy values of widespread Eurasian shade-tolerant species associated dominantly with dark coniferous forests: Dryopteris expansa, D. carthusiana, D. assimilis, D. dilatata, Phegopteris connectilis, Diplazium sibiricum, Gymnocarpium dryopteris, G. robertianum, Athyrium filix-femina, Oxalis acetosella, widespread European-Siberian nemoral species: Daphne mezereum, Dryopteris filix-mas, Viburnum opulus, Stachys sylvatica, Galium odoratum, Geranium robertianum, Festuca altissima, Asarum europaeum, Actaea spicata, Brachypodium sylvaticum, Aegopodium podagraria, Viola mirabilis, Sanicula europaea, Festuca gigantea, as well as nemoral species with narrower ranges located in southern Siberia: Osmorhiza aristata, Anemonoides altaica, Corydalis bracteata, Erythronium sibiricum, Anemonoides caerulea, Myosotis krylovii, Euphorbia Pilosa and European species with eastern boundaries of ranges running in the southern Urals: Ulmus glabra, Pulmonaria obscura, Polygonatum multiflorum, Cicerbita uralensis, Geum urbanum, Carex pilosa, Euonymus verrucose. All these species were included in diagnostic combination of the Asaro europaei–Abietetea sibiricae. 4. Absence or rare occurrence of typical boreal species (characteristic of the class Vaccinio-Piceetea) in the shrub and ground layers. Currently, the class Asaro europaei–Abietetea sibiricae is represented by one ord
助理。Bracchydio sylvaticae–Abietum sibiricae Martynenko等人,2007年。Violo collinae–Piceetum obovatae Martyneko et Zhigunov in Martynenkoet al.,2005年。Chrysosplenio alternifolii–Piceetrum obovateae Martynnko et al.,2007年Septentrism–Piceenion obovatae Martynenko等人,2008年助理。Lathyro gmelinii–Laricetum sucaczewii Ishbirdin等人,1996年。Cerastio pauciflori–Piceetum obovatae Solomeshch等人,前Martynenko等人,2008年。Asaro europaei–Piceetun obovatae-Martynko等人,2009年。全部的Carici macrourae–Abietion sibiricae Lashchinskiy et Korolyuk 2016。第Caragano arborescenis–Piceetum obovatae Lashcchinskiy et Pisarenko 2016。第Aegopodio padagrariae–Abietum sibiricae Lashchinski et Koroljuk 2015。第Melico–Abieetum sibirica Ermakov et Lapshina 2013。根据“欧洲植被…”(Mucina et al.,2016)中提出的概念,欧洲东部、乌拉尔山脉南部和西伯利亚西部的所有北方深色针叶林都被划分为Vaccinio Piceetea类和Piceo obovatae目-Pinetalia sibiricae Ermakov 2013。该目的诊断物种为西伯利亚冷杉、白皮云杉、西伯利亚松、西伯利亚花楸、钝叶金龟子、少花Cerastium pauciflorum、白蜡星。暗针叶林的定量分类、排序结果(图1、2)和比较句法组学分析使纠正联盟体系成为可能。Piceo obovatae目-Pinetalia sibiricae Ermakov的同分类学概要2013.All.Aconito rubicundi–Abietion sibiricaa Anekhonov et Chytrý1998Ass。Aconito sepentrilism–Zaugolnova等人的Piceetum obovatae和Morozova。2009年助理。Bistorto majoris–Piceetum obovatae Martynko 2009年11月。李氏腺虫协会-马蒂年科obovatae Piceetum Martynenko,2009年11月。助理。Linnaeo borealis–Abietum sibiricae Lashchinskiy et Korolyuk 2015年。ss。Scutellario galericulatae–Piceetum obovatae Lashcchinskiy et Pisarenko 2016。ss。Rubo arctici–Abiestum sibiriceae Ermakov et Makhatkov 2011年。All。Pino sibiricae-Abietion sibirica Ermakovin Ermakovet Lapshina 2013。ss。Pino sibricae–Abieturm西伯利亚Ermakov et Lapshina 2013.All.Carici digitaae–Piceion obovatae All。nov.(本文描述)。诊断物种:木贼属(Equisetum scirpoides)、盾叶菊属(Chamaecytisus ruthicus。Equiseto scirpoidis–Piceetum obovatae Martynenko et Zhigunova 2004.所有。Vaccinio myrtilli–Piceion obovatae。nov.prov。A.Vaccinio myrtilli–Piceetum obovatae Ass.nov.(本文中描述)A.Carici macourae–Abietum sibiricae Ermakov et Lapshina 2013不能包含在任何现有联盟中。
{"title":"The higher units of dark coniferous forests of eastern part of Europe, Southern Urals and Western Siberia in the Braun-Blanquet system","authors":"N. Ermakov, V. Martynenko","doi":"10.31111/vegrus/2022.44.76","DOIUrl":"https://doi.org/10.31111/vegrus/2022.44.76","url":null,"abstract":"Classification of dark coniferous forests of the Eastern part of Europe, Southern Urals and Western Siberia was performed using data set of 55 low-rank syntaxa (association, subassociation and variant), results of cluster analysis (Ward method, Euclidian distance) and DCA ordination (Fig. 1, 2). The synoptic table of dark coniferous forests syntaxa (Table) was developed and clarification of their diagnostic features was made. In accordance with the “Vegetation of Europe ….” (Mucina et al., 2016), the entire diversity of the higher units of the dark coniferous forests was classified into two classes, two orders and eight alliances. At the highest hierarchical level, two classes were clearly distinguished — the Asaro europaei–Abietetea sibiricae Ermakov et al. in Willner et al. 2016 and Vaccinio-Piceetea Br.-Bl. in Br. Bl. et al. 1939. The class Asaro europaei–Abietetea sibiricae includes subnemoral dark coniferous forests occurring in southern part of forest zone in the Southern Urals and Western Siberia. These forests combine some important features of boreal and nemoral vegetation in the phytocoenotic structure (physiognomy) and floristic composition. Therefore, the diagnosis of the class Asaro europaei–Abietetea sibiricae is based on a combination of the following criteria. 1. The absolute predominance of cold-resistant boreal tree species (Picea obovata, Pinus sibirica, Abies sibirica) in the higher layer makes it impossible to assign them to the higher units of nemoral vegetation and fundamentally distinguishes them from the class Carpino–Fagetea sylvaticae Jakucs ex Passarge 1968. 2. The high constancy values of widespread Eurasian shade-tolerant species associated dominantly with dark coniferous forests: Dryopteris expansa, D. carthusiana, D. assimilis, D. dilatata, Phegopteris connectilis, Diplazium sibiricum, Gymnocarpium dryopteris, G. robertianum, Athyrium filix-femina, Oxalis acetosella, widespread European-Siberian nemoral species: Daphne mezereum, Dryopteris filix-mas, Viburnum opulus, Stachys sylvatica, Galium odoratum, Geranium robertianum, Festuca altissima, Asarum europaeum, Actaea spicata, Brachypodium sylvaticum, Aegopodium podagraria, Viola mirabilis, Sanicula europaea, Festuca gigantea, as well as nemoral species with narrower ranges located in southern Siberia: Osmorhiza aristata, Anemonoides altaica, Corydalis bracteata, Erythronium sibiricum, Anemonoides caerulea, Myosotis krylovii, Euphorbia Pilosa and European species with eastern boundaries of ranges running in the southern Urals: Ulmus glabra, Pulmonaria obscura, Polygonatum multiflorum, Cicerbita uralensis, Geum urbanum, Carex pilosa, Euonymus verrucose. All these species were included in diagnostic combination of the Asaro europaei–Abietetea sibiricae. 4. Absence or rare occurrence of typical boreal species (characteristic of the class Vaccinio-Piceetea) in the shrub and ground layers. Currently, the class Asaro europaei–Abietetea sibiricae is represented by one ord","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The survey of the psammophylous grass vegetation syntaxa in the Southern Nechernozemye of Russia 俄罗斯涅切尔诺泽耶南部沙生草植被区系调查
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.45.39
V. Kupreev, Yu. A. Semenishchenkov
The article provides a survey of grass psammophylous vegetation syntaxa in the Southern Nechernozemye of Russia and validation of syntaxa in accordance with the requirements of the International Code of Phytosociological Nomenclature (Theurillat et al., 2021); questions of syntaxonomy and diagnosis of units of different levels of the syntaxonomical hierarchy are discussed. The data for the analysis was the base obtained in 2018–2021, including 312 relevés of psammophylous grass vegetation in the Southern Nechernozemye of Russia (Bryansk, Kaluga, south-west of Moscow, north-west of Oryol, Smolensk Regions). Most of the relevés were made on the watershed of two large river systems: the Dnieper (the Sozh river basin) and the Volga (the Oka river basin) while some ones are in the northwestern part of the Smolensk region (Demidovsky district, Smolenskoye Poozerye National Park), which belongs to the Zapadnaya Dvina basin. Natural psammophytic habitats in this region are widespread on outwash plains, sandy river terraces dominated by pine forests of the alliance Dicrano–Pinion sylvestris (Libb. 1933) W. Mat. 1962 nom. conserv. propos. Open sands are formed in the place of such forests after clear felling of pine with the destruction of the living land cover. In addition, psammophylous grass vegetation forms on non-flooded or short-flooded sandy ridges in river floodplains, on plowed sands that were opened during construction, along sand pits, on clearings under power lines, along old abandoned roads on sand embankments and sandy roads fallow lands and pastures with sandy and sandy loam soils (Kupreev et al., 2020). The psammophylous grass vegetation of the studied region is represented by 12 associations comprising 4 alliances and 2 orders of the class Koelerio–Corynephoretea canescentis Klika in Klika et Novák 1941, which unites dry grasslands on sandy soils and on rocky outcrops of the temperate to boreal zones of Europe, the North Atlantic islands and Greenland (Mucina et al., 2016). On the basis of comparative analysis for alliances and orders we compiled regional combinations of diagnostic species with constancy in coenoflora above 20 % and values of the statistical φ-coefficient above 20 (at p <0.01): Armerion elongatae (Armeria maritima, Astragalus arenarius, Dianthus fisheri, Jovibarba globifera, Jurinea cyanoides, Koeleria glauca), Corynephorion canesentis (Corynephorus canescens), Hyperico perforati–Scleranthion perennis (Berteroa incana, Festuca ovina, Helichrysum arenarium, Hypericum perforatum, Jasione montana, Pilosella officinarum, Rumex acetosella, Scleranthus perennis, Trifolium arvense). The following species diagnose the orders of psammophylous vegetation: Corynephoretalia canescentis (Chamaecytisus ruthenicus, Cladonia arbuscula, Corynephorus canescens, Jurinea cyanoides, Koeleria glauca, Sedum acre) and Trifolio arvensis–Festucetalia ovinae (Abietinella abietina, Elytrigia repens, Hieracium umbellatum, Jasione montana, Festuca ov
本文对俄罗斯南部Nechernozemye的禾草沙生植被句法进行了调查,并根据《国际植物社会学命名法》的要求对句法进行了验证(Theurillat et al., 2021);讨论了句法层次中不同层次单位的句法分类学和诊断问题。用于分析的数据是2018-2021年获得的基础数据,包括俄罗斯南部涅切尔诺泽耶(布良斯克,卡卢加,莫斯科西南部,奥廖尔西北部,斯摩棱斯克地区)的312个沙门草植被的相关数据。大多数相关的调查都是在两大河流系统的分水岭上进行的:第聂伯河(Sozh河流域)和伏尔加河(Oka河流域),而一些调查则是在斯摩棱斯克地区的西北部(Demidovsky区,斯摩棱斯克普泽耶国家公园),该地区属于Zapadnaya Dvina盆地。该地区的天然沙生植物栖息地广泛分布于外冲平原和沙质河流阶地上,主要是联盟Dicrano-Pinion sylvestris的松林(Libb. 1933) W. Mat. 1962。言之凿凿。开阔的沙地是在松树被砍伐殆尽、生物覆盖被破坏后形成的。此外,沙生草植被形成于河流洪泛区未淹水或短淹水的沙质山脊、施工期间开垦的犁耕沙地、沙坑、电线杆下的空地、沙质堤防和沙质道路上的废弃旧路、休耕地和含沙质和沙质壤土的牧场(Kupreev et al., 2020)。研究区域的沙生草植被由Klika et Novák 1941中的Koelerio-Corynephoretea canescentis Klika类的4个联盟和2个目组成的12个协会代表,它将欧洲温带至寒带、北大西洋岛屿和格陵兰岛的沙质土壤和岩石露头上的干燥草地结合在一起(Mucina et al., 2016)。在对联盟和目数进行比较分析的基础上,编制了群落稳定性在20%以上、φ-统计系数大于20 (p <0.01)的诊断种区域组合;长青蒿(海洋蒿、沙棘黄芪、石竹、金盏花、金盏花、金盏花)、长青蒿(沙青蒿、羊蹄蒿、沙青菊、穿孔连翘、蒙大拿连翘、毛茛、牛蒡、二年生连翘、三叶草)。属沙生植物目的植物有:长尾草(Chamaecytisus ruthenicus, Cladonia arbuscula,长尾草(corynephretalia canescens),长尾草(Jurinea cyanoides),青花草(Koeleria glauca), Sedum acre)和长尾草(Trifolio arvenia ovinae) (Abietinella abietina, Elytrigia repens, Hieracium umellatum, Jasione montana,长尾草,F. rubra, Galium mollugo, Pilosella officinarum,车前草,Poa angustifolia, Trifolium arvense, Viola tricolor))。联盟的诊断组合部分重复了目的诊断组合,有些种是两个联盟的诊断组合,这与分类学的逻辑并不矛盾。通过对比表的分析发现,所有用于分析的沙生植被的syntaxa都可以根据其目前的诊断完全归属于Koelerio-Corynephoretea canescentis类(Mucina et al., 2016)。根据Koelerio-Corynephoretea canesensis类和sedo - sccleranthetea类的诊断种比例,不能将其分为两个类群。总的来说,在俄罗斯南部的Nechernozemye,几乎没有中欧sedo - sccleranthetea类群落的典型自然栖息地。它们被人为的生态环境所模仿,这些生态环境被冲刷或践踏,通常是受到严重干扰的碎石基质。在铁路和公路的斜坡上,在杂草丛生的石堆上,由于践踏或车辆的通过而被强烈压实,可能有可能将某些类型的草群落分类为sedo - sccleranthetea类。然而,将这些社区分配给这门课是有争议的。所研究的植物群落中有很大一部分被划分为Koelerio-Corynephoretea canescentis纲内的7个非等级单位——“群落”。首先,在演替的初始阶段,它们是先驱群落,通常是稀疏的或在区系上不完整的沙质群落,有广泛的草嗜沙质寡养生物的参与。其次,这些植物群落是在沙质和砂壤土松林的休耕地和空地等沙质植被受到人为干扰后形成的单优势植物群落;火过后,践踏。 本文对俄罗斯南部Nechernozemye的禾草沙生植被句法进行了调查,并根据《国际植物社会学命名法》的要求对句法进行了验证(Theurillat et al., 2021);讨论了句法层次中不同层次单位的句法分类学和诊断问题。用于分析的数据是2018-2021年获得的基础数据,包括俄罗斯南部涅切尔诺泽耶(布良斯克,卡卢加,莫斯科西南部,奥廖尔西北部,斯摩棱斯克地区)的312个沙门草植被的相关数据。大多数相关的调查都是在两大河流系统的分水岭上进行的:第聂伯河(Sozh河流域)和伏尔加河(Oka河流域),而一些调查则是在斯摩棱斯克地区的西北部(Demidovsky区,斯摩棱斯克普泽耶国家公园),该地区属于Zapadnaya Dvina盆地。该地区的天然沙生植物栖息地广泛分布于外冲平原和沙质河流阶地上,主要是联盟Dicrano-Pinion sylvestris的松林(Libb. 1933) W. Mat. 1962。言之凿凿。开阔的沙地是在松树被砍伐殆尽、生物覆盖被破坏后形成的。此外,沙生草植被形成于河流洪泛区未淹水或短淹水的沙质山脊、施工期间开垦的犁耕沙地、沙坑、电线杆下的空地、沙质堤防和沙质道路上的废弃旧路、休耕地和含沙质和沙质壤土的牧场(Kupreev et al., 2020)。研究区域的沙生草植被由Klika et Novák 1941中的Koelerio-Corynephoretea canescentis Klika类的4个联盟和2个目组成的12个协会代表,它将欧洲温带至寒带、北大西洋岛屿和格陵兰岛的沙质土壤和岩石露头上的干燥草地结合在一起(Mucina et al., 2016)。在对联盟和目数进行比较分析的基础上,编制了群落稳定性在20%以上、φ-统计系数大于20 (p <0.01)的诊断种区域组合;长青蒿(海洋蒿、沙棘黄芪、石竹、金盏花、金盏花、金盏花)、长青蒿(沙青蒿、羊蹄蒿、沙青菊、穿孔连翘、蒙大拿连翘、毛茛、牛蒡、二年生连翘、三叶草)。属沙生植物目的植物有:长尾草(Chamaecytisus ruthenicus, Cladonia arbuscula,长尾草(corynephretalia canescens),长尾草(Jurinea cyanoides),青花草(Koeleria glauca), Sedum acre)和长尾草(Trifolio arvenia ovinae) (Abietinella abietina, Elytrigia repens, Hieracium umellatum, Jasione montana,长尾草,F. rubra, Galium mollugo, Pilosella officinarum,车前草,Poa angustifo
{"title":"The survey of the psammophylous grass vegetation syntaxa in the Southern Nechernozemye of Russia","authors":"V. Kupreev, Yu. A. Semenishchenkov","doi":"10.31111/vegrus/2022.45.39","DOIUrl":"https://doi.org/10.31111/vegrus/2022.45.39","url":null,"abstract":"The article provides a survey of grass psammophylous vegetation syntaxa in the Southern Nechernozemye of Russia and validation of syntaxa in accordance with the requirements of the International Code of Phytosociological Nomenclature (Theurillat et al., 2021); questions of syntaxonomy and diagnosis of units of different levels of the syntaxonomical hierarchy are discussed. The data for the analysis was the base obtained in 2018–2021, including 312 relevés of psammophylous grass vegetation in the Southern Nechernozemye of Russia (Bryansk, Kaluga, south-west of Moscow, north-west of Oryol, Smolensk Regions). Most of the relevés were made on the watershed of two large river systems: the Dnieper (the Sozh river basin) and the Volga (the Oka river basin) while some ones are in the northwestern part of the Smolensk region (Demidovsky district, Smolenskoye Poozerye National Park), which belongs to the Zapadnaya Dvina basin. Natural psammophytic habitats in this region are widespread on outwash plains, sandy river terraces dominated by pine forests of the alliance Dicrano–Pinion sylvestris (Libb. 1933) W. Mat. 1962 nom. conserv. propos. Open sands are formed in the place of such forests after clear felling of pine with the destruction of the living land cover. In addition, psammophylous grass vegetation forms on non-flooded or short-flooded sandy ridges in river floodplains, on plowed sands that were opened during construction, along sand pits, on clearings under power lines, along old abandoned roads on sand embankments and sandy roads fallow lands and pastures with sandy and sandy loam soils (Kupreev et al., 2020). The psammophylous grass vegetation of the studied region is represented by 12 associations comprising 4 alliances and 2 orders of the class Koelerio–Corynephoretea canescentis Klika in Klika et Novák 1941, which unites dry grasslands on sandy soils and on rocky outcrops of the temperate to boreal zones of Europe, the North Atlantic islands and Greenland (Mucina et al., 2016). On the basis of comparative analysis for alliances and orders we compiled regional combinations of diagnostic species with constancy in coenoflora above 20 % and values of the statistical φ-coefficient above 20 (at p <0.01): Armerion elongatae (Armeria maritima, Astragalus arenarius, Dianthus fisheri, Jovibarba globifera, Jurinea cyanoides, Koeleria glauca), Corynephorion canesentis (Corynephorus canescens), Hyperico perforati–Scleranthion perennis (Berteroa incana, Festuca ovina, Helichrysum arenarium, Hypericum perforatum, Jasione montana, Pilosella officinarum, Rumex acetosella, Scleranthus perennis, Trifolium arvense). The following species diagnose the orders of psammophylous vegetation: Corynephoretalia canescentis (Chamaecytisus ruthenicus, Cladonia arbuscula, Corynephorus canescens, Jurinea cyanoides, Koeleria glauca, Sedum acre) and Trifolio arvensis–Festucetalia ovinae (Abietinella abietina, Elytrigia repens, Hieracium umbellatum, Jasione montana, Festuca ov","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New associations and higher syntaxa of willow scrubs in the East European sector of the Arctic 北极东欧地区柳树灌木的新组合和高级句法
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.44.97
O. Lavrinenko, A. G. Kochergina
Relevés of communities (94 in total) with shrub willows — Salix glauca, S. lanata, S. phylicifolia, and tree-like willows — S. viminalis, S. dasyclados were made in the Bolshezemelskaya tundra (11 sites, Fig. 1). Six new associations and one community type are described in 2 alliances — Polemonio acutiflorum–Salicion glaucae Lavrinenko et Lavrinenko 2021 and Galio borealis–Salicion viminalis all. nov. (Tables 1–4). The alliance Polemonio acutiflorum–Salicion glaucae unites herb and herb-moss willow scrubs (predominantly with Salix glauca, S. lanata) in lakeside depressions, runoff troughs, the slopes of hills on watersheds, slopes of bedrock terraces, above-floodplain terraces and occasionally flooded floodplains in river valleys. The range of this alliance is the plain tundra in the East European and Siberian sectors of the Arctic. Associations Polemonio acutiflorum–Salicetum lanatae Zanokha ex Lavrinenko et Lavrinenko 2021, Triseto sibirici–Salicetum glaucae Lavrinenko et Lavrinenko 2021 and Climacio dendroidis–Salicetum lanatae Lavrinenko et Lavrinenko 2021 were earlier described on Taymyr Peninsula, Kolguev and Vaygach Islands (Lavrinenko, Lavrinenko, 2021). New associations Chamaepericlymeno suecici–Salicetum glaucae, Geo rivalis–Salicetum glaucae, Hylocomio splendentis–Salicetum glaucae are described in the Bolshezemelskaya tundra (Table 1). Some communities of the associations Dicrano majoris–Salicetum lanatae Khitun in Telyatnikov et al. 2021 and Calliergono cordifolii–Salicetum lanatae Khitun in Telyatnikov et al. 2021, described on the Tazovskiy and Gydanskiy Peninsulas (Telyatnikov et al., 2021a and b) can be attributed to this alliance. However, the decisions for both these associations need to be revision (see Table 5). The characteristic species of the alliance Polemonio acutiflorum–Salicion glaucae were confirmed and clarifed. The phi-coefficient values for them are in the range 84.7–42.3 (Table 6). A new order of the same name is proposed for the willow scrubs of this alliance. Order Polemonio acutiflorum–Salicetalia glaucae ord. nov. Herb and herb-moss willow scrubs with Salix glauca and S. lanata in the plain tundra in the East European and Siberian sectors of the Arctic. Nomenclature type (holotypus): alliance Polemonio acutiflorum–Salicion glaucae Lavrinenko et Lavrinenko 2021 (Lavrinenko, Lavrinenko, 2021: 99). Differentiating species combination: Salix glauca, S. lanata; Bistorta vivipara, Petasites frigidus, Poa arctica, Polemonium acutiflorum, Ranunculus propinquus, Rubus chamaemorus, Valeriana capitata; Hylocomium splendens. Constant taxa: Achillea millefolium, Cardamine pratensis subsp. angustifolia, Chrysosplenium alternifolium subsp. sibiricum, Equisetum arvense s. l., Poa pratensis s. l., Rubus arcticus, Veratrum lobelianum, Viola biflora; Bryum pseudotriquetrum, Rhizomnium pseudopunctatum, Sanionia uncinata. Habitats. Intrazonal biotopes on watersheds (lakeside depressions, runoff troughs, hillsides), slopes
在针叶林北部的Pechora河泛滥平原上描述了植物群落的紧密性(Shushpannikova,1996),因此我们将Galio borealis–Salicion viminalis范围扩大到了这个亚区。再往南,来自同一秩序和阶级的Salicion triandrae T.Müller et Görs 1958联盟广泛存在。三角柳群落占据了泰加亚带中部和南部的河岸栖息地(Taran,1999;Vasilevich,2009)和欧洲河口区(Neuhäuslováet al.,2013;Mucina et al.,2016)。DCA排序结果证实了Polemonio acutiflorum–Salicion glaucae和Galio borealis–Salision viminalis联盟建立的正确性(图14)。Carici stantis–Salicetum phylicfoliae ass.nov.(表3)将柳树灌木(Salix glauca,S.lanataиS.phylicfolia)与沼泽草本植物(圆珠、扁叶、木贼、狭叶Eriophorum angustfolium,Menyanthes trifoliata)结合在一起——莎草(Carex aquatilis subsp.stans)。如果关注下层的组成,则其结合地无疑将位于Scheuchzerio palustris–Caricetea nigrae Tx.1937类,因为大多数列出的物种都是其或Caricetalia nigrae Koch 1926目的特征。然而,相当高且高度封闭的灌木层的存在,决定了群落的结构和地貌,使人们对其是否属于沼泽产生了疑问。目前,我们把这些社区留在上级单位之外。东欧苔原、山地Fennoscandia(Salicion phylicfoliae Dierssen 1992)和Chukotka(Aulacomnio turgidi–Salicion glaucae Sinelnikova 2001(2009)和Saussureo oxyodontae–Saliciion Sekretareva 2001)的句法区系组成差异。证明)具有显著性(表4),聚类分析的结果清楚地表明了这一点(图15)。另一个北方联盟的新分类群——Geranio albiflorum–Salicion Sekretareva 2011,在《极地乌拉尔》中描述,与联盟Galio borealis–Salicien viminalis的柳树灌木结合在一起(图15)。我们没有将新目Polemonio acutiflorum–Salicetalia glaucae ord.nov。,与Salisetalia glauco lanatae Bœuf等人(Mucina等人,2016年)(亚北极和北方草本柳树灌木和全北极的桦树krummholz)相反,属于Betulo carpaticae-Alnetea viridis Rejmánek ex B 339 uf,Theurillat,Willner,Mucina和Simler在Bœuf等人2014(阿尔卑斯山、喀尔巴阡山脉、巴尔干半岛、高加索地区、北欧和格陵兰岛的亚高山和亚北极草本植物丰富的赤杨和柳树灌木以及克鲁姆霍尔茨)。我们认为,对于苔原地带的柳树灌木丛,需要对所有累积的数据进行修订,并对一个新类别进行描述。
{"title":"New associations and higher syntaxa of willow scrubs in the East European sector of the Arctic","authors":"O. Lavrinenko, A. G. Kochergina","doi":"10.31111/vegrus/2022.44.97","DOIUrl":"https://doi.org/10.31111/vegrus/2022.44.97","url":null,"abstract":"Relevés of communities (94 in total) with shrub willows — Salix glauca, S. lanata, S. phylicifolia, and tree-like willows — S. viminalis, S. dasyclados were made in the Bolshezemelskaya tundra (11 sites, Fig. 1). Six new associations and one community type are described in 2 alliances — Polemonio acutiflorum–Salicion glaucae Lavrinenko et Lavrinenko 2021 and Galio borealis–Salicion viminalis all. nov. (Tables 1–4). The alliance Polemonio acutiflorum–Salicion glaucae unites herb and herb-moss willow scrubs (predominantly with Salix glauca, S. lanata) in lakeside depressions, runoff troughs, the slopes of hills on watersheds, slopes of bedrock terraces, above-floodplain terraces and occasionally flooded floodplains in river valleys. The range of this alliance is the plain tundra in the East European and Siberian sectors of the Arctic. Associations Polemonio acutiflorum–Salicetum lanatae Zanokha ex Lavrinenko et Lavrinenko 2021, Triseto sibirici–Salicetum glaucae Lavrinenko et Lavrinenko 2021 and Climacio dendroidis–Salicetum lanatae Lavrinenko et Lavrinenko 2021 were earlier described on Taymyr Peninsula, Kolguev and Vaygach Islands (Lavrinenko, Lavrinenko, 2021). New associations Chamaepericlymeno suecici–Salicetum glaucae, Geo rivalis–Salicetum glaucae, Hylocomio splendentis–Salicetum glaucae are described in the Bolshezemelskaya tundra (Table 1). Some communities of the associations Dicrano majoris–Salicetum lanatae Khitun in Telyatnikov et al. 2021 and Calliergono cordifolii–Salicetum lanatae Khitun in Telyatnikov et al. 2021, described on the Tazovskiy and Gydanskiy Peninsulas (Telyatnikov et al., 2021a and b) can be attributed to this alliance. However, the decisions for both these associations need to be revision (see Table 5). The characteristic species of the alliance Polemonio acutiflorum–Salicion glaucae were confirmed and clarifed. The phi-coefficient values for them are in the range 84.7–42.3 (Table 6). A new order of the same name is proposed for the willow scrubs of this alliance. Order Polemonio acutiflorum–Salicetalia glaucae ord. nov. Herb and herb-moss willow scrubs with Salix glauca and S. lanata in the plain tundra in the East European and Siberian sectors of the Arctic. Nomenclature type (holotypus): alliance Polemonio acutiflorum–Salicion glaucae Lavrinenko et Lavrinenko 2021 (Lavrinenko, Lavrinenko, 2021: 99). Differentiating species combination: Salix glauca, S. lanata; Bistorta vivipara, Petasites frigidus, Poa arctica, Polemonium acutiflorum, Ranunculus propinquus, Rubus chamaemorus, Valeriana capitata; Hylocomium splendens. Constant taxa: Achillea millefolium, Cardamine pratensis subsp. angustifolia, Chrysosplenium alternifolium subsp. sibiricum, Equisetum arvense s. l., Poa pratensis s. l., Rubus arcticus, Veratrum lobelianum, Viola biflora; Bryum pseudotriquetrum, Rhizomnium pseudopunctatum, Sanionia uncinata. Habitats. Intrazonal biotopes on watersheds (lakeside depressions, runoff troughs, hillsides), slopes","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segetal vegetation of rice fields in the Chechen Republic 车臣共和国稻田的隔层植被
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.45.112
R. Erzhapova, N. Bagrikova, M. Alikhadzhiev
According to the Braun-Blanquet approach the segetal communities of rice agrocenoses of Eurasia belong to the class Oryzetea sativae Miyawaki 1960, although there is a lot of species that are diagnostic of different classes — Phragmito-Magnocaricetea Klika in Klika et Novák 1941, Lemnetea O. de Bolòs et Masclans 1955, Potamogetonetea Klika in Klika et Novák 1941, Bidentetea Tx. et al. ex von Rochow 1951, etc. The largest number of the described basic syntaxa (associations, subassociations or communities) are allocated in Eastern, South-Eastern and Central Asia. Lots of new syntaxa specific to the rice fields were described in Japan (Miyawaki, 1960), Southern Thailand (Nowak et al., 2015), Central Nepal (Nowak et al., 2016), North Korea (Kolbek et al., 1996; Kolbek, Jarolímek, 2013), Tajikistan (Nowak et al., 2013), Vietnam and the Philippines (Fried et al., 2017, 2018), many of which have been assigned in the alliance Ludwigion hyssopifolio-octovalvis A. Nowak, S. Nowak, Nobis 2015, the order Cypero–Echinochloetalia oryzoidis O. de Bolòs et Masclans 1955, the class Oryzetea sativae. The rice communities described in Western (Spain, Portugal, Andorra, Italy, France, Hungary, Romania, Bulgaria) and Eastern (Ukraine, Russian Federation) Europe which differ in species composition from those in Asian regions are assigned to the alliance Oryzo sativae–Echinochloion oryzoidis O. de Bolòs et Masclans 1955 within the above order and class. The paper represents the first results of the classification based on 20 relevés of rice communities studied in 2018 in the Gudermessky and Shelkovskoy districts of the Chechen Republic, located on the northern slope of the Great Caucasian Ridge, the Chechen Plain and the Terek–Kuma Lowland. The areas under rice crop rotation are kept at an altitude of 20–35 m above sea level both in the north and in the plain part, mainly in the interfluves of the Terek and Sunzha rivers. The climate in the rice-growing areas is continental, insufficiently humid, with the very warm summers and moderately mild winters and the lot of heat and dryness in the summer months. The mean year temperature is 10.8 °C, during the growing season of rice (May–September) — 20.8 °C; the sum of effective temperatures above 15 °C is about 3100–3400 °C (Tulyakova, 1973; Ryzhykov et al., 1991); the annual amount of precipitation is 400—450 mm with less than 270 mm in summers. The largest areas on the Terek and Sunzha river interfluve are occupied by intrazonal meadow and swamp vegetation. There are two associations and one community belonging to the alliannce Oryzo sativae–Echinochloion oryzoidis have been established within study area. The associations Echinochloo–Oryzetum sativae Soó ex Ubrizsy 1948 (Table 2, rel. 1–8) and Oryzo–Cyperetum difformis Koch 1954 (Table 2, exp. 9–14) are widely distributed in rice fields in Western and Eastern Europe, while the community Setaria pumila–Oryza sativa (Table, rel. 15–20) is a new one. On cultivated lands, the
根据Braun-Blanquet方法,欧亚大陆稻系植物的分区群落属于Oryzetea sativae Miyawaki 1960,尽管有许多物种被诊断为不同的分类- phragmitto - magnocaricetea Klika in Klika et Novák 1941, Lemnetea O. de Bolòs et Masclans 1955, Potamogetonetea Klika in Klika et Novák 1941, Bidentetea txet al. ex von Rochow 1951等。所描述的基本句法群(协会、亚协会或群落)最多分布在东亚、东南亚和中亚。在日本(Miyawaki, 1960)、泰国南部(Nowak et al., 2015)、尼泊尔中部(Nowak et al., 2016)、朝鲜(Kolbek et al., 1996;Kolbek, Jarolímek, 2013),塔吉克斯坦(Nowak etal ., 2013),越南和菲律宾(Fried etal ., 2017, 2018),其中许多已被分配在联盟Ludwigion hyssopifolio-octovalvis A. Nowak, S. Nowak, Nobis 2015, Cypero-Echinochloetalia oryzoidis O. de Bolòs et Masclans 1955, Oryzetea sativae纲。在欧洲西部(西班牙、葡萄牙、安道尔、意大利、法国、匈牙利、罗马尼亚、保加利亚)和东部(乌克兰、俄罗斯联邦)所描述的与亚洲地区在物种组成上不同的水稻群落,归属于上述目和纲中的Oryzo sativa - echinochloion oryzoidis O. de Bolòs et Masclans 1955。这篇论文是基于2018年在车臣共和国古德梅斯基和谢尔科夫斯科伊地区研究的20个相关水稻群落的分类的第一批结果,这些地区位于高加索大岭北坡、车臣平原和捷列克-库马低地。水稻轮作地区在北部和平原地区保持在海拔20-35 m的高度,主要是在特列克河和孙扎河的交汇处。水稻种植区的气候属于大陆性气候,湿度不足,夏季非常温暖,冬季温和,夏季炎热干燥。年平均气温10.8℃,水稻生长期(5 - 9月)- 20.8℃;15°C以上的有效温度总和约为3100-3400°C (Tulyakova, 1973;Ryzhykov et al., 1991);年降水量400 ~ 450毫米,夏季小于270毫米。在特列克河和孙扎河交汇处,面积最大的是带内草甸和沼泽植被。研究区内已建立了2个水稻群和1个水稻棘球龙联盟群落。echinochlo - oryzetum sativae Soó ex Ubrizsy 1948(表2,exp. 1-8)和Oryzo-Cyperetum diformis Koch 1954(表2,exp. 9-14)广泛分布于西欧和东欧的稻田中,而Setaria pumila-Oryza sativa(表2,exp. 15-20)群落则是一个新群落。在耕地上,分区群落的组成和结构取决于农业技术措施的强度以及洪水的深度和持续时间。排水渠内和稻田间坝上形成的田边群落的物种多样性有显著影响。在有化学和农业技术处理的稻田中,以紫斑草(echinochlooo - oryzetum sativa)群落为主,而在影响不强的地方形成了稻-异草(oryzoperetum diformis)和矮尾草(Setaria pumilia - oryza sativa)群落。与欧洲其他地区相比,与类似社区相比,长尾草的大量参与是车臣共和国隔离社区的一个显著特征。
{"title":"Segetal vegetation of rice fields in the Chechen Republic","authors":"R. Erzhapova, N. Bagrikova, M. Alikhadzhiev","doi":"10.31111/vegrus/2022.45.112","DOIUrl":"https://doi.org/10.31111/vegrus/2022.45.112","url":null,"abstract":"According to the Braun-Blanquet approach the segetal communities of rice agrocenoses of Eurasia belong to the class Oryzetea sativae Miyawaki 1960, although there is a lot of species that are diagnostic of different classes — Phragmito-Magnocaricetea Klika in Klika et Novák 1941, Lemnetea O. de Bolòs et Masclans 1955, Potamogetonetea Klika in Klika et Novák 1941, Bidentetea Tx. et al. ex von Rochow 1951, etc. The largest number of the described basic syntaxa (associations, subassociations or communities) are allocated in Eastern, South-Eastern and Central Asia. Lots of new syntaxa specific to the rice fields were described in Japan (Miyawaki, 1960), Southern Thailand (Nowak et al., 2015), Central Nepal (Nowak et al., 2016), North Korea (Kolbek et al., 1996; Kolbek, Jarolímek, 2013), Tajikistan (Nowak et al., 2013), Vietnam and the Philippines (Fried et al., 2017, 2018), many of which have been assigned in the alliance Ludwigion hyssopifolio-octovalvis A. Nowak, S. Nowak, Nobis 2015, the order Cypero–Echinochloetalia oryzoidis O. de Bolòs et Masclans 1955, the class Oryzetea sativae. The rice communities described in Western (Spain, Portugal, Andorra, Italy, France, Hungary, Romania, Bulgaria) and Eastern (Ukraine, Russian Federation) Europe which differ in species composition from those in Asian regions are assigned to the alliance Oryzo sativae–Echinochloion oryzoidis O. de Bolòs et Masclans 1955 within the above order and class. The paper represents the first results of the classification based on 20 relevés of rice communities studied in 2018 in the Gudermessky and Shelkovskoy districts of the Chechen Republic, located on the northern slope of the Great Caucasian Ridge, the Chechen Plain and the Terek–Kuma Lowland. The areas under rice crop rotation are kept at an altitude of 20–35 m above sea level both in the north and in the plain part, mainly in the interfluves of the Terek and Sunzha rivers. The climate in the rice-growing areas is continental, insufficiently humid, with the very warm summers and moderately mild winters and the lot of heat and dryness in the summer months. The mean year temperature is 10.8 °C, during the growing season of rice (May–September) — 20.8 °C; the sum of effective temperatures above 15 °C is about 3100–3400 °C (Tulyakova, 1973; Ryzhykov et al., 1991); the annual amount of precipitation is 400—450 mm with less than 270 mm in summers. The largest areas on the Terek and Sunzha river interfluve are occupied by intrazonal meadow and swamp vegetation. There are two associations and one community belonging to the alliannce Oryzo sativae–Echinochloion oryzoidis have been established within study area. The associations Echinochloo–Oryzetum sativae Soó ex Ubrizsy 1948 (Table 2, rel. 1–8) and Oryzo–Cyperetum difformis Koch 1954 (Table 2, exp. 9–14) are widely distributed in rice fields in Western and Eastern Europe, while the community Setaria pumila–Oryza sativa (Table, rel. 15–20) is a new one. On cultivated lands, the","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Russian geobotany: results and prospects. On the work of the All-Russian scientific conference with international participation dedicated to the 100th anniversary of the Department of Geobotany of the Komarov Botanical Institute (St. Petersburg, September 26–30, 2022) 俄罗斯地球植物学:成果和前景。关于纪念科马罗夫植物研究所地球植物系成立100周年的全俄国际科学会议的工作(圣彼得堡,2022年9月26日至30日)
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.45.124
I. Y. Bakkal, E. Volkova, A. P. Korablev, V. Neshataeva, V. Khramtsov
The All-Russian Scientific Conference “Russian geobotany: results and development prospects” was dedicated to the 100th anniversary of the Department of Geobotany of the Komarov Botanical Institute. The Conference was held September 26–30, 2022 in St. Petersburg (Proceedings…, 2022). 123 geobotanists from 25 cities of Russia participated in the Conference as well as our colleagues from Belarus, Kazakhstan, and Vietnam. The conference activity was held in three main topics: “Vegetation diversity and conservation”, “Structure and dynamics of plant communities”, “Vegetation geography and cartography”. At the plenary session and section meetings 62 oral and 56 poster presentations were presented. Three “round-table” talk sessions were held: two of them were dedicated to the problems of vegetation classification and the last — to the issues of geobotanical terminology. A significant part of the reports at the section “Diversity and protection of plant communities” was devoted to the classification of vegetation. The most part of authors used methods of floristic classification (Brown-Blanquet approach), but general analytic surveys were presented only in some works, and the rest were devoted to regional and local prodromuses of individual unions or to descriptions of lower syntaxa. A significant part of geobotanists follows the traditional principles of the Russian and Soviet school of dominant-determinant classification; the two other approaches to vegetation classification were applied in single reports: topological-ecological and geographical-genetic. Several papers have been devoted to the classification of habitat types. A significant part of vegetation studies have been carried out on the territory of protected areas: nature reserves, sanctuaries, national parks and natural landmarks: from the westernmost — Belovezhskaya Pushcha (Belarus) to the easternmost — the Bastak Reserve (Jewish Autonomous Region) and the Koryak Reserve (Kamchatka Region). Many of the reports at the section “Structure and dynamics of plant communities” concerned the study of vegetation dynamics after anthropogenic impacts, which are the main destabilizing factors of vegetation cover. Very few studies related to climate change have been presented. Several reports analyzed the demographic structure of populations. Few reports were also devoted to the statistical modelling of vegetation dynamics. The modern approach based on the functional characteristics of plants is just beginning to develop in Russian geobotany. Rapidly developing machine learning methods are gradually being introduced into the arsenal of geobotanical science methods — for the purposes of vegetation classification and vegetation mapping. Research in the botanical geography and cartography continues in various regions of our country, in Belarus and Kazakhstan. The positive aspects in cartographic work are the increasing use of remote sensing data and tools for their processing, as well as the compilati
“俄罗斯地球植物学:成果与发展前景”全俄科学会议是为纪念科马罗夫植物学研究所地球植物学系成立100周年而举行的。会议于2022年9月26日至30日在圣彼得堡举行(Proceedings…,2022)。来自俄罗斯25个城市的123名地球植物学家以及来自白俄罗斯、哈萨克斯坦和越南的同事参加了会议。会议活动分为三个主题:“植被多样性与保护”、“植物群落结构与动态”、“植被地理与制图”。全体会议和分组会议共作了62次口头报告和56次海报报告。举行了三次“圆桌”会议:其中两次专门讨论植被分类问题,最后一次讨论地植物学术语问题。在“植物群落的多样性和保护”一节中,报告的很大一部分专门讨论了植被的分类。大部分作者采用了植物区系分类的方法(Brown-Blanquet方法),但一般的分析调查只在一些著作中有介绍,其余的都是对个别联合的区域和局部前体或低级句法的描述。相当一部分地植物学家遵循俄罗斯和苏联学派的传统原则,即支配-决定分类;另外两种植被分类方法在单一报告中得到应用:拓扑生态学和地理遗传学。有几篇论文专门讨论了生境类型的分类。植被研究的很大一部分是在保护区的领土上进行的:自然保护区、保护区、国家公园和自然地标:从最西端的Belovezhskaya Pushcha(白俄罗斯)到最东端的Bastak保护区(犹太自治区)和Koryak保护区(堪察加地区)。“植物群落结构与动态”一节的许多报告都涉及人为影响后植被动态的研究,这是植被覆盖的主要不稳定因素。与气候变化有关的研究很少。有几份报告分析了人口结构。也很少有报告专门讨论植被动态的统计模拟。基于植物功能特征的现代研究方法在俄罗斯地植物学中刚刚起步。快速发展的机器学习方法正逐渐被引入到地球植物学方法库中,用于植被分类和植被制图。在我国的各个地区,在白俄罗斯和哈萨克斯坦,继续进行植物地理学和制图学的研究。地图学工作的积极方面是越来越多地使用遥感数据及其处理工具,以及在植被图的基础上编制应用地图,以解决各种实际问题。但是,在“植被地理学和制图学”一节中提出了少数报告,这可能反映出对这一领域的兴趣减少和缺乏专家。此外,应该指出的是,近几十年来,很少有专门从事主要植物地理学概括的工作。从事中小尺度植被制图的地植物学家越来越少,这将继续和发展国家地植物制图和区划的传统。
{"title":"Russian geobotany: results and prospects. On the work of the All-Russian scientific conference with international participation dedicated to the 100th anniversary of the Department of Geobotany of the Komarov Botanical Institute (St. Petersburg, September 26–30, 2022)","authors":"I. Y. Bakkal, E. Volkova, A. P. Korablev, V. Neshataeva, V. Khramtsov","doi":"10.31111/vegrus/2022.45.124","DOIUrl":"https://doi.org/10.31111/vegrus/2022.45.124","url":null,"abstract":"The All-Russian Scientific Conference “Russian geobotany: results and development prospects” was dedicated to the 100th anniversary of the Department of Geobotany of the Komarov Botanical Institute. The Conference was held September 26–30, 2022 in St. Petersburg (Proceedings…, 2022). 123 geobotanists from 25 cities of Russia participated in the Conference as well as our colleagues from Belarus, Kazakhstan, and Vietnam. The conference activity was held in three main topics: “Vegetation diversity and conservation”, “Structure and dynamics of plant communities”, “Vegetation geography and cartography”. At the plenary session and section meetings 62 oral and 56 poster presentations were presented. Three “round-table” talk sessions were held: two of them were dedicated to the problems of vegetation classification and the last — to the issues of geobotanical terminology. A significant part of the reports at the section “Diversity and protection of plant communities” was devoted to the classification of vegetation. The most part of authors used methods of floristic classification (Brown-Blanquet approach), but general analytic surveys were presented only in some works, and the rest were devoted to regional and local prodromuses of individual unions or to descriptions of lower syntaxa. A significant part of geobotanists follows the traditional principles of the Russian and Soviet school of dominant-determinant classification; the two other approaches to vegetation classification were applied in single reports: topological-ecological and geographical-genetic. Several papers have been devoted to the classification of habitat types. A significant part of vegetation studies have been carried out on the territory of protected areas: nature reserves, sanctuaries, national parks and natural landmarks: from the westernmost — Belovezhskaya Pushcha (Belarus) to the easternmost — the Bastak Reserve (Jewish Autonomous Region) and the Koryak Reserve (Kamchatka Region). Many of the reports at the section “Structure and dynamics of plant communities” concerned the study of vegetation dynamics after anthropogenic impacts, which are the main destabilizing factors of vegetation cover. Very few studies related to climate change have been presented. Several reports analyzed the demographic structure of populations. Few reports were also devoted to the statistical modelling of vegetation dynamics. The modern approach based on the functional characteristics of plants is just beginning to develop in Russian geobotany. Rapidly developing machine learning methods are gradually being introduced into the arsenal of geobotanical science methods — for the purposes of vegetation classification and vegetation mapping. Research in the botanical geography and cartography continues in various regions of our country, in Belarus and Kazakhstan. The positive aspects in cartographic work are the increasing use of remote sensing data and tools for their processing, as well as the compilati","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-sedge vegetation of waterlogged bog hollows and fens in the north of Western Siberia 西伯利亚西部北部浸水沼泽洼地和沼泽的低莎草植被
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.45.3
E. Lapshina, I. Filippov, G. Ganasevich
The classification of West Siberian mire vegetation is more or less well developed in the southern part of the forest zone (Lapshina, 2010) while in the northern part of the West Siberian Plain it has received much less study. There are only a small number of publications containing descriptions of mire types and plant communities (Pyavchenko, 1955; Boch et al., 1971; Kirpotin et al., 1995; Smagin, 2003; Neshatayev et al., 2002). This paper presents the classification results for the low-sedge vegetation of waterlogged hollows and Sphagnum lawns, within flat palsa-bogs, ombrotrophic raised bogs and transitional mire complexes, which is assigned to two alliances — Stygio–Caricion limosae Nordhagen 1943 and Scheuchzerion palustris Nordhagen ex Tx. 1937 of the class Scheuchzerio–Caricetea nigrae Tx. 1937. The classification is based on 422 relevés performed in 2004–2019 at 22 plots located between 63° and 75° N in the northern taiga, forest tundra, and southern tundra subzones of West Siberia (Fig. 1). In the most recent summary “Vegetation of Europe…” (Mucina et. al., 2016), the alliance Stygio–Caricion limosae is assigned to the order Sphagno watnstorfii–Tomentypnetalia Lapshina 2010, however this does not seem conclusive. Communities of this order are closely associated with rich fens, often spring fens fed by ground water, which does not correspond to the real conditions in which communities of this alliance are developed. Ecologically, in the current structure of the class Scheuchzetio–Caricetea nigrae (Peterka et al, 2017), the alliance Stygio–Caricion limosae has taken the true place of the alliance Rhynchosporion albae Koch 1926 (ICPN, Art. 36), which was initially unambiguously associated with the order Caricetalia nigrae Koch 1926 based on the original relevés and diagnostic species (Rhynchspora alba, Agrostis canina, sphagnum mosses of sec. Subsecunda). Therefore, we also consider the alliance Stygio–Caricion limosae belonging to the order Caricetalia nigrae, where it fits better judging by its ecological and floristic features. The differential species combination of the alliance Stygio–Caricion limosae in the northern part of West Siberia includes Carex limosa, Drosera obovata, Juncus stygius, Gymnocolea inflata, Sphagnum perfoliatum, S. platyphyllum, S. subsecundum, Utricularia minor, U. ochroleuca, Warnstorfia exannulata, and W. fluitans. Within this alliance, two new associations with subassociations have been described: Utricularo ochroleucae–Caricetum limosae and Sphagno perfoliati–Caricetum rotundatae, of which the first one occurs in the northern taiga mires, while the second one in the forest tundra and southern tundra subzones. The order Scheuchzerietalia palustris Nordhagen ex Tx. 1937 comprises ombrotrophic vegetation of Sphagnum lawns and bog hollows (Mucina et al., 2016) and currently includes the only alliance Scheuchzerion palustris. Its typical boreal suballiance Scheuchzerienion palustris suball. nov. (nomenclature
西西伯利亚沼泽植被的分类在森林带的南部或多或少比较发达(Lapshina, 2010),而在西西伯利亚平原的北部却很少得到研究。只有少数出版物载有对沼泽类型和植物群落的描述(Pyavchenko, 1955年;Boch et al., 1971;Kirpotin et al., 1995;Smagin, 2003;Neshatayev et al., 2002)。本文介绍了水淹洼地和Sphagnum草坪的低苔草植被的分类结果,在平坦的palsa-bogs, ombrotrophic raised bogs和过渡沼泽复群中,将其划分为两个联盟- Stygio-Caricion limosae Nordhagen 1943和Scheuchzerion palustris Nordhagen ex Tx. 1937的Scheuchzerio-Caricetea nigrae Tx. 1937。该分类是基于2004-2019年在北针叶林、森林冻土带和西西伯利亚南部冻土带亚区北纬63°至75°之间的22个样地进行的422次相关的<s:1> <s:1>生长和生长数据(图1)。在最近的摘要“欧洲植被……”(Mucina etal ., 2016)中,Stygio-Caricion limosae联盟被分配到Sphagno watnstorfii-Tomentypnetalia Lapshina 2010,然而这似乎并不是结论性的。这一目的群落与丰富的沼泽密切相关,通常是由地下水喂养的泉水沼泽,这与该联盟社区发展的实际条件不符。在生态学上,在Scheuchzetio-Caricetea nigrae类的当前结构中(Peterka etal, 2017), Stygio-Caricion limosae联盟已经取代了Rhynchosporion albae Koch 1926 (ICPN, Art. 36),该联盟最初明确地与Caricetalia nigrae Koch 1926基于原始相关和诊断物种(Rhynchspora alba, Agrostis canina, sphagnum moss of sec. Subsecunda)相关联。因此,我们也认为Stygio-Caricion limosae联盟属于Caricetalia nigrae目,从其生态和植物区系特征来看,它更适合于此。西西伯利亚北部的海陆-海陆联盟的差异种组合包括:海陆Carex limosa, Drosera obovata, junus stygius, Gymnocolea inflata, Sphagnum perfoliatum, S. platyphyllum, S. subsecundum, Utricularia minor, U. ochroleuca, Warnstorfia exannulata和W. fluitans。在这个联盟中,描述了两个新的亚类群:Utricularo ochroleucae-Caricetum limmosae和Sphagno perfoliatim - caricetum rotundatae,其中第一个类群出现在北部针叶林沼泽,第二个类群出现在森林冻土带和南部冻土带亚带。Scheuchzerietalia palustris Nordhagen ex Tx. 1937包括Sphagnum草坪和沼泽洼地的营养型植被(Mucina etal ., 2016),目前包括唯一的Scheuchzerietalia palustris联盟。其典型的北方亚联盟Scheuchzerienion古陆亚群。11月命名类型-卵形斑痣。[中文]:ass. Scheuchzerietum palustris txen, 1937: 61)由两个协会代表:Eriophoro vaginati-Sphagnetum baltici和Carici limosa - sphagnetum jenseni。它们在北方的分布受北部针叶林泥沼复合体的限制。再往北,类似的栖息地主要被亚北极亚联盟的杂花群落所占据。在这一亚联盟中,两个群落——圆形沼泽群落-波罗地沼泽群落和圆形沼泽群落-林德贝沼泽群落——广泛分布于从北部针叶林到南部冻土带的整个梯度上。稀有花斑蝶-波罗的海斑蝶只偶尔出现,并且局限于森林苔原和南部冻土带。对整个数据集进行统计处理,以确认分类结果并做出一些句法决策。t-SNE排序(t-分布随机邻居嵌入法)(van der Maaten, Hinton, 2008)的结果不仅在联盟水平上,而且在顺序水平上证实了将洼地和沼泽低草群落分离为寡营养和中寡营养的有效性和便捷性。尽管在地貌和植物区系上有一定的相似性,但两个联盟在多维空间上的位置点分化良好,互不重叠(图10)。统计处理结果的可视化计算和物种丰度相似度的计算表明,在Scheuchzerion palustris联盟中,整个低营养化泥鳅草坪的相关阵列可以被优势泥鳅苔藓物种划分为不同的簇,在这些簇中也可以区分出优势草层簇。 西西伯利亚沼泽植被的分类在森林带的南部或多或少比较发达(Lapshina, 2010),而在西西伯利亚平原的北部却很少得到研究。只有少数出版物载有对沼泽类型和植物群落的描述(Pyavchenko, 1955年;Boch et al., 1971;Kirpotin et al., 1995;Smagin, 2003;Neshatayev et al., 2002)。本文介绍了水淹洼地和Sphagnum草坪的低苔草植被的分类结果,在平坦的palsa-bogs, ombrotrophic raised bogs和过渡沼泽复群中,将其划分为两个联盟- Stygio-Caricion limosae Nordhagen 1943和Scheuchzerion palustris Nordhagen ex Tx. 1937的Scheuchzerio-Caricetea nigrae Tx. 1937。该分类是基于2004-2019年在北针叶林、森林冻土带和西西伯利亚南部冻土带亚区北纬63°至75°之间的22个样地进行的422次相关的<s:1> <s:1>生长和生长数据(图1)。在最近的摘要“欧洲植被……”(Mucina etal ., 2016)中,Stygio-Caricion limosae联盟被分配到Sphagno watnstorfii-Tomentypnetalia Lapshina 2010,然而这似乎并不是结论性的。这一目的群落与丰富的沼泽密切相关,通常是由地下水喂养的泉水沼泽,这与该联盟社区发展的实际条件不符。在生态学上,在Scheuchzetio-Caricetea nigrae类的当前结构中(Peterka etal, 2017), Stygio-Caricion limosae联盟已经取代了Rhynchosporion albae Koch 1926 (ICPN, Art. 36),该联盟最初明确地与Caricetalia nigrae Koch 1926基于原始相关和诊断物种(Rhync
{"title":"Low-sedge vegetation of waterlogged bog hollows and fens in the north of Western Siberia","authors":"E. Lapshina, I. Filippov, G. Ganasevich","doi":"10.31111/vegrus/2022.45.3","DOIUrl":"https://doi.org/10.31111/vegrus/2022.45.3","url":null,"abstract":"The classification of West Siberian mire vegetation is more or less well developed in the southern part of the forest zone (Lapshina, 2010) while in the northern part of the West Siberian Plain it has received much less study. There are only a small number of publications containing descriptions of mire types and plant communities (Pyavchenko, 1955; Boch et al., 1971; Kirpotin et al., 1995; Smagin, 2003; Neshatayev et al., 2002). This paper presents the classification results for the low-sedge vegetation of waterlogged hollows and Sphagnum lawns, within flat palsa-bogs, ombrotrophic raised bogs and transitional mire complexes, which is assigned to two alliances — Stygio–Caricion limosae Nordhagen 1943 and Scheuchzerion palustris Nordhagen ex Tx. 1937 of the class Scheuchzerio–Caricetea nigrae Tx. 1937. The classification is based on 422 relevés performed in 2004–2019 at 22 plots located between 63° and 75° N in the northern taiga, forest tundra, and southern tundra subzones of West Siberia (Fig. 1). In the most recent summary “Vegetation of Europe…” (Mucina et. al., 2016), the alliance Stygio–Caricion limosae is assigned to the order Sphagno watnstorfii–Tomentypnetalia Lapshina 2010, however this does not seem conclusive. Communities of this order are closely associated with rich fens, often spring fens fed by ground water, which does not correspond to the real conditions in which communities of this alliance are developed. Ecologically, in the current structure of the class Scheuchzetio–Caricetea nigrae (Peterka et al, 2017), the alliance Stygio–Caricion limosae has taken the true place of the alliance Rhynchosporion albae Koch 1926 (ICPN, Art. 36), which was initially unambiguously associated with the order Caricetalia nigrae Koch 1926 based on the original relevés and diagnostic species (Rhynchspora alba, Agrostis canina, sphagnum mosses of sec. Subsecunda). Therefore, we also consider the alliance Stygio–Caricion limosae belonging to the order Caricetalia nigrae, where it fits better judging by its ecological and floristic features. The differential species combination of the alliance Stygio–Caricion limosae in the northern part of West Siberia includes Carex limosa, Drosera obovata, Juncus stygius, Gymnocolea inflata, Sphagnum perfoliatum, S. platyphyllum, S. subsecundum, Utricularia minor, U. ochroleuca, Warnstorfia exannulata, and W. fluitans. Within this alliance, two new associations with subassociations have been described: Utricularo ochroleucae–Caricetum limosae and Sphagno perfoliati–Caricetum rotundatae, of which the first one occurs in the northern taiga mires, while the second one in the forest tundra and southern tundra subzones. The order Scheuchzerietalia palustris Nordhagen ex Tx. 1937 comprises ombrotrophic vegetation of Sphagnum lawns and bog hollows (Mucina et al., 2016) and currently includes the only alliance Scheuchzerion palustris. Its typical boreal suballiance Scheuchzerienion palustris suball. nov. (nomenclature","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Syntaxonomical survey of mesophilous broad-leaved forests of the alliance Aceri campestris–Quercion roboris Bulokhov et Solomeshch in Bulokhov et Semenishchenkov 2015 on the South-West of Russia 2015年俄罗斯西南Bulokhov et Semenishchenkov地区Aceri campestris-Quercion roboris Bulokhov et Solomeshch联盟中温阔叶林的分类调查
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.44.136
Yu. A. Semenishchenkov, A. Bulokhov, A. Poluyanov, E. Volkova
Mesophilous broad-leaved forests predominating in south-western part of Russia were included in alliance Aceri campestris–Quercion roboris Bulokhov et Solomeshch in Bulokhov et Semenishchenkov 2015, association Fraxino excelsioris–Quercetum roboris Bulokhov et Solomeshch 2003 and three geographic subassociations. The subassociation F. e.–Q. r. typicum Bulokhov et Solomeshch 2003 in Bulokhov et Semenishchenkov 2015 unites communities occurring mainly in the broad-leaved forests zone of the Central Russian Upland. The subassociation F. e.–Q. r. stellarietosum nemori Semenishchenkov et al. 2015 occurs in the northern part of the association range in the zone of broad-leaved forests and close to the southeastern border of the hemiboreal subzone. Mesophilous broad-leaved forests occurring in the forest-steppe zone of the Central Russian Upland were included in the subass. F. e.–Q. r. crataegetosum curvisepalae Semenishchenkov in Bulokhov et Semenishchenkov 2015. The geographical distribution of the syntaxa is related to the climate continentality gradient — from the subass F. e.–Q. r. crataegetosum curvisepalae (the largest continentality indices) to the subass. F. e.–Q. r. stellarietosum nemori (the smallest continentality indices). The associations Aceri campestris–Tilietum cordatae Zaugolnova et Braslavskaya 2003 (nom. inv.) from the Kaluga and Tula Regions (Zaugolnova, Braslavskaya, 2003) and Aceri campestris–Quercetum roboris (nom. inv.) (var. Acer tataricum) described from the Voronezh Region (Starodubtseva, Khanina, 2009) were included in the association Fraxino excelsioris–Quercetum roboris after comparative syntxonomical analysis. On the basis of a comparative analysis, diagnostic combinations of subassociations were compiled, consisting of species with constancy above 20 % and values of the statistical φ-coefficient for selections above 20: F. e.–Q. r. stellarietosum nemori — Carex sylvatica (5059.9), Equisetum hyemale (2842.3), Galeobdolon luteum (10087.4), Matteucia struthiopteris (4257.7), Ranunculus cassubicus (5857.9), Stellaria nemorum (3349.6); F. e.–Q. r. crataegetosum curvisepalae — Acer tataricum (5362.0), Crataegus rhipidophylla (5964.0), Poa nemoralis (2736.9), Pyrus pyraster (3840.8), Scilla siberica (4558.4), Viola odorata (3440.5). Analysis of the differentiaal table of mesophilous broad-leaved and spruce-broad-leaved forests syntaxa made it possible to conclude that associations previously (Onyshchenko, 2009) assigned in Ukraine to alliance Scillo sibericae–Quercion roboris have a high floristic similarity with the syntaxa of Aceri campestris–Quercion roboris from the South-West of Russia, especially in the forest-steppe part of its range. Selections of three subassociations of the association Mercurialo perennis–Quercetum roboris from Ukraine floristically close to the syntaxa of alliance Querco roboris–Tilion cordatae from the South-West of Russia. In the dendrogram of cluster analysis, the compared syntaxa are grouped i
主要分布于俄罗斯西南部的中寒阔叶林被划分为Aceri campestri - quercion roboris Bulokhov et Solomeshch (Bulokhov et Semenishchenkov 2015)联盟、Fraxino excelsiori - quercetum roboris Bulokhov et Solomeshch(2003)和3个地理亚协会。f - e - q分会。Bulokhov et Semenishchenkov 2015联合了主要发生在俄罗斯中部高地阔叶林区的群落。f - e - q分会。r. stellarietosum nemori Semenishchenkov等。2015发生在联合范围北部的阔叶林区,靠近半北方亚带的东南边界。亚底包括发生在俄罗斯中部高原森林草原带的中温阔叶林。f . e.-Q。r. create getosum curvisepalae Semenishchenkov in Bulokhov et Semenishchenkov 2015。其地理分布与气候大陆性梯度有关。最大的大陆性指数(R. creataegetosum curvisepalae)向海底倾斜。f . e.-Q。最小大陆指数(R. stellarietosum nemori)。来自卡卢加和图拉地区(2003年,布拉斯拉夫斯卡亚,Zaugolnova)的Aceri campestris-Tilietum cordatae Zaugolnova et Braslavskaya 2003(命名. inv.),以及来自沃罗涅日地区(2009年,Khanina, Starodubtseva)的Aceri campestris-Quercetum roboris(命名. inv.)(变种Acer tataricum),经比较同义分析后被纳入Fraxino excelsioris-Quercetum roboris。在比较分析的基础上,编制了各亚种群的诊断组合,其中恒定率在20%以上,选择的统计φ-系数值在20:F. e. q .。毛茛(5059.9)、木贼(2842.3)、黄体Galeobdolon luteum(10087.4)、木贼Matteucia struthiopteris(4257.7)、cassubicus毛茛(5857.9)、毛茛(3349.6);f . e.-Q。山楂(5362.0)、山楂(5964.0)、灰松果(2736.9)、山梨(3840.8)、西伯利亚山梨(4558.4)、气味堇菜(3440.5)。通过对中生阔叶林和云杉阔叶林句法分类表的分析,我们可以得出这样的结论:先前(Onyshchenko, 2009)在乌克兰归属于Scillo sibericae-Quercion roboris联盟的关联与来自俄罗斯西南部的Aceri campestris-Quercion roboris句法具有高度的区系相似性,特别是在其分布范围的森林-草原部分。来自乌克兰的mercuralo perennis-Quercetum roboris协会的三个亚协会在区系上与来自俄罗斯西南部的Querco roboris - tilion cordatae联盟的语法相近。在聚类分析的树形图中,比较的句法根据联盟的等级分为两个块:Aceri campestris-Quercion roboris和Querco roboris - tilion cordatae。在此基础上,作者认为,在认识Aceri campestris-Quercion roboris联盟的分类学独立性及其地理解释方面,可以对“Hierarchical floristic classification system…”(Mucina et al., 2016)进行修订。在中叶阔叶林的位置,人类干扰的衍生群落分为人为变异群落和以优势种白桦(Betula pendula)、白杨(Populus tremula)和天麻(Tilia cordata)命名的非等级“群落”。具有较差的区系组成,其中联合和亚联合的诊断种从群落区系中消失的森林被分类为inops变异体。它们的特点是与典型群落相比,平均区系饱和度明显降低。以白桦为优势种的衍生林物种丰富度高于白杨林和椴树林,具有典型的植物群落。
{"title":"Syntaxonomical survey of mesophilous broad-leaved forests of the alliance Aceri campestris–Quercion roboris Bulokhov et Solomeshch in Bulokhov et Semenishchenkov 2015 on the South-West of Russia","authors":"Yu. A. Semenishchenkov, A. Bulokhov, A. Poluyanov, E. Volkova","doi":"10.31111/vegrus/2022.44.136","DOIUrl":"https://doi.org/10.31111/vegrus/2022.44.136","url":null,"abstract":"Mesophilous broad-leaved forests predominating in south-western part of Russia were included in alliance Aceri campestris–Quercion roboris Bulokhov et Solomeshch in Bulokhov et Semenishchenkov 2015, association Fraxino excelsioris–Quercetum roboris Bulokhov et Solomeshch 2003 and three geographic subassociations. The subassociation F. e.–Q. r. typicum Bulokhov et Solomeshch 2003 in Bulokhov et Semenishchenkov 2015 unites communities occurring mainly in the broad-leaved forests zone of the Central Russian Upland. The subassociation F. e.–Q. r. stellarietosum nemori Semenishchenkov et al. 2015 occurs in the northern part of the association range in the zone of broad-leaved forests and close to the southeastern border of the hemiboreal subzone. Mesophilous broad-leaved forests occurring in the forest-steppe zone of the Central Russian Upland were included in the subass. F. e.–Q. r. crataegetosum curvisepalae Semenishchenkov in Bulokhov et Semenishchenkov 2015. The geographical distribution of the syntaxa is related to the climate continentality gradient — from the subass F. e.–Q. r. crataegetosum curvisepalae (the largest continentality indices) to the subass. F. e.–Q. r. stellarietosum nemori (the smallest continentality indices). The associations Aceri campestris–Tilietum cordatae Zaugolnova et Braslavskaya 2003 (nom. inv.) from the Kaluga and Tula Regions (Zaugolnova, Braslavskaya, 2003) and Aceri campestris–Quercetum roboris (nom. inv.) (var. Acer tataricum) described from the Voronezh Region (Starodubtseva, Khanina, 2009) were included in the association Fraxino excelsioris–Quercetum roboris after comparative syntxonomical analysis. On the basis of a comparative analysis, diagnostic combinations of subassociations were compiled, consisting of species with constancy above 20 % and values of the statistical φ-coefficient for selections above 20: F. e.–Q. r. stellarietosum nemori — Carex sylvatica (5059.9), Equisetum hyemale (2842.3), Galeobdolon luteum (10087.4), Matteucia struthiopteris (4257.7), Ranunculus cassubicus (5857.9), Stellaria nemorum (3349.6); F. e.–Q. r. crataegetosum curvisepalae — Acer tataricum (5362.0), Crataegus rhipidophylla (5964.0), Poa nemoralis (2736.9), Pyrus pyraster (3840.8), Scilla siberica (4558.4), Viola odorata (3440.5). Analysis of the differentiaal table of mesophilous broad-leaved and spruce-broad-leaved forests syntaxa made it possible to conclude that associations previously (Onyshchenko, 2009) assigned in Ukraine to alliance Scillo sibericae–Quercion roboris have a high floristic similarity with the syntaxa of Aceri campestris–Quercion roboris from the South-West of Russia, especially in the forest-steppe part of its range. Selections of three subassociations of the association Mercurialo perennis–Quercetum roboris from Ukraine floristically close to the syntaxa of alliance Querco roboris–Tilion cordatae from the South-West of Russia. In the dendrogram of cluster analysis, the compared syntaxa are grouped i","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stuckenietum subretusae — new association of aquatic vegetation from the southern part of the Lena River delta (Republic of Sakha (Yakutia)) Stuckenietum subretusae -来自勒拿河三角洲南部(萨哈共和国(雅库特))的水生植被的新组合
Q4 Agricultural and Biological Sciences Pub Date : 2022-01-01 DOI: 10.31111/vegrus/2022.45.91
N. Lashchinskiy, L. Kipriyanova
A nearly circumpolar hypoarctic species Stuckenia subretusa (Hagstr.) Holub is a rare species that grows in Yakuyia in lakes and reservoirs of deltaic systems of the large rivers (Lena, Kolyma, Yana, Indigirka, Anabar) mainly north of 68° N(Bobrov, Mochalova, 2014, 2017; Egorova, 2016; Opredelitel’…, 2020). The species is listed for Taymyr Peninsula as the most common in the plain part of the southern tundra and in the forest tundra (Pospelova, Pospelov, 2007) and as rarer in the typical tundra (Polozova, Tikhomirov, 1971). In general, this is a rather rare species. Besides the Taymyr Peninsula and Yakutia it occurs in the Bolshezemelskaya tundra, in the mouth of the Yenisey River, in Chukotka Peninsula and Alaska (Yurtsev et al., 2010; Bobrov et al., 2021). Stuckenia subretusa is a critical taxon associated by some authors (Kaplan, 2008; Konspekt…, 2012) with S. vaginata (Turcz.) Holub. However, both morphological and molecular genetic differences between these taxa were shown later (Volkova et al., 2017). It was also shown that S. subretusa is found in the lower reaches and estuarine areas of the large rivers in Asia, mainly north of 68° N, in Europe — of 67°, while the northern limit of the distribution of S. vaginata in Yakutia — 64°, in Europe — 66° (Bobrov, Mochalova, 2014), therefore these species are geographically separated. In July 2021, during a geobotanical survey of the islands of the southern part of the Lena River delta, thickets of S. subretusa were found on Sasyl-Ary Isl. (Fig. 1) in a shallow flow (channel) of 2 km total length, 130–150 m width and from 4–5 cm to 1.5 m depth with a very sluggish current. The bottom substrate is silty sands. Permafrost is 2–3 m depth. Thickets of S. subretusa were found only at 4–30 cm water depths. The thickets are monospecies with projective cover from 35 to 80 % (Fig. 2). Single specimens of Tephroseris palustris (L.) Rchb. were met rarely, at 4–5 cm water depths. Part of the thickets was located on wet sand along the shallows of the channel. S. subretusa was not found on neighboring islands. Five geobotanical relevés were made within the flow according to the generally accepted methodology with georeferencing using 12-channel GPS in the WGS-84 coordinate system on sample plots of 10×10 m. The classification was carried out on the principles of the ecological-floristic approach (Westhoff, van der Maarel, 1973). Estimation of the species projective cover in Table is given according to the Brown-Blanquet scale (Becking, 1957): r — single; + — less than 1 %; 1 — 1–5 %; 2 — 6–25 %; 3 — 26–50 %; 4 — 51–75 %; 5 — 76–100 %. The syntaxon name is given in accordance with the International Code of Phytosociological Nomenclature (Theurillat et al., 2021). The described communities belong to the class Potamogetonetea Klika in Klika et Novák 1941, the order Potamogetonetalia Koch 1926, and the alliance Potamogetonion Libbert 1931. We consider these as a part of a new association. The ass. Stuckenietum
近环极地的亚北极种subretusa猪链球菌(Hagstr.)Holub是一种稀有物种,生长在雅库亚,主要生长在68°N以北的大河(Lena、Kolyma、Yana、Indigirka、Anabar)三角洲系统的湖泊和水库中(Bobrov, Mochalova, 2014, 2017;Egorova, 2016;Opredelitel’……,2020)。该物种在泰米尔半岛被列为南部冻土带平原部分和森林冻土带中最常见的物种(Pospelova, Pospelov, 2007),而在典型冻土带中则较为罕见(Polozova, Tikhomirov, 1971)。总的来说,这是一个相当罕见的物种。除了泰米尔半岛和雅库特之外,它还出现在布尔什米亚苔原、叶尼塞河河口、楚科奇半岛和阿拉斯加(Yurtsev et al., 2010;Bobrov et al., 2021)。一些作者认为subretusa是一个重要的分类单元(Kaplan, 2008;Konspekt…,2012)与S. vaginata (Turcz.)Holub。然而,这些分类群之间的形态和分子遗传差异后来被显示出来(Volkova et al., 2017)。研究还表明,S. subretusa主要分布在亚洲大河的下游和河口地区,主要分布在北纬68°以北,欧洲分布在北纬67°,而S. vaginata在雅库特分布的北纬64°,欧洲分布在北纬66°(Bobrov, Mochalova, 2014),因此这些物种在地理上是分开的。2021年7月,在对勒拿河三角洲南部岛屿的地理植物学调查中,在Sasyl-Ary岛上发现了S. subretusa的灌木丛。(图1)在总长度为2公里,宽度为130-150米,深度为4-5厘米至1.5米的浅流(通道)中,水流非常缓慢。底部基材是粉质砂。永久冻土层深度为2-3米。仅在4 ~ 30 cm水深处发现了沙棘灌丛。这些灌丛是单一物种,投影覆盖率在35%到80%之间(图2)。Rchb。在4-5厘米的水深很少见到。部分灌木丛位于沿河道浅滩的湿沙上。在邻近的岛屿上没有发现S. subretusa。根据普遍接受的方法,在10×10 m的样地上使用WGS-84坐标系下的12通道GPS进行地理参考,在流内进行了5个地学相关的测量。分类是根据生态-区系方法的原则进行的(Westhoff, van der Maarel, 1973)。表中物种投影盖度的估计是根据Brown-Blanquet尺度(Becking, 1957)给出的:r -单一;+ -小于1%;1 - 1 - 5 %;2 - 6 - 25%;3 - 26 - 50%;4 - 51 - 75%;5 - 76 - 100%。根据《国际植物社会学命名法》(Theurillat et al., 2021)给出句法名称。所描述的群落属于Klika et Novák 1941中的Potamogetonetea Klika纲,1926年的Potamogetonetalia Koch目和1931年的Potamogetonion Libbert联盟。我们认为这些是新协会的一部分。11 .猪臀草(Stuckenietum subretusae)。命名类型(全息图)-相关编号21-108(表,相关3).萨哈共和国(雅库特),布伦斯基区,萨希尔-阿列克谢。,勒拿河三角洲浅水河道,水体(北纬72.35989°,东经126.41968°),2021年7月20日。N. N. Lashchinskiy是一位作家。该协会的诊断种为亚种猪链球菌(=亚种猪链球菌)。这种联系包括猪链球菌的单种群落,有时与其他物种的单一存在。在南部地区,该物种群落的区系可能更丰富。它们在列拿河三角洲的其他地区(Nikolin等人,2017年)、卡坦噶河的泰米尔半岛(克拉斯诺亚尔斯克地区)(Pospelova, Pospelov, 2007年)以及科米共和国(Chemeris, Bobrov, 2020年)都有可靠的发现,它们的生产力为142至409克/平方米的空气干物质。总体上,种群分布范围明显与科米共和国北部、克拉斯诺亚尔斯克边疆区、俄罗斯雅库特、楚科奇自治区和美国阿拉斯加州一致。
{"title":"Stuckenietum subretusae — new association of aquatic vegetation from the southern part of the Lena River delta (Republic of Sakha (Yakutia))","authors":"N. Lashchinskiy, L. Kipriyanova","doi":"10.31111/vegrus/2022.45.91","DOIUrl":"https://doi.org/10.31111/vegrus/2022.45.91","url":null,"abstract":"A nearly circumpolar hypoarctic species Stuckenia subretusa (Hagstr.) Holub is a rare species that grows in Yakuyia in lakes and reservoirs of deltaic systems of the large rivers (Lena, Kolyma, Yana, Indigirka, Anabar) mainly north of 68° N(Bobrov, Mochalova, 2014, 2017; Egorova, 2016; Opredelitel’…, 2020). The species is listed for Taymyr Peninsula as the most common in the plain part of the southern tundra and in the forest tundra (Pospelova, Pospelov, 2007) and as rarer in the typical tundra (Polozova, Tikhomirov, 1971). In general, this is a rather rare species. Besides the Taymyr Peninsula and Yakutia it occurs in the Bolshezemelskaya tundra, in the mouth of the Yenisey River, in Chukotka Peninsula and Alaska (Yurtsev et al., 2010; Bobrov et al., 2021). Stuckenia subretusa is a critical taxon associated by some authors (Kaplan, 2008; Konspekt…, 2012) with S. vaginata (Turcz.) Holub. However, both morphological and molecular genetic differences between these taxa were shown later (Volkova et al., 2017). It was also shown that S. subretusa is found in the lower reaches and estuarine areas of the large rivers in Asia, mainly north of 68° N, in Europe — of 67°, while the northern limit of the distribution of S. vaginata in Yakutia — 64°, in Europe — 66° (Bobrov, Mochalova, 2014), therefore these species are geographically separated. In July 2021, during a geobotanical survey of the islands of the southern part of the Lena River delta, thickets of S. subretusa were found on Sasyl-Ary Isl. (Fig. 1) in a shallow flow (channel) of 2 km total length, 130–150 m width and from 4–5 cm to 1.5 m depth with a very sluggish current. The bottom substrate is silty sands. Permafrost is 2–3 m depth. Thickets of S. subretusa were found only at 4–30 cm water depths. The thickets are monospecies with projective cover from 35 to 80 % (Fig. 2). Single specimens of Tephroseris palustris (L.) Rchb. were met rarely, at 4–5 cm water depths. Part of the thickets was located on wet sand along the shallows of the channel. S. subretusa was not found on neighboring islands. Five geobotanical relevés were made within the flow according to the generally accepted methodology with georeferencing using 12-channel GPS in the WGS-84 coordinate system on sample plots of 10×10 m. The classification was carried out on the principles of the ecological-floristic approach (Westhoff, van der Maarel, 1973). Estimation of the species projective cover in Table is given according to the Brown-Blanquet scale (Becking, 1957): r — single; + — less than 1 %; 1 — 1–5 %; 2 — 6–25 %; 3 — 26–50 %; 4 — 51–75 %; 5 — 76–100 %. The syntaxon name is given in accordance with the International Code of Phytosociological Nomenclature (Theurillat et al., 2021). The described communities belong to the class Potamogetonetea Klika in Klika et Novák 1941, the order Potamogetonetalia Koch 1926, and the alliance Potamogetonion Libbert 1931. We consider these as a part of a new association. The ass. Stuckenietum","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69505036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Rastitel''nost'' Rossii
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1