首页 > 最新文献

Rastitel''nost'' Rossii最新文献

英文 中文
Syntaxonomy and ecology of the Moscow Region black alder communities 莫斯科地区黑桤木群落的分类学和生态学
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.42.42
O. Morozova, N. Belyaeva, A. E. Gnedenko, E. Suslova, T. Chernenkova
Alnus glutinosa is an European species with a wide range from the south of Scandinavia to the Mediterranean. However in many countries of Europe the areas of forests formed by black alder are scattered and often do not exceed 1–5 % of the forest cover due to both the small size of suitable ecotopes and their conversion to agriculture (Claessens et al., 2010). In the Moscow Region located in the center of the Russian Plain (Fig. 1), black alder forests also are about 5 % (Kotlov, Chernenkova, 2020) and have not been documented appropriately yet. Based upon 51 relevés two associations dominated by Alnus glutinosa from two vegetation classes were described using the Braun-Blanquet method. Ass. Urtico dioicae–Alnetum glutinosae Bulokhov et Solomeshch 2003 (class Alno glutinosae–Populetea albae Fukarek et Fabijanić 1968) (Bulokhov and Solomeshch, 2003; Semenishchenkov, 2016) includes floodplain hygro-mesophytic forests with nemoral species in herb layer (Table 1). This association is distributed in nemoral and broad-leaved coniferous zones of Eastern Europe. As a result of comparison with similar syntaxa from different regions of European Russia (Table 2) (Vasilevich, Stchukina, 2001; Sokolova, 2015; Semenishchenkov, 2016) its diagnostic species combination was enlarged by Impatiens noli-tangere, and new subassociation was described. Subassociation U. d.–A. g. athyrietosum filix-feminae Morozova et al. subass. nov. (Table 1, Fig. 2–4, nomenclature type (holotypus) — relevé 15 (author’s number serg-171a-14, Moscow Region, Sergiev Posad district, valley of a small river, author E. G. Suslova; diagnostic species: Angelica sylvestris, Athyrium filix-femina, Crepis paludosa, Deschampsia cespitosa, Oxalis acetosella, Padus avium, Rubus idaeus) unites the communities occurring in the floodplains of small rivers and relatively well-drained stream habitats in the broad-leaved coniferous zone and the southern taiga. Ass. Carici elongatae–Alnetum glutinosae Tx. 1931 (class Alnetea glutinosae Br.-Bl. et Tx. ex Westhoff et al. 1946) (Table 3, Fig. 5, 6) with variants typica and Menyanthes trifoliata comprises herb-swamp alder carrs growing mainly in depressions of the watershed area and ancient lake basins, as well as near swampy streams, i.e. in habitats of poor drainage of the territory (Table 4). Diagnostic combination of this association in Moscow Region includes Alnus glutinosa, Calla palustris, Caltha palustris, Carex appropinquata, Cicuta virosa, Equisetum fluviatile, Lycopus europaeus, Scirpus sylvaticus, Scutellaria galericulata, Solanum dulcamara. Dominant species are Filipendula ulmaria, Phragmites australis, Calamagrostis canescens, and Carex vesicaria; a microrelief formed by tussocks of sedges (Carex appropinquata, C. cespitosa) is common. Black alder forests of var. Menyanthes trifoliata are different in the set and sometimes dominance of species of mesotrophic bogs like Menyanthes trifoliata, Comarum palustre, Thyselium palustre, Thelypteris palust
Alnus glutinosa是一种欧洲树种,分布范围从斯堪的纳维亚半岛南部到地中海。然而,在欧洲的许多国家,黑桤木形成的森林面积是分散的,由于适合的生态环境面积小,而且它们被转化为农业,通常不超过森林覆盖面积的1 - 5% (Claessens et al., 2010)。在位于俄罗斯平原中心的莫斯科州(图1),黑桤木森林也约占5% (Kotlov, Chernenkova, 2020),但尚未得到适当的记录。基于51份相关数据,用Braun-Blanquet方法描述了两个植被类中以桤木为主的两个关联。Bulokhov和Solomeshch, 2003 (Alno glutinoae - alnetum glutinosae Bulokhov和Solomeshch 2003;Semenishchenkov, 2016)包括草本层中有麻草物种的洪泛区湿中生森林(表1)。这种关联分布在东欧的麻草和阔叶针叶林带。通过与俄罗斯欧洲不同地区的类似句法进行比较(表2)(Vasilevich, Stchukina, 2001;Sokolova, 2015;Semenishchenkov, 2016)其诊断种组合被凤仙花(Impatiens noli-tangere)扩大,并描述了新的亚类群。附属协会Morozova等亚纲。11月(表1,图2-4),命名类型(holotypus) -相关15(作者编号serg-171a-14,莫斯科地区,Sergiev Posad区,一条小河的山谷,作者E. G. Suslova;诊断种:Angelica sylvestris, Athyrium filix-femina, Crepis paludosa, Deschampsia cespitosa, Oxalis acetosella, Padus avium, Rubus idaeus)将发生在小河流泛滥平原和阔叶针叶林和南部针叶林相对排水良好的溪流栖息地的群落联合起来。长形木贼Tx. 1931(木贼目木贼Br.-Bl.)et txx . ex Westhoff et al. 1946)(表3,图5,6),典型变异和三叶门草包括草本沼泽桤木,主要生长在流域地区和古湖盆地的洼地,以及沼泽溪流附近,即在境内排水不良的栖息地(表4)。莫斯科地区这种关联的诊断组合包括Alnus glutinosa, Calla palustris, Caltha palustris, Carex appropinquata, Cicuta virosa, Equisetum fluviatile,山楂,山楂,黄芩,龙葵。优势种为黄菖蒲(Filipendula ulmaria)、芦苇(Phragmites australis)、菖蒲(Calamagrostis canescens)和苔草(Carex vesicaria);由莎草(Carex appropinquata, C. cespitosa)的绒毛形成的微浮雕是常见的。三叶草黑桤木林中,三叶草、香豆、香囊草、palyteris palustris等中营养型沼泽的种群数量和优势度不同,苔藓的覆盖度有时可达80%。Alno glutinoase - populletea albae在第一个关联中优势明显,Alnetea glutinosae在第二个关联中优势明显。黑桤木林的一个显著特征是,长叶荨麻(Urtico dioicae) - alnetum glutinosae的湿地物种中,Carpino-Fagetea类的沼泽物种比例相对较大(11.1%),而Phragmito-Magnocaricetea类的湿地物种比例较小(3.5%),其中长叶荨麻(Carici elongatae) - alnetum glutinosae的湿地物种比例分别为3.6%和20.8%(图7)。黑桤木林的区系组成和结构取决于水文状况和养分利用率(Slezák et al., 2011)。这是由社区在景观中的位置决定的。最重要的因素是通过植被利用Ellenberg生态尺度的方法(Ellenberg et al., 1991)(图8)来解释的。驴的Нabitats . Urtico dioicae-Alnetum glutinosae是湿润的,相当丰富和中性的土壤酸度,微地形表达差,几乎没有绒毛形成物种。这些地点通常发生在小河流的洪泛区(表4),洪水期短(Braslavskaya, 2004年),以及填海通道沿线的泥煤开采。as . Carici elongatae-Alnetum glutinosae所处的栖息地多为潮湿的涝渍和酸性,而富水性较差(图9)。这里的地下水位波动不大,由于该地区的流动困难和排水不良,洪水持续时间较长(Döring-Mederake, 1990;Blagoveshсhinskii, 2018)。一种特殊的微浮雕是在莎草绒毛之间用水形成的,其形状和高度取决于洪水的深度(Alekseyev, Abramova, 1980)。在被研究的黑桤木森林中,三叶Menyanthes trifoliata的群落占据了最贫瘠的栖息地。 Alnus glutinosa是一种欧洲树种,分布范围从斯堪的纳维亚半岛南部到地中海。然而,在欧洲的许多国家,黑桤木形成的森林面积是分散的,由于适合的生态环境面积小,而且它们被转化为农业,通常不超过森林覆盖面积的1 - 5% (Claessens et al., 2010)。在位于俄罗斯平原中心的莫斯科州(图1),黑桤木森林也约占5% (Kotlov, Chernenkova, 2020),但尚未得到适当的记录。基于51份相关数据,用Braun-Blanquet方法描述了两个植被类中以桤木为主的两个关联。Bulokhov和Solomeshch, 2003 (Alno glutinoae - alnetum glutinosae Bulokhov和Solomeshch 2003;Semenishchenkov, 2016)包括草本层中有麻草物种的洪泛区湿中生森林(表1)。这种关联分布在东欧的麻草和阔叶针叶林带。通过与俄罗斯欧洲不同地区的类似句法进行比较(表2)(Vasilevich, Stchukina, 2001;Sokolova, 2015;Semenishchenkov, 2016)其诊断种组合被凤仙花(Impatiens noli-tangere)扩大,并描述了新的亚类群。附属协会Morozova等亚纲。11月(表1,图2-4),命名类型(holotypus) -相关15(作者编号serg-171a-14,莫斯科地区,Sergiev Posad区,一条小河的山谷,作者E. G. Suslova;诊断种:Angelica sylvestris, Athyrium filix-femina, Crepis paludosa, Deschampsia cespitosa, Oxalis acetosella, Padus avium, Rubus idaeus)将发生在小河流泛滥平原和阔叶针叶林和南部针叶林相对排水良好的溪流栖息地的群落联合起来。长形木贼Tx. 1931(木
{"title":"Syntaxonomy and ecology of the Moscow Region black alder communities","authors":"O. Morozova, N. Belyaeva, A. E. Gnedenko, E. Suslova, T. Chernenkova","doi":"10.31111/vegrus/2021.42.42","DOIUrl":"https://doi.org/10.31111/vegrus/2021.42.42","url":null,"abstract":"Alnus glutinosa is an European species with a wide range from the south of Scandinavia to the Mediterranean. However in many countries of Europe the areas of forests formed by black alder are scattered and often do not exceed 1–5 % of the forest cover due to both the small size of suitable ecotopes and their conversion to agriculture (Claessens et al., 2010). In the Moscow Region located in the center of the Russian Plain (Fig. 1), black alder forests also are about 5 % (Kotlov, Chernenkova, 2020) and have not been documented appropriately yet. Based upon 51 relevés two associations dominated by Alnus glutinosa from two vegetation classes were described using the Braun-Blanquet method. Ass. Urtico dioicae–Alnetum glutinosae Bulokhov et Solomeshch 2003 (class Alno glutinosae–Populetea albae Fukarek et Fabijanić 1968) (Bulokhov and Solomeshch, 2003; Semenishchenkov, 2016) includes floodplain hygro-mesophytic forests with nemoral species in herb layer (Table 1). This association is distributed in nemoral and broad-leaved coniferous zones of Eastern Europe. As a result of comparison with similar syntaxa from different regions of European Russia (Table 2) (Vasilevich, Stchukina, 2001; Sokolova, 2015; Semenishchenkov, 2016) its diagnostic species combination was enlarged by Impatiens noli-tangere, and new subassociation was described. Subassociation U. d.–A. g. athyrietosum filix-feminae Morozova et al. subass. nov. (Table 1, Fig. 2–4, nomenclature type (holotypus) — relevé 15 (author’s number serg-171a-14, Moscow Region, Sergiev Posad district, valley of a small river, author E. G. Suslova; diagnostic species: Angelica sylvestris, Athyrium filix-femina, Crepis paludosa, Deschampsia cespitosa, Oxalis acetosella, Padus avium, Rubus idaeus) unites the communities occurring in the floodplains of small rivers and relatively well-drained stream habitats in the broad-leaved coniferous zone and the southern taiga. Ass. Carici elongatae–Alnetum glutinosae Tx. 1931 (class Alnetea glutinosae Br.-Bl. et Tx. ex Westhoff et al. 1946) (Table 3, Fig. 5, 6) with variants typica and Menyanthes trifoliata comprises herb-swamp alder carrs growing mainly in depressions of the watershed area and ancient lake basins, as well as near swampy streams, i.e. in habitats of poor drainage of the territory (Table 4). Diagnostic combination of this association in Moscow Region includes Alnus glutinosa, Calla palustris, Caltha palustris, Carex appropinquata, Cicuta virosa, Equisetum fluviatile, Lycopus europaeus, Scirpus sylvaticus, Scutellaria galericulata, Solanum dulcamara. Dominant species are Filipendula ulmaria, Phragmites australis, Calamagrostis canescens, and Carex vesicaria; a microrelief formed by tussocks of sedges (Carex appropinquata, C. cespitosa) is common. Black alder forests of var. Menyanthes trifoliata are different in the set and sometimes dominance of species of mesotrophic bogs like Menyanthes trifoliata, Comarum palustre, Thyselium palustre, Thelypteris palust","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
West european geobotanists approaches to typology and mapping of vegetation territorial units 西欧地植物学家研究植被地域单位的类型学和制图方法
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.42.146
I. Lavrinenko
The relevance of this paper for Russian geobotanists is due to the fact that until recently the author had regularly come across the statement that the phytosociological approach cannot be used in vegetation mapping and in legends for the geobotanical maps. In my opinion, such attitude towards the potential of the generally accepted and most widespread phytosociological approach in world practice significantly impoverishes Russian geobotany. And more seriously, it significantly reduces the possibility of using modern technologies and international experience in the field of vegetation mapping. In this regard, the purpose of the paper is to characterize the modern approaches of West European geobotanists to the typology of territorial units of vegetation based on phytosociological methods and their application to the plant cover mapping at different scales. Some of the most important stages in the development of this approach in West Europe are also reflected in the paper. In 1928 J. Braun-Blanquet in his work “Plant sociology” proposed the main directions for studying the structure and composition of territorial units of vege­tation. In the 1970s R. Tüxen laid the foundations of symphytosociology and proposed a method for transforming the system of syntaxa into sigma-syntaxa, and J.-M. Géhu and S. Rivas-Martínez, defined sigmetum as the basic unit of symphytosociology. The phytosociology of a plant landscape is based on the allocation of sigma-associations — combinations of plant communities and their complexes within homogeneous landscape units, giving it physiognomic originality. In landscape phytosociology, two main directions are currently distinguished: symphytosociology, with sigmetum (series, sigma-association) as main typological unit and tesela as territorial one, and geosymphytosociology with geosigmetum (geoseries) and catena, respectively. Thus, landscape phytosociology uses concepts that differ depending on the level of landscape organization: the level of series, or sigmetum (permaseries, curtaseries and, directly, series), and the level of geoseries, or geosigmetum — geopermaseries, geocurtaseries and geoseries). Each series/geoseries in relation to the water supply regime belongs to one of four types: climatophilic, tempohygrophilic, edaphoxerophilic, and edaphohygrophilic. Until the 1970s, only large-scale maps could be prepared on a phytosociological basis. They displayed homogeneous communities, predominantly of the association rank. Following the works of R. Tüxen, C. Beguin and O. Hegg, S. Rives-Martínez and J. M. Géhu, who substantiated the methodology of transforming the system of syntaxa into sigma-syntaxa based on phytosociological tables, sigmetum (series) and geosigmetum (geoseries) have become the main mapped units. It was during this period that a qualitative leap took place in geobotanical mapping, which made it possible to move from a large scale (1: 5–25 000), when communities of the association rank were highlight
这篇论文与俄罗斯地植物学家的相关性是由于直到最近,作者经常遇到这样的陈述,即植物社会学方法不能用于植被制图和地植物图的图例。在我看来,这种对世界实践中普遍接受和最广泛的植物社会学方法的潜力的态度严重削弱了俄罗斯的地球植物学。更严重的是,它大大降低了在植被制图领域使用现代技术和国际经验的可能性。在这方面,本文的目的是描述西欧地植物学家基于植物社会学方法研究植被领土单位类型的现代方法及其在不同尺度植物覆盖制图中的应用。该文件也反映了西欧发展这种方法的一些最重要的阶段。1928年布朗-布兰凯在《植物社会学》一书中提出了研究植被地域单位的结构和组成的主要方向。20世纪70年代,R. t<s:1> xen奠定了共植物社会学的基础,提出了将syntaxa系统转化为sigma-syntaxa的方法;gsamuhu和S. Rivas-Martínez将sigmetum定义为共植物社会学的基本单位。植物景观的植物社会学是基于西格玛关联的分配-在同质景观单元内植物群落及其复合体的组合,赋予其地貌独创性。在景观植物社会学中,目前主要分为两个方向:以sigmetum(系列,sigma-association)为主要类型单位,以tesela为领土类型单位的共植物社会学和以geosiigmetum (geoseries)和catena为主要类型单位的地共植物社会学。因此,景观植物社会学使用的概念因景观组织水平的不同而不同:系列水平,或sigmetum (permaseries, curtaseries和,直接,系列)和geoseries水平,或geosigmetum - geopermaseries, geocurtaseries和geoseries)。与供水制度有关的每个系列/地系属于四种类型之一:亲气候型、亲温型、亲土壤型和亲土壤型。直到20世纪70年代,在植物社会学的基础上只能编制大比例尺的地图。他们表现出同质的社区,主要是协会级别的社区。继R. t<e:1> xen、C. Beguin、O. Hegg、S. Rives-Martínez和J. M. gsamuhu等人的工作,他们证实了基于植物社会学表将句法系统转化为sigma-syntaxa的方法之后,sigmetum (series)和geosigmetum (geoseries)成为主要的映射单元。正是在这一时期,地学制图发生了质的飞跃,使其有可能从大比例尺(1:5 - 25 000),当地图上突出显示协会等级的群落时,到较小比例尺(1:25 - 50 000),结合(sigmetum和geosigmetum)并保留大部分相关信息。法国可以自信地被认为是制图领域无可争议的领导者(格萨胡,1979;Ozenda, 1985;Delbosc等人,2015、2016、2017、2018;Loidi, 2017;作为自然保护体系基础的植被国土单元划分和地理植物制图上升为国家级规划。除法国外,意大利目前也在大力发展这些方法(Blasi等人,2000年、2005年、2007年、2010年、2014年、2017年;Biondi等人,2004、2010、2011、2012、2014;布拉西,2016;等),西班牙(rivas - martsamnez, 1976年,2005年;rivas - martsamnez et al., 2014等)和葡萄牙(Pinto Gomes et al., 2003, 2007;Raposo et al., 2016)。同样值得注意的是来自德国(Schwabe, 1989,1991,1997,1999)和瑞士(Beguin et al., 1979;Theurillat, 1991,1992;Beguin, 1998,2003,2009),对景观植物社会学做出了重大贡献。目前,我们可以自信地说,在欧盟国家,植物社会学是整个环境系统的基础,首先包括欧盟关于自然保护的主要立法文件-理事会指令92/43 / EEC或“生境指令”(Commission…,2003)。该指令主要基于植物群落的句法集,在诊断和生境特征中使用植物社会学术语通常至关重要(Angelini et al., 2016)。自该指令获得批准以来,植物社会学实际上已被公认为生物多样性管理的一门基础科学,这反映在许多泛欧和国家项目的存在- Natura 2000, CORINE, EUNIS, CarHAB等,这些项目在国家和欧盟层面进行并获得资助。 这篇论文与俄罗斯地植物学家的相关性是由于直到最近,作者经常遇到这样的陈述,即植物社会学方法不能用于植被制图和地植物图的图例。在我看来,这种对世界实践中普遍接受和最广泛的植物社会学方法的潜力的态度严重削弱了俄罗斯的地球植物学。更严重的是,它大大降低了在植被制图领域使用现代技术和国际经验的可能性。在这方面,本文的目的是描述西欧地植物学家基于植物社会学方法研究植被领土单位类型的现代方法及其在不同尺度植物覆盖制图中的应用。该文件也反映了西欧发展这种方法的一些最重要的阶段。1928年布朗-布兰凯在《植物社会学》一书中提出了研究植被地域单位的结构和组成的主要方向。20世纪70年代,R. t<s:1> xen奠定了共植物社会学的基础,提出了将syntaxa系统转化为sigma-syntaxa的方法;gsamuhu和S. Rivas-Martínez将sigmetum定义为共植物社会学的基本单位。植物景观的植物社会学是基于西格玛关联的分配-在同质景观单元内植物群落及其复合体的组合,赋予其地貌独创性。在景观植物社会学中,目前主要分为两个方向:以sigmetum(系列,sigma-association)为主要类型单位,以tesela为领土类型单位的共植物社会学和以geosiigmetum (geoseries)和catena为主要类型单位的地共植物社会学。因此,景观植物社会学使用的概念因景观组织水平的不同而不同:系列水平,或sigmetum (permaseries, curtaseries和,直接,系列)和geoseries水平,或geosigmetum - geopermaseries, geocurtaseries和geoseries)。与供水制度有关的每个系列/地系属于四种类型之一:亲气候型、亲温型、亲土壤型和亲土壤型。直到20世纪70年代,在植物社会学的基础上只能编制大比例尺的地图。他们表现出同质的社区,主要是协会级别的社区。继R. t<e:1> xen、C. Beguin、O. Hegg、S. Rives-Martínez和J. M. gsamuhu等人的工作,他们证实了基于植物社会学表将句法系统转化为sigma-syntaxa的方法之后,sigmetum (series)和geosigmetum (geoseries)成为主要的映射单元。正是在这一时期,地学制图发生了质的飞跃,使其有可能从大比例尺(1:5 - 25 000),当地图上突出显示协会等级的群落时,到较小比例尺(1:25 - 50 000),结合(sigmetum和geosigmetum)并保留大部分相关信息。法国可以自信地被
{"title":"West european geobotanists approaches to typology and mapping of vegetation territorial units","authors":"I. Lavrinenko","doi":"10.31111/vegrus/2021.42.146","DOIUrl":"https://doi.org/10.31111/vegrus/2021.42.146","url":null,"abstract":"The relevance of this paper for Russian geobotanists is due to the fact that until recently the author had regularly come across the statement that the phytosociological approach cannot be used in vegetation mapping and in legends for the geobotanical maps. In my opinion, such attitude towards the potential of the generally accepted and most widespread phytosociological approach in world practice significantly impoverishes Russian geobotany. And more seriously, it significantly reduces the possibility of using modern technologies and international experience in the field of vegetation mapping. In this regard, the purpose of the paper is to characterize the modern approaches of West European geobotanists to the typology of territorial units of vegetation based on phytosociological methods and their application to the plant cover mapping at different scales. Some of the most important stages in the development of this approach in West Europe are also reflected in the paper. In 1928 J. Braun-Blanquet in his work “Plant sociology” proposed the main directions for studying the structure and composition of territorial units of vege­tation. In the 1970s R. Tüxen laid the foundations of symphytosociology and proposed a method for transforming the system of syntaxa into sigma-syntaxa, and J.-M. Géhu and S. Rivas-Martínez, defined sigmetum as the basic unit of symphytosociology. The phytosociology of a plant landscape is based on the allocation of sigma-associations — combinations of plant communities and their complexes within homogeneous landscape units, giving it physiognomic originality. In landscape phytosociology, two main directions are currently distinguished: symphytosociology, with sigmetum (series, sigma-association) as main typological unit and tesela as territorial one, and geosymphytosociology with geosigmetum (geoseries) and catena, respectively. Thus, landscape phytosociology uses concepts that differ depending on the level of landscape organization: the level of series, or sigmetum (permaseries, curtaseries and, directly, series), and the level of geoseries, or geosigmetum — geopermaseries, geocurtaseries and geoseries). Each series/geoseries in relation to the water supply regime belongs to one of four types: climatophilic, tempohygrophilic, edaphoxerophilic, and edaphohygrophilic. Until the 1970s, only large-scale maps could be prepared on a phytosociological basis. They displayed homogeneous communities, predominantly of the association rank. Following the works of R. Tüxen, C. Beguin and O. Hegg, S. Rives-Martínez and J. M. Géhu, who substantiated the methodology of transforming the system of syntaxa into sigma-syntaxa based on phytosociological tables, sigmetum (series) and geosigmetum (geoseries) have become the main mapped units. It was during this period that a qualitative leap took place in geobotanical mapping, which made it possible to move from a large scale (1: 5–25 000), when communities of the association rank were highlight","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Psammophyte vegetation of the Bargusin depression (Republic of Buryatia) 巴尔古辛洼地的沙生植被(布里亚特共和国)
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.40.137
N. Dulepova, A. Korolyuk
Modern aeolian landscapes occupy large territories in Transbaikalia. The Barguzin depression bottom is an area with sandy lands (Ivanov, 1960). This depression is one of the largest around the Lake Baikal (Florensov et al., 1965). Its internal field are accumulative surfaces, formed by Pleistocene sands, so-called “kujtuns” (Forest, Suvinsky, Lower, and Upper), are located as stripes of variable width, replacing each other from the north-west to the south-east (Fig. 2 A-D). Aeolian processes are most dynamic on weakly sod and bare sands: in the lower part of the Argada river, in the basins of Ina, Ulan-Burga, Zhargalanty rivers, and in the marginal parts of the steppe “kuytuns” (Fig. 3, 4). The results of aeolian processes are dunes and ridge-basin relief. This publication continues the series of papers (Dulepova, Korolyuk, 2013, 2015; Dulepova, 2016) on psammophytic vegetation of Baikal Siberia (Irkutsk region, the Republic of Buryatia, and the Trans-Baikal region). The paper is based on the analysis of 116 geobotanical relevés obtained in the course of the field studies in 2009–2014 in the Barguzinsky and Kurumkansky districts of the Republic of Buryatia. Four relevés are taken from the literature (Shchipek et al., 2002). Three diagnostic species of the class Brometea korotkiji Hilbig et Koroljuk 2000 (Bromopsis korotkiji, Corispermum sibiricum, Carex sabulosa) occur on the studied sandy lands. Among species of the order Oxytropidetalia lanatae Brzeg et Wika 2001 (Brzeg, Wika, 2001) such species as Artemisia ledebouriana, Chamaerhodos grandiflora, Oxytropis lanata have high constancy and often dominate in communities. When comparing new syntaxa with the previously described alliances (Oxytropidion lanatae Hilbig et Koroljuk 2000, Aconogonion chlorochryseum Dulepova et Korolyuk 2013 and Festucion dahuricae Dulepova et Korolyuk 2015) it was found that they are closer to the alliance Festucion dahuricae. However, Artemisia xanthochroa, Caragana buriatica, Festuca dahurica, Thymus baicalensis, and Ulmus pumila, commom in the Selenga river middle mountains, are absent in the study area (Korolyuk, 2017). The psammophytic fraction of the flora of the study area is not very peculiar. Only two endemic species (Oxytropis bargusinensis and Aconogonon bargusinense) are recorded on the sands of the Barguzin depression. 5 associations, 3 subassociations and 3 communities of the class Brometea korotkiji and 1 association of the class Cleistogenetea squarrosae Mirk. et al. ex Korotkov et al. 1991 (Table 1) are established as new. Association Bromopsietum korotkiji ass. nov. hoc loco (Table 2, rel. 6–17). Nomenclature type (holotypus hoc loco): Table 2, relevé 6 (field number — nd10-200), Republic of Buryatia, Kurumkansky district, 2 km southwest of the village of Kharamodun, the convex peak of dune), 54.18734° N, 110.48333° E., altitude 473 m a.s.l., 31/07/2010, author — N. A. Dulepova (Fig. 5). Diagnostic species: Bromopsis korotkiji (dom.). Associatio
现代风成景观占据了外贝加尔的大片领土。Barguzin凹陷底部是一个沙地区域(Ivanov, 1960)。这个洼地是贝加尔湖周围最大的洼地之一(Florensov et al., 1965)。它的内部区域是由更新世砂形成的堆积面,即所谓的“kujtuns”(森林、苏温斯基、下层和上层),它们位于可变宽度的条纹中,从西北到东南相互替换(图2 A-D)。风成过程在弱草皮和光秃秃的沙地上最具动力:在阿尔加达河下游,在伊纳河、乌兰-布尔加河、扎加尔兰提河流域,以及在草原的边缘地区(图3、4)。风成过程的结果是沙丘和山脊-盆地起伏。本出版物延续了一系列论文(Dulepova, Korolyuk, 2013, 2015;Dulepova, 2016)贝加尔湖西伯利亚(伊尔库茨克地区,布里亚特共和国和跨贝加尔湖地区)的沙生植被。本文基于2009-2014年布里亚特共和国Barguzinsky和Kurumkansky地区实地研究过程中获得的116个地球植物学相关数据的分析。四个相关的数据取自文献(Shchipek et al., 2002)。在研究的沙地上有3种Brometea korotkiji Hilbig et Koroljuk 2000的诊断种(Brometea korotkiji, Corispermum sibiricum, Carex sabulosa)。在毛细叶叶蒿目植物Brzeg et Wika 2001 (Brzeg, Wika, 2001)中,ledebouriana、Chamaerhodos grandflora、毛细叶叶蒿(Oxytropis lanata)等物种具有较高的稳定性,在群落中往往处于优势地位。将新分类与先前描述的联盟(Oxytropidion lanatae Hilbig et Koroljuk 2000, Aconogonion chlorchryseum Dulepova et Korolyuk 2013和feucion dahuricae Dulepova et Korolyuk 2015)进行比较,发现它们更接近于feucion dahuricae联盟。而色伦尕河中部山区常见的黄花蒿(Artemisia xanthochroa)、锦鸡儿(Caragana buriatica)、羊蹄草(Festuca dahurica)、百里香(Thymus baicalensis)和榆木(Ulmus pumila)在研究区均未发现(Korolyuk, 2017)。研究区植物区系的沙生植物部分并不十分特殊。巴尔古津洼陷的沙地上只记录到两种特有种(棘足棘虫和棘足棘虫)。Brometea korotkiji纲5个协会、3个亚协会和3个群落,Cleistogenetea squarrosae Mirk纲1个协会。等,如Korotkov等,1991年(表1)被建立为新的。科罗特基溴溴联系法(表2,6-17)。命名类型(holotypus hoc loco):表2,相关资料6(野外编号-和10-200),布里亚蒂共和国,Kurumkansky地区,Kharamodun村西南2公里,沙丘的凸起峰),54.18734°N, 110.48333°E,海拔473 m a.s.l, 2010年7月31日,作者- N. A. Dulepova(图5)。诊断种:broopsis korotkiji (dom.)。bargusinensis ass. nov. hoc loco协会(表2,rel. 18-25)。命名类型(holotypus hoc loco):表2,相关文献18(野外编号- 10-591),布里亚特共和国,Barguzinsky区,Urzhil村以南7公里处,乌兰-布尔加河的一个高架沙阶,北纬53.87645°,东经110.32410°,海拔628米,平均海拔,2010年7月28日,作者- A. Yu。Korolyuk。(图6、7).诊断种:bargusinense Aconogonon(多)。lanatae - carictum sabulosae ass11 . hoc loco(表2,rel. 26-37)。命名类型(holotypus hoc loco):表2,相关资料26(野外编号-和10-339),布里亚特共和国,库鲁姆坎斯基区,Kharamodun村西南8.3公里处,Argada河的一个高架沙地阶地,54.12156°N, 110.45382东经,海拔514米,平均海拔,2010年8月17日,作者- N. A. Dulepova。诊断种:Carex sabulosa (dom.)lanatotropido - broopsitum korotkiji ass11 . hoc loco(表3,rel. 1-30)。命名类型(完整类型):表3,相关资料1(野外编号- nd09-040),布里亚特共和国,库鲁姆坎斯基区,位于Argada村西南4-5公里处的Argada河谷一侧,高沙阶地的下部,54.20118°N, 110.64804°E,海拔537米,a.s.l, 2009年7月5日,作者- N. A. Dulepova。按种、纲诊断。Subassociation B.k.-O.l。typicum subass。11月特设的loco(表3,rel. 1-8)。命名类型(holotypus hoc loco):表3,相关1。诊断特征是那些有关联的特征。Subassociation B.k.-O.l。桔梗子。11月特设的loco(表3,rel. 9-19)。命名类型(holotypus hoc loco):表3,相关资料9(野外编号- 09-176),布里亚特共和国,库鲁姆坎斯基地区,阿尔加达河谷一侧,阿尔加达村西南4-5公里处,高沙阶地上部凸起部分,54.20235°N, 110.64528°E,海拔570 m a.l l, 2009年7月5日,作者- A.Yu。Korolyuk。诊断种:大花Chamaerhodos grandflora。 现代风成景观占据了外贝加尔的大片领土。Barguzin凹陷底部是一个沙地区域(Ivanov, 1960)。这个洼地是贝加尔湖周围最大的洼地之一(Florensov et al., 1965)。它的内部区域是由更新世砂形成的堆积面,即所谓的“kujtuns”(森林、苏温斯基、下层和上层),它们位于可变宽度的条纹中,从西北到东南相互替换(图2 A-D)。风成过程在弱草皮和光秃秃的沙地上最具动力:在阿尔加达河下游,在伊纳河、乌兰-布尔加河、扎加尔兰提河流域,以及在草原的边缘地区(图3、4)。风成过程的结果是沙丘和山脊-盆地起伏。本出版物延续了一系列论文(Dulepova, Korolyuk, 2013, 2015;Dulepova, 2016)贝加尔湖西伯利亚(伊尔库茨克地区,布里亚特共和国和跨贝加尔湖地区)的沙生植被。本文基于2009-2014年布里亚特共和国Barguzinsky和Kurumkansky地区实地研究过程中获得的116个地球植物学相关数据的分析。四个相关的数据取自文献(Shchipek et al., 2002)。在研究的沙
{"title":"Psammophyte vegetation of the Bargusin depression (Republic of Buryatia)","authors":"N. Dulepova, A. Korolyuk","doi":"10.31111/vegrus/2021.40.137","DOIUrl":"https://doi.org/10.31111/vegrus/2021.40.137","url":null,"abstract":"Modern aeolian landscapes occupy large territories in Transbaikalia. The Barguzin depression bottom is an area with sandy lands (Ivanov, 1960). This depression is one of the largest around the Lake Baikal (Florensov et al., 1965). Its internal field are accumulative surfaces, formed by Pleistocene sands, so-called “kujtuns” (Forest, Suvinsky, Lower, and Upper), are located as stripes of variable width, replacing each other from the north-west to the south-east (Fig. 2 A-D). Aeolian processes are most dynamic on weakly sod and bare sands: in the lower part of the Argada river, in the basins of Ina, Ulan-Burga, Zhargalanty rivers, and in the marginal parts of the steppe “kuytuns” (Fig. 3, 4). The results of aeolian processes are dunes and ridge-basin relief. This publication continues the series of papers (Dulepova, Korolyuk, 2013, 2015; Dulepova, 2016) on psammophytic vegetation of Baikal Siberia (Irkutsk region, the Republic of Buryatia, and the Trans-Baikal region). The paper is based on the analysis of 116 geobotanical relevés obtained in the course of the field studies in 2009–2014 in the Barguzinsky and Kurumkansky districts of the Republic of Buryatia. Four relevés are taken from the literature (Shchipek et al., 2002). Three diagnostic species of the class Brometea korotkiji Hilbig et Koroljuk 2000 (Bromopsis korotkiji, Corispermum sibiricum, Carex sabulosa) occur on the studied sandy lands. Among species of the order Oxytropidetalia lanatae Brzeg et Wika 2001 (Brzeg, Wika, 2001) such species as Artemisia ledebouriana, Chamaerhodos grandiflora, Oxytropis lanata have high constancy and often dominate in communities. When comparing new syntaxa with the previously described alliances (Oxytropidion lanatae Hilbig et Koroljuk 2000, Aconogonion chlorochryseum Dulepova et Korolyuk 2013 and Festucion dahuricae Dulepova et Korolyuk 2015) it was found that they are closer to the alliance Festucion dahuricae. However, Artemisia xanthochroa, Caragana buriatica, Festuca dahurica, Thymus baicalensis, and Ulmus pumila, commom in the Selenga river middle mountains, are absent in the study area (Korolyuk, 2017). The psammophytic fraction of the flora of the study area is not very peculiar. Only two endemic species (Oxytropis bargusinensis and Aconogonon bargusinense) are recorded on the sands of the Barguzin depression. 5 associations, 3 subassociations and 3 communities of the class Brometea korotkiji and 1 association of the class Cleistogenetea squarrosae Mirk. et al. ex Korotkov et al. 1991 (Table 1) are established as new. Association Bromopsietum korotkiji ass. nov. hoc loco (Table 2, rel. 6–17). Nomenclature type (holotypus hoc loco): Table 2, relevé 6 (field number — nd10-200), Republic of Buryatia, Kurumkansky district, 2 km southwest of the village of Kharamodun, the convex peak of dune), 54.18734° N, 110.48333° E., altitude 473 m a.s.l., 31/07/2010, author — N. A. Dulepova (Fig. 5). Diagnostic species: Bromopsis korotkiji (dom.). Associatio","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69502865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Syntaxonomy of desert steppe vegetation of Bogdinsko-Baskunchakskiy natural reserve (class Artemisietea lerchianae V. Golub 1994) Bogdinsko-Baskunchakskiy自然保护区荒漠草原植被分类学(Artemisietea lerchianae V. Golub 1994)
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.40.43
A. Korolyuk, A. Laktionov
The Astrakhan region, one the most arid region of Russia, is mainly a plain territory with the unique mountain Bolshoe Bogdo, where the Bogdinsko-Baskunchaksky natural reserve was founded, including the adjacent plains and Baskunchak Lake. So far syntaxonomy of arid regions of Russia are rather poor, only the Lower Volga valley is described in detail (Golub, 1994; Golub, Maltsev, 2013). The aim of present study was to carry out floristic classification of desert-steppe vegetation of the reserve territory. The study is based on the authors’ 133 relevés, made in 2019, and 41 published ones (Safronova, 2013). Cluster analysis was carried out (Ward’s method, Chekanovsky-Dyce-Sørensen coefficient). Two dendrograms, built on the species presence-absence and their cover, allowed to distibguish phytocenons and determine their differential species. At the first step, the dendrogram based on the species presence-absence was analyzed (Fig. 3). At levels from 2 to 8 clusters, the number of differential species with IV-V class constancy (Table 1) were assess. At the level of 3 clusters all relevés were divided into petrophytic, psammophytic and zonal communities (Table 2). According to large number of differential species two classes (Artemisietea lerchianae V. Golub 1994 — petrophytic desert-steppe communities and Festucetea vaginatae Soó ex Vicherek 1972 — psammophytic steppes) were distinguished. Also desert-steppe communities on fine soils which belong to the first class without own differential species were distinguished and their relevés were included in further analysis. Class Artemisietea lerchianae V. Golub 1994 unites the northern desert and desert steppe communities. Diagnostic species (D. s.): Alyssum turkestanicum, Anabasis aphylla, A. salsa, Artemisia lerchiana, Bassia prostrata, Camphorosma monspeliaca, Nitrosalsola dendroides, Ceratocarpus arenarius, Ceratocephala testiculata agg., Eremopyrum orientale, Ferula caspica, Medicago medicaginoides, Meniocus linifolius, Peganum harmala, Petrosimonia oppositifolia, Poa bulbosa, Zygophyllum fabago. Order Agropyretalia desertorum ord. nov. includes desert steppes, widely spread in the southern part of the steppe zone, with domination of semishrubs and bunchgrasses. Holotypus hoc loco — ass. Artemisio lerchianae–Stipetum sareptanae ass. nov. D. s.: Agropyron desertorum, Allium inderiense, A. tulipifolium, Astragalus pseudotataricus, A. testiculatus, Ephedra distachya, Erysimum leucanthemum, Euphorbia undulata, Galatella tatarica, Prangos odontalgica, Rochelia retorta, Serratula erucifolia, Sterigmostemum caspicum, Stipa lessingiana, S. sareptana, Tanacetum achilleifolium, Tragopogon marginifolius, Tulipa patens, T. biflora. Alliance Agropyrion desertorum all. nov. Holotypus hoc loco — ass. Artemisio lerchianae–Stipetum sareptanae ass. nov. D. s. of the alliance = D. s. of the order. Ass. Artemisio lerchianae–Stipetum sareptanae ass. nov. hoc loco (Table 4, rel.1–34), holotypus hoc loco: Table 4, re
阿斯特拉罕地区是俄罗斯最干旱的地区之一,主要是一个平原地区,有独特的博尔索埃-博格多山,博格丁斯科·巴斯昆察斯基自然保护区就是在这里建立的,包括邻近的平原和巴斯昆察克湖。到目前为止,俄罗斯干旱地区的句法结构相当差,只有下伏尔加河谷得到了详细描述(Golub,1994;Golub,Maltsev,2013)。本研究旨在对保护区荒漠草原植被进行区系分类。该研究基于作者在2019年发表的133篇相关文章和41篇已发表的相关文章(Safronova,2013)。进行聚类分析(Ward方法,Chekanovsky-Dyce-sørensen系数)。两个树状图建立在物种存在与否及其覆盖的基础上,可以区分植物群落并确定其差异物种。在第一步中,分析了基于物种存在与否的树状图(图3)。在2至8个集群的水平上,评估具有IV-V类恒定性的差异物种的数量(表1)。在3个集群的水平上,所有相关植物被分为岩生、沙生和地带群落(表2)。根据大量的差异物种,区分出两个纲(Artemietea lerchianae V.Golub 1994——岩生沙漠草原群落和Festuceta vaginatae Soóex Vicherek 1972——沙生草原群落)。此外,在精细土壤上的沙漠草原群落属于第一类,没有自己的差异物种,并将它们的相关性纳入进一步的分析中。Artemietea lerchianae V.Golub 1994级将北部沙漠和沙漠草原社区团结在一起。诊断物种(D.s.):火鸡Alyssum turkstanicum、Anabasis aphylla、A.salsa、勒氏蒿、巴西利亚、蒙氏Camphorosma monspelica、Nitrosalsola dendroides、Ceratocarpus arenarius、Ceratocephala testiculata agg。,Eremopyrum orientale、Ferula caspica、Medicago medicinoides、Meniocus linifolius、骆驼蓬、Petrosimonia oppositifolia、Poa bulbosa、Zygophyllum fabago。拟除虫菊目包括沙漠草原,广泛分布在草原区南部,以半灌木和束草为主。Holotypus hoc loco-ass.Artemisio lerchianae–Stipetum sareptanae ass.nov.D.s.:冰草、大葱、郁金香、假塔塔黄芪、铁花、远麻黄、白菊、大戟、大花、齿苋、罗切利亚、芥菜、,七叶树,Tragogon marginifolius,Tulipa patens,T.biflora。Agropyrion desertorum联盟所有。nov.Holotypus hoc loco-A.Artemisio lerchianae–Stipetum sareptanae A.s.nov.联盟的D.s.=目的D.s。Artemisio lerchianae–Stipetum sareptanae Ass.nov.hoc loco(表4,rel.1–34),holotypus hoc loco:表4,relavé1(字段编号19-077),Akhtubinskiy区阿斯特拉罕地区,Bolshoe Bogdo山Nizhny Baskunchak村以南,北纬48.13294°,东经46.83287°,NNE斜坡顶部附近凸起,2019年5月22日,作者:A.Yu。科罗柳克是联盟的核心。D.s.:冰冰草、远麻黄、白菊、齿苋、小针茅、沙庚属、无叶田、双花郁金香。С群落占据山麓和山脊缓坡的大片区域,偶尔出现在中等陡峭的斜坡上。贫花蒿属-复制无花蒿属Ass.hoc loco(表5,rel.1–13),holotypus hoc loco:表5,relavé1(字段编号19-081),Astrakhan V.Golub 1994,Akhtubinskiy区,位于Bolshoe Bogdo山Nizhny Baskunchak村以南,北纬48.13597°,东经46.84192°,平原区,轻度凹陷,2019年5月22日,作者:A.Yu。Korolyuk。D.s.:Anabasis salsa、Artemisia pauciflora、A.semarida、Atrapaxis replicata、Atriplex cana、Camphorosma monspelica、Catabrosella humilis、Ferula caspica。群落出现在各种博览会的凸起斜坡上,通常具有活跃的侵蚀。Stipo lessingiane–Artemicetum tauricae Ass.nov.hoc loco(表5,rel.14-37),holotypus hoc loco:表5,relaevé14(字段编号19-085),Akhtubinskiy区阿斯特拉罕地区,Bolshoe Bogdo山Nizhny Baskunchak村以南,北纬48.13558°,东经46.84563°,东坡平缓山麓,2019年5月22日作者:A.Yu。Korolyuk。D.s.:牛蒿、木犀、绒毛花、苦苣苔、多花维罗妮卡。相对封闭的群落最常见于山麓,也发生在山脊顶部及其各种陡峭和开阔的斜坡上。Artemistealia lerchianae V.Golub秩序,1994年,在该类别中处于中心地位,将北部沙漠地带的社区团结在一起,至少在里海地区是这样。D.s.:火鸡Alyssum turkstanicum,Anabasis aphylla,A。
{"title":"Syntaxonomy of desert steppe vegetation of Bogdinsko-Baskunchakskiy natural reserve (class Artemisietea lerchianae V. Golub 1994)","authors":"A. Korolyuk, A. Laktionov","doi":"10.31111/vegrus/2021.40.43","DOIUrl":"https://doi.org/10.31111/vegrus/2021.40.43","url":null,"abstract":"The Astrakhan region, one the most arid region of Russia, is mainly a plain territory with the unique mountain Bolshoe Bogdo, where the Bogdinsko-Baskunchaksky natural reserve was founded, including the adjacent plains and Baskunchak Lake. So far syntaxonomy of arid regions of Russia are rather poor, only the Lower Volga valley is described in detail (Golub, 1994; Golub, Maltsev, 2013). The aim of present study was to carry out floristic classification of desert-steppe vegetation of the reserve territory. The study is based on the authors’ 133 relevés, made in 2019, and 41 published ones (Safronova, 2013). Cluster analysis was carried out (Ward’s method, Chekanovsky-Dyce-Sørensen coefficient). Two dendrograms, built on the species presence-absence and their cover, allowed to distibguish phytocenons and determine their differential species. At the first step, the dendrogram based on the species presence-absence was analyzed (Fig. 3). At levels from 2 to 8 clusters, the number of differential species with IV-V class constancy (Table 1) were assess. At the level of 3 clusters all relevés were divided into petrophytic, psammophytic and zonal communities (Table 2). According to large number of differential species two classes (Artemisietea lerchianae V. Golub 1994 — petrophytic desert-steppe communities and Festucetea vaginatae Soó ex Vicherek 1972 — psammophytic steppes) were distinguished. Also desert-steppe communities on fine soils which belong to the first class without own differential species were distinguished and their relevés were included in further analysis. Class Artemisietea lerchianae V. Golub 1994 unites the northern desert and desert steppe communities. Diagnostic species (D. s.): Alyssum turkestanicum, Anabasis aphylla, A. salsa, Artemisia lerchiana, Bassia prostrata, Camphorosma monspeliaca, Nitrosalsola dendroides, Ceratocarpus arenarius, Ceratocephala testiculata agg., Eremopyrum orientale, Ferula caspica, Medicago medicaginoides, Meniocus linifolius, Peganum harmala, Petrosimonia oppositifolia, Poa bulbosa, Zygophyllum fabago. Order Agropyretalia desertorum ord. nov. includes desert steppes, widely spread in the southern part of the steppe zone, with domination of semishrubs and bunchgrasses. Holotypus hoc loco — ass. Artemisio lerchianae–Stipetum sareptanae ass. nov. D. s.: Agropyron desertorum, Allium inderiense, A. tulipifolium, Astragalus pseudotataricus, A. testiculatus, Ephedra distachya, Erysimum leucanthemum, Euphorbia undulata, Galatella tatarica, Prangos odontalgica, Rochelia retorta, Serratula erucifolia, Sterigmostemum caspicum, Stipa lessingiana, S. sareptana, Tanacetum achilleifolium, Tragopogon marginifolius, Tulipa patens, T. biflora. Alliance Agropyrion desertorum all. nov. Holotypus hoc loco — ass. Artemisio lerchianae–Stipetum sareptanae ass. nov. D. s. of the alliance = D. s. of the order. Ass. Artemisio lerchianae–Stipetum sareptanae ass. nov. hoc loco (Table 4, rel.1–34), holotypus hoc loco: Table 4, re","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69503717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dynamics of vegetation after clearcutting bilberry spruce forests (middle taiga subzone of the European North-East of Russia) 采伐后越莓云杉林植被动态(俄罗斯欧洲东北部针叶林中部亚区)
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.40.108
I. Likhanova, E. Perminova, G. S. Shushpannikova, G. V. Zheleznova, T. Pystina, Y. Kholopov
The communities of middle taiga spruce forests (ass. Linnaeo borealis–Piceetum abietis dryopteridetosum var. typica) and secondary communities formed after winter clearcuttings are described (Fig. 1) and classified according Braun-Blanquet (1964) approach using 81 relevés. Ellenberg ecological values (Ellenberg et al., 1991) were used to assess lighting (L), soil moisture (F), acidity (R) and nitrogen (N). The ordination was carried out using the NMS method. Both primary forest and secondary communities are classified as the alliance Piceion excelsae Pawłowskiet al. 1928 within the order Piceetalia excelsae Pawłowski et al. 1928 in the class Vaccinio–Piceetea Br.-Bl. in Br.-Bl.et al. 1939. We described 2 associations (incl.  1 new), 3 subassociations (2 new), 2 varieties (1 new), 2 subvarieties, and 2 communities. Ass. Aulacomnio palustris–Calamagrostietum purpureae ass. nov. hoc loco (Table 2). Nomenclature type (holotypus hoc loco): relevé 16 (field № 26p/20), Komi Republic, Ust-Kulom district, two-year cutting place, swath (61.84083° N 54.33778° E, 16.07.2020, author I. A. Likhanova. Diagnostic species (DS): Aulacomnium palustre, Calamagrostis purpurea, Carex globularis, Chamaenerion angustifolium, Polytrichum commune, Sphagnum angustifolium. The association includes «young» (succession stage 1(2)-17(18) years after cutting) secondary communities, formed at the swaths and skidding trails. The absence of tree stand results in the increased lighting and soil moisture, which explains an invasion of heliophile and water-resistant species of vascular plants and mosses. After cutting, DS of the primary association and subassociation almost disappear, but those of class and order remain. Species number — 23–54, average — 38. There are 2 subassociations within aasociation. Subass. A. p.–C. p. typicum subass. nov. hoc loco (Table 2 relevés 1–16, Fig. 3). Nomenclature type (holotypus hoc loco): relevé 16 (field № 26p/20), Komi Republic, Ust-Kulom district, two-year cutting of spruce herb-bilberry-green moss forest at the swath (61.84083° N 54.33778° E , 16.07.2020, author I. A. Likhanova. No own DS. The subassociation includes communities at the swath and skidding trails of 1(2)-year cutting place with poor species richness in comparison with primary forests. Number of species 20–27, average – 24. Subass. A. p.–C. p. avenelletosum flexuosae subass. nov. hoc loco (Table 2, relevés 17–27, Fig. 4). Nomenclature type (holotypus hoc loco), relevé 25 (field № 13-УК), Komi Republic, Ust-Kulom district, 17-year cutting place, swath (61.99389° N, 54.14778° E , 17.09.2019, author I. A. Likhanova. DS: Avenella flexuosa, Gymnocarpium dryopteris, Rubus arcticus.The subassociation includes communities of swaths and skidding trails at 17(18)-year cutting place enriched by heliophile and water-resistant species. The forming forest environment is the reason of high abundance of forest species and emergence of several diagnostic species of primary association and subass
本文描述了中部针叶林云杉林(ass. Linnaeo boreala - piceetum abietis dryopteridetosum var. typica)和冬季采伐后形成的次生群落(图1),并根据Braun-Blanquet(1964)方法使用81个相关的采样数据进行了分类。采用Ellenberg生态值(Ellenberg et al., 1991)对光照(L)、土壤湿度(F)、酸度(R)和氮素(N)进行评价,采用NMS方法进行排序。原生林和次生群落都被归为Piceion excelsae Pawłowskiet al. 1928,隶属于picetalia excelsae Pawłowskiet al. 1928,隶属于Vaccinio-Piceetea Br.-Bl纲。在Br.-Bl。1939年。我们描述了2个组合(包括1个新组合),3个亚组合(2个新组合),2个变种(1个新组合),2个亚种和2个群落。Aulacomnio palustris-Calamagrostietum purpureae ass. nov. hoc loco(表2).命名类型(holotypus hoc loco):相关16(领域号26p/20),科米共和国,Ust-Kulom地区,两年切割地点,地带(61.84083°N 54.33778°E, 16.07.2020),作者I. A. Likhanova。诊断种(DS):黄菖蒲、紫菖蒲、球萼菖蒲、菖蒲、蓼、菖蒲。该协会包括“年轻”(演替阶段1(2)-17(18)年)二级群落,形成在狭长地带和滑动小径上。树木的缺乏导致光照和土壤湿度的增加,这解释了维管植物和苔藓的亲日性和抗水性物种的入侵。切割后,原丛和次丛的DS几乎消失,但类和序的DS保留了下来。种数- 23-54种,平均- 38种。在一个关联中有两个子关联。Subass。答:p.-C。典型假单胞菌。11 . hoc loco(表2相关的1-16,图3).命名类型(holotypus hoc loco):相关的16(田野号26p/20),科米共和国,Ust-Kulom地区,在(61.84083°N 54.33778°E, 2020年7月16日)的带(61.84083°N, 54.33778°E)的云杉草本-蔓莓-绿苔藓林两年的砍伐,作者i.a. Likhanova。没有自己的DS。亚类群包括1(2)年采伐地的带状和滑径群落,其物种丰富度低于原始林。种数20-27种,平均24种。Subass。答:p.-C。弯曲亚基。命名类型(holotypus hoc loco), 25号(领域号13-УК),科米共和国,Ust-Kulom地区,17年切割地点,地带(61.99389°N, 54.14778°E, 2019年9月17日,作者i.a. Likhanova。黄花Avenella flexuosa, Gymnocarpium dryopteris, Rubus arcticus。亚群落包括17(18)年采伐地的带状群落和滑径群落,其中喜日光和耐水物种丰富。森林环境的形成是森林物种丰富的原因,并出现了几种初级联合和亚联合的诊断种。砍下来的残余物上长满了附生苔藓和地衣。种数- 24-45种,平均- 33种。群落褐毛苔(表3,相关数据1-12,图5)。DS:褐毛苔(优势),canescens, ceratdon purpureus, Dicranella cerviculata(优势)。句法包括在1(2)年切割位置的主要滑动轨迹上的社区。尽管aulacomomo palustro - calamagrostietum purpureae的诊断种丰度很高,但由于Vaccinio-Piceetea sylvestris纲和Piceetalia excelsae纲的早期演替物种多样性较高,DS丰度较低,因此不能将相关的<s:1> <s:1> <s:1>细胞转移体纳入分类。这里有大量的短毛桦树林下(1.8万株/公顷)。草本矮灌木和苔藓层是由先锋、喜日光和耐水的物种形成的。森林矮灌木、草本植物和苔藓生长在凋落物残余物上。种数- 20-34,平均- 27。群落黄柳。(表3,相关文献13-22,图6)。DS:巨型农业stis, A. tenuis, Carex rhynchophysa, Deschampsia cespitosa, Epilobium palustre, junus filformis, tremula, Salix caprea(优势),S. myrsinifolia, S. phylliifolia, Sphagnum russowii。该句法包括17(18)年切割处主要滑动轨迹的群落。黄鳝-紫菖蒲及亚鲈鱼DS的存在。答:p.-C。牛苗-青杉树纲和青杉树目的DS丰度较低,耐水和早期演替种普遍存在。林分由幼树桦(Betula pubescens)组成,平均密度2.1万株/公顷。灌木层由柳树形成。草本矮灌木层以物种为主,偏好渍水,生境受干扰的物种较多。种数- 36-45,平均- 40。北方白桦(Linnaeo borealis-Piceetum abietis dryopteridetosum var. Betula pubescens)(表1,相关数据13-22)。 短毛桦(优势种)、白桦、三角柳。该变体包括48(49)年切割地点的社区。树层高度和树冠密度与原生云杉林相当,但桦树比例较高。北方野驴的维管植物DS -冷杉和亚藜。虽然有毛蕨,但苔藓的丰度较低。许多森林物种在草本矮灌木层中变得丰富。苔藓层受到凋落叶的抑制。种数- 29-45种,平均- 36种。主要有2个亚种:典型(带状和滑道群落)和紫菖蒲(主滑道)。基于nms排序结果(图9)和各分群对采伐地某些技术要素的恢复周期和偏好数据,制定了云杉小草本-越莓-青苔林(Linnaeo borealis-Piceetum abietis dryopteridetosum var. typica)采伐后植被演替方案(图10)。描述了以下演替序列:在狭长地带和滑坡道上- Aulacomnio palustrus - calamagrostietum purpureae typum→a.p.c。柔叶白桦→北方白桦-松柏变种,短毛桦亚种。典型→l.b.p。典型毛翅蕨;滑径—毛蕊草群落→毛蕊柳群落→北方林—松柏变种、毛蕊白桦变种。紫菖蒲→l.b.p。典型毛翅蕨。在不同林龄的林带和滑道群落中,维管植物(16 ~ 18种/100 m2)和苔藓(8 ~ 10种/100 m2)的物种丰富度均低于原生林(19种/100 m2)和苔藓(14种/100 m2)。主要滑道17年和48年群落维管植物物种丰富度(27种/100 m2)高于原始林,主要是由于拓荒者、草甸和沼泽物种的入侵;苔藓类植物较少(8 ~ 12种/100 m2)。因此,砍伐对物种多样性产生了负面影响,表现为森林物种的丧失。受干扰的森林群落的植物区系组成在人类活动影响50年后仍未恢复。
{"title":"Dynamics of vegetation after clearcutting bilberry spruce forests (middle taiga subzone of the European North-East of Russia)","authors":"I. Likhanova, E. Perminova, G. S. Shushpannikova, G. V. Zheleznova, T. Pystina, Y. Kholopov","doi":"10.31111/vegrus/2021.40.108","DOIUrl":"https://doi.org/10.31111/vegrus/2021.40.108","url":null,"abstract":"The communities of middle taiga spruce forests (ass. Linnaeo borealis–Piceetum abietis dryopteridetosum var. typica) and secondary communities formed after winter clearcuttings are described (Fig. 1) and classified according Braun-Blanquet (1964) approach using 81 relevés. Ellenberg ecological values (Ellenberg et al., 1991) were used to assess lighting (L), soil moisture (F), acidity (R) and nitrogen (N). The ordination was carried out using the NMS method. Both primary forest and secondary communities are classified as the alliance Piceion excelsae Pawłowskiet al. 1928 within the order Piceetalia excelsae Pawłowski et al. 1928 in the class Vaccinio–Piceetea Br.-Bl. in Br.-Bl.et al. 1939. We described 2 associations (incl.  1 new), 3 subassociations (2 new), 2 varieties (1 new), 2 subvarieties, and 2 communities. Ass. Aulacomnio palustris–Calamagrostietum purpureae ass. nov. hoc loco (Table 2). Nomenclature type (holotypus hoc loco): relevé 16 (field № 26p/20), Komi Republic, Ust-Kulom district, two-year cutting place, swath (61.84083° N 54.33778° E, 16.07.2020, author I. A. Likhanova. Diagnostic species (DS): Aulacomnium palustre, Calamagrostis purpurea, Carex globularis, Chamaenerion angustifolium, Polytrichum commune, Sphagnum angustifolium. The association includes «young» (succession stage 1(2)-17(18) years after cutting) secondary communities, formed at the swaths and skidding trails. The absence of tree stand results in the increased lighting and soil moisture, which explains an invasion of heliophile and water-resistant species of vascular plants and mosses. After cutting, DS of the primary association and subassociation almost disappear, but those of class and order remain. Species number — 23–54, average — 38. There are 2 subassociations within aasociation. Subass. A. p.–C. p. typicum subass. nov. hoc loco (Table 2 relevés 1–16, Fig. 3). Nomenclature type (holotypus hoc loco): relevé 16 (field № 26p/20), Komi Republic, Ust-Kulom district, two-year cutting of spruce herb-bilberry-green moss forest at the swath (61.84083° N 54.33778° E , 16.07.2020, author I. A. Likhanova. No own DS. The subassociation includes communities at the swath and skidding trails of 1(2)-year cutting place with poor species richness in comparison with primary forests. Number of species 20–27, average – 24. Subass. A. p.–C. p. avenelletosum flexuosae subass. nov. hoc loco (Table 2, relevés 17–27, Fig. 4). Nomenclature type (holotypus hoc loco), relevé 25 (field № 13-УК), Komi Republic, Ust-Kulom district, 17-year cutting place, swath (61.99389° N, 54.14778° E , 17.09.2019, author I. A. Likhanova. DS: Avenella flexuosa, Gymnocarpium dryopteris, Rubus arcticus.The subassociation includes communities of swaths and skidding trails at 17(18)-year cutting place enriched by heliophile and water-resistant species. The forming forest environment is the reason of high abundance of forest species and emergence of several diagnostic species of primary association and subass","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69503305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The All-Russian scientific conference with international participation «XI Galkina’s Readings» (St. Petersburg, April 21, 2021) 国际参与的全俄科学会议“第十一次加尔金纳阅读”(2021年4月21日,圣彼得堡)
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.40.156
O. Galanina, G. A. Tyusov
The annual anniversary conference in memoriam of Ekaterina Alekseevna Galkina — the “XI Galkina’s Readings” (Proceedings…, 2021) was organized by the Mire section of the Russian Botanical Society on April 21, 2021. It was dedicated to the 50-years since publishing of monography by N. Ya. Kats “Mires of the Globe” (1971). In 2021 it was one-day online conference. It was attended by 65 participants. The main topic to discuss was “Geographic diversity of mires”. Much attention was focused on problems of mire regionality, typology of mires and mire distribution. Great interest among the participants was caused by report on montane mires. The final discussion was focused on mire terminology, interrelations between forest and mire and research perspectives.
纪念叶卡捷琳娜·阿列克谢耶夫娜·加尔金娜的周年纪念会议——“十一届加尔金娜的阅读”(Proceedings…,2021)由俄罗斯植物学会Mire分会于2021年4月21日组织。这是为了纪念奈雅的专著出版50周年。凯特的《地球的泥潭》(1971)。2021年是为期一天的在线会议。出席会议的有65人。讨论的主题是“沼泽的地理多样性”。研究重点是泥沼地域性、泥沼类型和泥沼分布等问题。关于高山矿井的报道引起了与会者的极大兴趣。最后讨论了沼泽的术语、森林与沼泽的相互关系和研究前景。
{"title":"The All-Russian scientific conference with international participation «XI Galkina’s Readings» (St. Petersburg, April 21, 2021)","authors":"O. Galanina, G. A. Tyusov","doi":"10.31111/vegrus/2021.40.156","DOIUrl":"https://doi.org/10.31111/vegrus/2021.40.156","url":null,"abstract":"The annual anniversary conference in memoriam of Ekaterina Alekseevna Galkina — the “XI Galkina’s Readings” (Proceedings…, 2021) was organized by the Mire section of the Russian Botanical Society on April 21, 2021. It was dedicated to the 50-years since publishing of monography by N. Ya. Kats “Mires of the Globe” (1971). In 2021 it was one-day online conference. It was attended by 65 participants. The main topic to discuss was “Geographic diversity of mires”. Much attention was focused on problems of mire regionality, typology of mires and mire distribution. Great interest among the participants was caused by report on montane mires. The final discussion was focused on mire terminology, interrelations between forest and mire and research perspectives.","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69503638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communities with Myrica gale L. in mires of the Gulf of Finland coast (St. Petersburg and Leningrad Region) 芬兰湾海岸(圣彼得堡和列宁格勒地区)海底的杨梅群落
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.41.58
E. Volkova, V. A. Smagin, V. Khramtsov
Сommunities of Myrica gale L. (sweet gale), their ecology and geography in coastal mires of the Gulf of Finland within St. Petersburg and the Leningrad Region on the Southeastern border of their range are described based on 70 relevés, made in 1981–2018. This species is included in the Red Data Books of Russia (2008), Leningrad Region (2018), St. Petersburg (2018), and Republic of Karelia (2007). The distribution of the communities in the studied area is as follows (Fig. 1) — the Yuntolovskiy reserve (the largest population), vicinity of the Lisiy Nos ­settlement, forest-park “Gagarka”, Tarkhovskiy Mys, Yuntolovskiy fo­rest-park (within St. Petersburg); vicinity of the Pesochnoe ­settlement, the Bolshoy Berye­zovyy Isl., near the port “Primorsk” (the Nor­thern coast of the Gulf of Finland) and the vicinity of Bolshaya Izhora ­settlement (Southern coast of the latter) in the Leningrad Region area. Communities are found mainly in coastal mires of various types (raised bogs, transitional mires, fens) in the place of former lagoons and in inter-dune depressions in different trophic conditions; most diverse in the last two. Communities are assigned into 12 associations, two of which with the shrub layer formed by Myrica gale. Sphagnetum myricosum galis is the most common association in transitional mires (Table 3). The communities are two-layers: Myrica gale shrub one and closed moss layer of Sphagnum species of diffe­rent ecological groups. The association is subdivided into 3 subassociations by dominanting Sphagnum species and groups of determinant species: sphagnosum angustifolii, sphagnosum flexuosi, and sphagnosum teretis. The communities of this association are located­ in newly formed mires, and their species composition is in the process of formation. These are succession stages between the fens and transitional mires. The ass. Myricetum caricosum lasiocarpae (table 4) includes communities of fens with close (50 to 80  %) Myrica gale shrub layer. Carex lasiocarpa is the dominant of the herb layer, in some communities there is the lower herb sublayer of Comarum palustre. There is no moss layer. Association Myricetum comaroso–betulosum with sparse Betula pubescens 5–12 m high tree layer is also recorded in fens (Table 4). Communities of the ass. Salicetum myricoso–paludiherbosum with the dominance of shrub willows and Myrica gale are rather widespread in coastal fens. They have closed (up to 100 %) shrub layer formed by various willows and M. gale. The composition and cover of paludal herbaceous species is variable, the only constant, sometimes abundant, species is Comarum palustre. The association is subdivided into 3 subassociations (salicosum phylicifoliae, salicosum phylicifoliae-myrsinifoliae and salicosum rosmarinifoliae-myrsinifoliae) according to the dominating willows and mire grasses. Besides the above associations with high abundance of Myrica gale, this species occurs with low abundance in the communities of other, often widespread m
根据1981年至2018年期间制作的70份相关的 气候变化报告(),对其在芬兰湾沿海水域的生态和地理进行了描述。芬兰湾沿海水域位于圣彼得堡和列宁格勒地区的东南边界。该物种被列入俄罗斯(2008年)、列宁格勒地区(2018年)、圣彼得堡(2018年)和卡累利阿共和国(2007年)的红色数据书。研究区域内的群落分布如下(图1)- Yuntolovskiy保护区(人口最多),liisiy no定居点附近,森林公园“Gagarka”,Tarkhovskiy Mys, Yuntolovskiy forest-park(在圣彼得堡内);在Pesochnoe定居点附近,Bolshoy Berye-zovyy岛。靠近“Primorsk”港(芬兰湾北部海岸)和列宁格勒地区Bolshaya Izhora -settlement(后者的南部海岸)附近。群落主要分布在原泻湖的不同类型的海岸沼泽(凸起沼泽、过渡性沼泽、沼泽)和不同营养条件下的沙丘间洼地;最多样化的是后两个。群落被划分为12个群落,其中2个群落由杨梅大风形成灌木层。myricosum galis是过渡性沼泽中最常见的结合体(表3)。群落分为两层:不同生态类群的Sphagnum种的杨梅大风灌木层和封闭苔藓层。该群落按优势种和决定种群分为3个亚群落:sphagnosum angustifolii、sphagnosum flexuosi和sphagnosum teretis。该群落位于新形成的泥沼中,其物种组成正处于形成过程中。这是沼泽和过渡泥潭之间的演替阶段。杨梅(Myricetum caricosum lasiocarpae)(表4)包括有接近(50 - 80%)杨梅大风灌木层的沼泽群落。草本层以苔草(Carex lasiocarpa)为优势层,部分群落中存在小茴香(Comarum palustre)的下层草本亚层。没有苔藓层。在沼泽中也记录到与稀疏的短毛桦树层(5-12米高)相关联的杨梅群落(表4)。以灌木柳树和杨梅为主的杨梅群落在沿海沼泽中相当普遍。它们封闭了(高达100%)由各种柳树和大风形成的灌木层。苍生草本物种的组成和覆盖是可变的,唯一不变的,有时是丰富的物种是苍生草。该群落按其优势种柳树和泥沼草可分为3个亚群(杨柳亚群、杨柳亚群-桃金娘亚群和迷迭香亚群-桃金娘亚群)。除了上述具有高丰度的杨梅群落外,该物种还以低丰度出现在其他通常广泛分布的沼泽群落群落中,作为它们的沿海变体(表2-4)。所讨论的列宁格勒地区和圣彼得堡的群落类型与西欧和北欧的甜风群落在物种组成上存在差异,具有区域性特征。由于在俄罗斯的欧洲部分社区的稀缺性与低丰度和优势杨梅风需要保护,以及他们的栖息地。
{"title":"Communities with Myrica gale L. in mires of the Gulf of Finland coast (St. Petersburg and Leningrad Region)","authors":"E. Volkova, V. A. Smagin, V. Khramtsov","doi":"10.31111/vegrus/2021.41.58","DOIUrl":"https://doi.org/10.31111/vegrus/2021.41.58","url":null,"abstract":"Сommunities of Myrica gale L. (sweet gale), their ecology and geography in coastal mires of the Gulf of Finland within St. Petersburg and the Leningrad Region on the Southeastern border of their range are described based on 70 relevés, made in 1981–2018. This species is included in the Red Data Books of Russia (2008), Leningrad Region (2018), St. Petersburg (2018), and Republic of Karelia (2007). The distribution of the communities in the studied area is as follows (Fig. 1) — the Yuntolovskiy reserve (the largest population), vicinity of the Lisiy Nos ­settlement, forest-park “Gagarka”, Tarkhovskiy Mys, Yuntolovskiy fo­rest-park (within St. Petersburg); vicinity of the Pesochnoe ­settlement, the Bolshoy Berye­zovyy Isl., near the port “Primorsk” (the Nor­thern coast of the Gulf of Finland) and the vicinity of Bolshaya Izhora ­settlement (Southern coast of the latter) in the Leningrad Region area. Communities are found mainly in coastal mires of various types (raised bogs, transitional mires, fens) in the place of former lagoons and in inter-dune depressions in different trophic conditions; most diverse in the last two. Communities are assigned into 12 associations, two of which with the shrub layer formed by Myrica gale. Sphagnetum myricosum galis is the most common association in transitional mires (Table 3). The communities are two-layers: Myrica gale shrub one and closed moss layer of Sphagnum species of diffe­rent ecological groups. The association is subdivided into 3 subassociations by dominanting Sphagnum species and groups of determinant species: sphagnosum angustifolii, sphagnosum flexuosi, and sphagnosum teretis. The communities of this association are located­ in newly formed mires, and their species composition is in the process of formation. These are succession stages between the fens and transitional mires. The ass. Myricetum caricosum lasiocarpae (table 4) includes communities of fens with close (50 to 80  %) Myrica gale shrub layer. Carex lasiocarpa is the dominant of the herb layer, in some communities there is the lower herb sublayer of Comarum palustre. There is no moss layer. Association Myricetum comaroso–betulosum with sparse Betula pubescens 5–12 m high tree layer is also recorded in fens (Table 4). Communities of the ass. Salicetum myricoso–paludiherbosum with the dominance of shrub willows and Myrica gale are rather widespread in coastal fens. They have closed (up to 100 %) shrub layer formed by various willows and M. gale. The composition and cover of paludal herbaceous species is variable, the only constant, sometimes abundant, species is Comarum palustre. The association is subdivided into 3 subassociations (salicosum phylicifoliae, salicosum phylicifoliae-myrsinifoliae and salicosum rosmarinifoliae-myrsinifoliae) according to the dominating willows and mire grasses. Besides the above associations with high abundance of Myrica gale, this species occurs with low abundance in the communities of other, often widespread m","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Communities with shrub willows in typical tundra subzone in the East European sector of the Arctic 北极东欧地区典型冻土带灌木柳树群落
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.41.75
O. Lavrinenko, I. Lavrinenko
Outside the Russian Arctic, the floristic classification of willow scrub was carried out in Norway (Nordhagen, 1943), Greenland (Daniёls, 1982; Sieg et al., 2006), and Alaska (Cooper, 1986, 1989; Walker et al., 1994; Schickhoff et al., 2002). In the Russian Arctic, willow communities are most fully studied in Chukotka and Wrangel Isl. (Sekretareva, 1990, 1991, 1992, 1995, 2003, 2006; Sinelnikova, 2001); several associations are described in the Siberian Arctic (Zanokha, 2003; Telyatnikov et al., 2014, 2015), on the Kola Peninsula (Koroleva, 2006, 2014), while such studies have just begun in the East European tundras (Neshataev, Lavrinenko, 2020). Many researchers faced a dilemma as to which higher units should be assigned to the syntaxa of communities with shrub willows. They were placed in the Betulo-Adenostyletea Br.-Bl. 1948 (synonym Betulo carpaticae–Alnetea viridis Rejmánek ex Bœuf, Theurillat, Willner, Mucina et Simler in Bœuf et al. 2014), Salicetea purpureae Moor 1958, Scheuchzerio palustris–Caricetea fuscae Tx. 1937 nom. ambiguum (in cases of waterlogging) or Loiseleurio procumbentis–Vaccinietea Eggler ex Schubert 1960 (with a significant abundance of tundra species). Shrub willows are one of the most active plants in the southern and typical tundras of the East European sector of the Arctic. They not only form thickets with an independent high layer (willow scrub), but are also part of tundra and mire communities, in which they are located in one layer (up to 30 cm height) with herbs and dwarf-shrubs. We described 6 associations based on the analysis of 54 relevés made in 12 sites (Fig. 1) of the typical tundra subzone on the Kolguyev, Dolgiy and Vaygach islands and in the tundra near the Pechora River. Some of the described communities with Salix spp. can rightfully be called willow scrub. These are rather high (from 30 cm in height in the northern area of the typical tundra subzone to 160 cm in the southern) and closed (willow cover — 60–95 %) herb- or herb-moss rich thickets mainly from hypoarcto-montane species Salix glauca s. str. and S. lanata s. str. Three new associations are described. Ass. Polemonio acutiflorum–Salicetum lanatae Zanokha ex Lavrinenko et Lavrinenko ass. nov. hoc loco (Table 1, rel. 1–5; Table 5, syntaxon 1; Fig. 2a and b, 3; nomenclature type (lectotypus) — Zanokha, 2003: 35–37, Table 2, rel. 6). Low-growing willow scrub from Salix lanata (30–40 cm height) with herb (Arctagrostis latifolia, Artemisia tilesii, Bistorta vivipara, Cardamine pratensis subsp. angustifolia, Cerastium jenisejense, Equisetum arvense s. l., Myosotis asiatica, Petasites frigidus, Polemonium acutiflorum, Ranunculus propinquus, Saxifraga cernua, S. hirculus, Valeriana capitata)-moss (Brachythecium salebrosum, Bryum pseudotriquetrum, Calliergonella lindbergii, Hylocomium splendens, Plagiomnium ellipticum) cover occupy large areas (up to several hundred square meters) on slightly sloping (1–5 °) sea terraces of Vaygach Isl. in places where s
除俄罗斯北极地区外,在挪威(Nordhagen, 1943)、格陵兰岛(Daniёls, 1982;Sieg et al., 2006)和Alaska (Cooper, 1986, 1989;Walker et al., 1994;Schickhoff et al., 2002)。在俄罗斯北极地区,柳树群落在楚科奇岛和弗兰格尔岛得到了最充分的研究。(Sekretareva, 1990, 1991, 1992, 1995, 2003, 2006;Sinelnikova, 2001);在西伯利亚北极地区描述了几个协会(Zanokha, 2003;Telyatnikov et al., 2014, 2015),在科拉半岛(Koroleva, 2006, 2014),而这类研究刚刚开始在东欧苔原(Neshataev, Lavrinenko, 2020)。许多研究人员面临着一个两难的问题,即灌木柳树群落的句法群应该被分配到哪个更高的单位。它们被放置在贝图罗-腺花型科Br.-Bl。1948年(同义词Betulo carpaticae-Alnetea viridis Rejmánek ex Bœuf, Theurillat, Willner, Mucina et Simler, Bœuf et al. 2014), Salicetea purpureae Moor 1958, Scheuchzerio palustri - caricetea fuscae Tx. 1937 nom.ambiguum(在涝渍情况下)或Loiseleurio procumbentis-Vaccinietea Eggler ex Schubert 1960(冻土带物种显著丰富)。灌木柳树是北极地区东欧地区南部和典型冻土带最活跃的植物之一。它们不仅形成具有独立高层的灌丛(柳树灌丛),而且也是苔原和沼泽群落的一部分,它们与草本植物和矮灌木位于同一层(高达30厘米高)。根据对柯尔古耶夫岛、多尔吉岛和瓦伊加奇岛以及佩霍拉河附近冻土带的12个地点(图1)的54个相关数据的分析,我们描述了6种关联。一些描述的柳树群落可以被正确地称为柳树丛。这些是相当高的(从典型冻土带北部地区的30厘米高度到南部地区的160厘米高度)和封闭的(柳树覆盖- 60 - 95%)草本或草本苔藓丰富的灌丛,主要来自低arcto-山地物种Salix glauca s.str .和s. lanata s.str .。表1,rel. 1 - 5;表5,语法1;图2a和b, 3;命名类型(lectotypus) - Zanokha, 2003: 35-37,表2,rel. 6).来自柳属(Salix lanata)(30-40厘米高)的低矮柳树灌木,草本植物(Arctagrostis latifolia, Artemisia tilesii, Bistorta vivipara, Cardamine pratensis subsp.)。金针叶,金银瓷,木贼。在Vaygach岛略倾斜(1-5°)的海阶地上,分布着大面积(可达数百平方米)的苔藓(Brachythecium salebrosum、Bryum pseudotriquetrum、Calliergonella lindbergii、Hylocomium splendens、Plagiomnium ellipticum)。在冬季积雪充足的地方,在梯田弯曲处,在山脊之间的洼地,在小溪山谷的缓坡上(图2a和b)。土壤是低温-含铁的沟状土壤(图3)。这种联系在泰米尔半岛的典型冻土带也很常见。siiseto sibiricim - salicetum glaucae ass. nov.(表1,rel. 6-12,命名类型(holotypus) - rel. 10(作者编号- 31_12),Kolguyev Isl。2012年8月7日,布格里扬卡河中游,作者- o.v.。拉夫里年科,i.a。Lavrinenko;表5,语法2;图4a和b、5).柳树灌丛主要来自青柳(Salix glauca) (70-160 cm高),草本植物(Caltha palustris, Carex aquatilis subsp.);石竹属植物、石竹属植物、石竹属植物、石竹属植物、石竹属植物、石竹属植物、石竹属植物、石竹属植物、石竹属植物。描述了科尔古耶夫岛上的苔藓(Brachythecium mildeanum, B. reflexum, Calliergon giganteum, Plagiomnium ellipticum, rhizzomnium pseudoopunctatum, Sanionia uncinata)覆盖。这些群落广泛分布在洪泛区,在那里它们占据了中部的平坦地区和近阶地洼地(在主河岸的前面),也广泛分布在流域——在浅径流槽、山丘之间的鞍状地带和斜坡的较低部分(图4a)。土壤为低温铁质粘土(图5)。(表2,标号1-20,命名类型(holotypus) -标号8(作者编号- 63_12)。)2012年8月15日,布格里扬卡河中游,作者- o.v.。拉夫里年科,i.a。Lavrinenko;表5,句法3-5;图6a、b、c、7)。 除俄罗斯北极地区外,在挪威(Nordhagen, 1943)、格陵兰岛(Daniёls, 1982;Sieg et al., 2006)和Alaska (Cooper, 1986, 1989;Walker et al., 1994;Schickhoff et al., 2002)。在俄罗斯北极地区,柳树群落在楚科奇岛和弗兰格尔岛得到了最充分的研究。(Sekretareva, 1990, 1991, 1992, 1995, 2003, 2006;Sinelnikova, 2001);在西伯利亚北极地区描述了几个协会(Zanokha, 2003;Telyatnikov et al., 2014, 2015),在科拉半岛(Koroleva, 2006, 2014),而这类研究刚刚开始在东欧苔原(Neshataev, Lavrinenko, 2020)。许多研究人员面临着一个两难的问题,即灌木柳树群落的句法群应该被分配到哪个更高的单位。它们被放置在贝图罗-腺花型科Br.-Bl。1948年(同义词Betulo carpaticae-Alnetea viridis Rejmánek ex Bœuf, Theurillat, Willner, Mucina et Simler, Bœuf et al. 2014), Salicetea purpureae Moor 1958, Scheuchzerio palustri - caricetea fuscae Tx. 1937 nom.ambiguum(在涝渍情况下)或Loiseleurio procumbentis-Vaccinietea Eggler ex Schubert 1960(冻土带物种显著丰富)。灌木柳树是北极地区东欧地区南部和典型冻土带最活跃的植物之一。它们不仅形成具有独立高层的灌丛(柳树灌丛),而且也是苔原和沼泽群落的一部分,它们与草本植物和矮灌木位
{"title":"Communities with shrub willows in typical tundra subzone in the East European sector of the Arctic","authors":"O. Lavrinenko, I. Lavrinenko","doi":"10.31111/vegrus/2021.41.75","DOIUrl":"https://doi.org/10.31111/vegrus/2021.41.75","url":null,"abstract":"Outside the Russian Arctic, the floristic classification of willow scrub was carried out in Norway (Nordhagen, 1943), Greenland (Daniёls, 1982; Sieg et al., 2006), and Alaska (Cooper, 1986, 1989; Walker et al., 1994; Schickhoff et al., 2002). In the Russian Arctic, willow communities are most fully studied in Chukotka and Wrangel Isl. (Sekretareva, 1990, 1991, 1992, 1995, 2003, 2006; Sinelnikova, 2001); several associations are described in the Siberian Arctic (Zanokha, 2003; Telyatnikov et al., 2014, 2015), on the Kola Peninsula (Koroleva, 2006, 2014), while such studies have just begun in the East European tundras (Neshataev, Lavrinenko, 2020). Many researchers faced a dilemma as to which higher units should be assigned to the syntaxa of communities with shrub willows. They were placed in the Betulo-Adenostyletea Br.-Bl. 1948 (synonym Betulo carpaticae–Alnetea viridis Rejmánek ex Bœuf, Theurillat, Willner, Mucina et Simler in Bœuf et al. 2014), Salicetea purpureae Moor 1958, Scheuchzerio palustris–Caricetea fuscae Tx. 1937 nom. ambiguum (in cases of waterlogging) or Loiseleurio procumbentis–Vaccinietea Eggler ex Schubert 1960 (with a significant abundance of tundra species). Shrub willows are one of the most active plants in the southern and typical tundras of the East European sector of the Arctic. They not only form thickets with an independent high layer (willow scrub), but are also part of tundra and mire communities, in which they are located in one layer (up to 30 cm height) with herbs and dwarf-shrubs. We described 6 associations based on the analysis of 54 relevés made in 12 sites (Fig. 1) of the typical tundra subzone on the Kolguyev, Dolgiy and Vaygach islands and in the tundra near the Pechora River. Some of the described communities with Salix spp. can rightfully be called willow scrub. These are rather high (from 30 cm in height in the northern area of the typical tundra subzone to 160 cm in the southern) and closed (willow cover — 60–95 %) herb- or herb-moss rich thickets mainly from hypoarcto-montane species Salix glauca s. str. and S. lanata s. str. Three new associations are described. Ass. Polemonio acutiflorum–Salicetum lanatae Zanokha ex Lavrinenko et Lavrinenko ass. nov. hoc loco (Table 1, rel. 1–5; Table 5, syntaxon 1; Fig. 2a and b, 3; nomenclature type (lectotypus) — Zanokha, 2003: 35–37, Table 2, rel. 6). Low-growing willow scrub from Salix lanata (30–40 cm height) with herb (Arctagrostis latifolia, Artemisia tilesii, Bistorta vivipara, Cardamine pratensis subsp. angustifolia, Cerastium jenisejense, Equisetum arvense s. l., Myosotis asiatica, Petasites frigidus, Polemonium acutiflorum, Ranunculus propinquus, Saxifraga cernua, S. hirculus, Valeriana capitata)-moss (Brachythecium salebrosum, Bryum pseudotriquetrum, Calliergonella lindbergii, Hylocomium splendens, Plagiomnium ellipticum) cover occupy large areas (up to several hundred square meters) on slightly sloping (1–5 °) sea terraces of Vaygach Isl. in places where s","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Diversity of broad-leaved and pine–broad-leaved forests on the eastern border of their distribution 阔叶林和松阔叶林东部边界分布的多样性
Q4 Agricultural and Biological Sciences Pub Date : 2021-01-01 DOI: 10.31111/vegrus/2021.42.63
P. Shirokikh, V. Martynenko, E. Baisheva, N. Fedorov, A. Muldashev, L. Naumova
As a result of long-term research carried out in the Southern Ural region, extensive information on the species richness and phytosociological diversity has been obtained for the broad-leaved forests belonging to the alliance Aconito lycoctoni–Tilion cordatae Solomeshch et Grigoriev in Willner et al. 2016 (order Carpinetalia betuli P. Fukarek 1968, class Carpino-Fagetea sylvaticae Jakucs ex Passarge 1968). The study is based on the analysis of 787 relevés made between 1989 and 2019. Relevés and their further analysis were performed according to the Braun-Blanquet aproach (Braun-Blanquet, 1964; Westhoff, Maarel, 1978). Two suballiances, 5 associations, 14 subassociations, 12 variants, and 1 facies were described in the alliance Aconito-Tilion. The combinations of diagnostic species were determined for each syntaxa. Nomenclatural types for new syntaxa are given in phytocoenotic tables and in the text. Сommunities of the alliance Aconito-Tilion are distributed meridionally from the southern taiga subzone (southern border of Perm Krai and Sverdlovsk Region), where they border with boreal forests. They are replaced by thermophilous oak forests of the alliance Lathyro pisiformis–Quercion roboris Solomeshch et Grigoriev in Willner et al. 2015 in the southern edge of the Ural Mountains and the Ural River basin of Orenburg Region (Fig. 1). In the latitudinal direction, forests of the alliance Aconito-Tilion are distributed in the forest-steppe zone of Bashkir Urals, Bugulma-Belebey Upland and foothills of western macroslope of Ural Mountains. Eastwards, they border hemiboreal light-coniferous–small-leaved herbaceous forests of the order Chamaecytiso ruthenici–Pinetalia sylvestris Solomeshch et Ermakov in Ermakov et al. 2000, class Brachypodio pinnati–Betuletea pendulae Ermakov, Korolyuk et Lashchinsky 1991. In the west, the communities of the alliance Aconito-Tilion are replaced by mesophytic broad-leaved forests of the­ ­alliance Querco roboris–Tilion cordatae Solomeshch et Laivinņš ex Bulokhov et Solomeshch in Bulokhov et Semenishchenkov 2015. According to floristic and structural-physiognomic characters, two suballiances were distinguished within this alliance. Suballiance Aconito lycoctoni–Tilienion cordatae suball. nov. combines broad-leaved forests typical for the region. Suballiance Tilio cordatae–Pinenion sylvestris suball. nov. includes pine–broad-leaved forests which represent ecotone communities in the transition stripe between European temperate broad-leaved forests of the class Carpino-Fagetea and Siberian hemiboreal light-coniferous–small-leaved herbaceous forests of the class Brachypodio-Betuletea. Suballiance Aconito-Tilienion (holotypus: Stachyo sylvaticae–Tilietum cordatae ass. Martynenko et al. 2005) includes broad-leaved forests growing near the eastern border of their range. In these forests, the main dominants of the tree layer are Tilia cordata, Ulmus glabra and Acer platanoides. Co-dominants of herb layer are shade-tolerant broad h
作为在南乌拉尔地区进行的长期研究的结果,Willner等人2016年获得了属于Aconito lyctoni–Tilion cordae Solomeshch et Grigoriev联盟的阔叶林的物种丰富度和植物社会学多样性的广泛信息。 Fukarek 1968,Carpino Fagetea sylvaticae Jakucs ex Passarge 1968)。这项研究基于对1989年至2019年间787份相关文件的分析。Relevés及其进一步分析是根据Braun Blanquet aproach进行的(Braun Blansquet,1964;Westhoff,Maarel,1978年)。Aconito Tilion联盟中描述了两个亚联盟、5个协会、14个亚协会、12个变体和1个相。为每个句法确定诊断物种的组合。植物群落表和文本中给出了新构造的命名类型。联盟Aconito Tilion的群落从南部针叶林亚带(彼尔姆边疆区和斯维尔德洛夫斯克地区的南部边界)经向分布,在那里它们与北方森林接壤。它们被Willner等人的Lathyro pisiformis–Quercion roboris Solomeshch et Grigoriev联盟的嗜热橡树林所取代。2015年,位于奥伦堡地区乌拉尔山脉南缘和乌拉尔河流域(图1)。在纬度方向上,联盟Aconito Tilion的森林分布在巴什基尔-乌拉尔的森林草原地带、布古勒马-贝勒比高地和乌拉尔山脉西部宏观斜坡的山麓。向东,它们与Chamaecytiso ruthici目-Pinetalia sylvestris Solomeshch et Ermakov的半北方轻针叶-小叶草本林接壤。2000年,Bracchydio羽状类-Betuletea pendulae Ermakov,Korolyuk et Lashkinsky 1991。在西部,2015年,在Bulokhov et Semenishchenkov的Querco robaris–Tilion cordae Solomeshch et Laivinņšex Bulokhovet Solomeshch'联盟的中生阔叶林取代了Aconito Tilion联盟的群落。根据区系和结构地貌特征,该联盟内有两个亚联盟。亚lliance Aconito lyctoni–Tilienon cordae亚all。nov.结合了该地区典型的阔叶林。鱼腥草属-松属。nov.包括松-阔叶林,它们代表了欧洲Carpino Fagetea类温带阔叶林和西伯利亚Bracchybio-Betuletea.Suballiance Aconito Tilienion类半北方轻型针叶-小叶草本林之间过渡带的交错带群落。Martynenko等人(2005)包括生长在其范围东部边界附近的阔叶林。在这些森林中,乔木层的主要优势成分是Tilia cordata、Ulmus glabra和Acer platanoides。草本层的共同优势是耐荫的宽草本物种——细辛、Aegopodium podagria、鳞毛蕨、Galium odoratum、Pulmonaria obsculata、Viola mirabilis等,以及乌拉尔和西伯利亚的高大草本物种,如Aconitum lyctonum、Crepis sibirica、Bupleurum longifolium、Heracleum sibiricum、Cacalia hastata、Cicerbita uralensis。亚联盟由两个协会代表:Bracchydio羽状-Tilieum cordae Grigoriev ex Martynenko等人2005和Stachyo sylvaticae-Tilietum cordae Martynenko2005。在这些协会中,描述了四个新的亚协会:羽状Bracchydio羽状-Tilietum cordae pulonaryetosum mollis subass。nov.(表1,第2、3列;表2,第1-30版),Stachyo sylvaticae–Tilietum cordae allarietosum petiolatae subass。nov.(表1,第12列;表2,rel.31-46),S。 s.–T。 c.Grigoriev ex subass。nov.(表1,第11栏),S。 s.–T。 c.mollis Khaziakhmetov、Solomeshch、Grigoriev和Muldashev前Shiroikh、Martynenko、Baisheva、Fedorov、Muldashef和Naumova 2021亚类。nov.(表1,第13列)。亚联盟Tilio Pinenion(正模标本:Tilio cordae–Pinetum sylvestris ass.nov.)结合了乌拉尔南部和俄罗斯平原东部边缘的松-阔叶混合林,乔木层以樟子松为主,下层以阔叶树种(Acer platanoides、Quercus robur、Tilia cordata、Ulmus glabra)为主。在这些森林的组成中,既有欧洲阔叶林的典型物种,也有西伯利亚半北方轻针叶草质林的典型品种。在乌法和齐拉尔高原以及南乌拉尔山脉中部的丘陵地带,这些森林主要分布在与Chamaecytiso Pi­netalia目半北方森林的接触区,与Willner等人的Asaro-europaei–Abietetea sibiricae Ermakov、Mucina et Zhitlukhina等暗针阔叶林的接触区较少(图1)。 此外,Fore Ural地区和Bugulma Belebey高地也有小规模的森林。在这个亚联盟中描述了三个与一些较小的句法组单元的关联(表3)。聚类分析证实了分类结果(图2)。Tilio cordae–Pinetum sylvestris Ass.nov.(表3,第1-3列,表4,5)代表了亚联盟Tilio Pine­nion最典型的群落。关联中描述了四个子关联:T。 c.–P。 s.典型亚群。nov.(表3,第1-2列;表4),T。 c.–P。 盾叶盾叶盾叶盾叶盾状盾叶。nov.(表3,第3列;表5,第21-33版),T。 c.–P。 少花角鲨亚种。nov.(表3,第4-5列;表6),T。 c.–P。 s.galietosum odorati(Martynenko et Zhigunov in Martynenko2005)stat.nov.(表3,第6列;表6,rel.44-57)。Carici arnellii–Pinetum sylvestris Solomeshch et Martynenkov Ass.nov。Euonymo verrucosae–Pinetum sylvestris Martynenko等人,2007年包括亚群落中最干燥的群落,分布在陡峭的南坡丘陵和乌法高原上。调查的阔叶林、松阔叶林和半北方林之间的相似性和差异反映在排序图中(图3)。亚lliance Tilio Pinenion的松阔叶林位于亚lliance A
{"title":"Diversity of broad-leaved and pine–broad-leaved forests on the eastern border of their distribution","authors":"P. Shirokikh, V. Martynenko, E. Baisheva, N. Fedorov, A. Muldashev, L. Naumova","doi":"10.31111/vegrus/2021.42.63","DOIUrl":"https://doi.org/10.31111/vegrus/2021.42.63","url":null,"abstract":"As a result of long-term research carried out in the Southern Ural region, extensive information on the species richness and phytosociological diversity has been obtained for the broad-leaved forests belonging to the alliance Aconito lycoctoni–Tilion cordatae Solomeshch et Grigoriev in Willner et al. 2016 (order Carpinetalia betuli P. Fukarek 1968, class Carpino-Fagetea sylvaticae Jakucs ex Passarge 1968). The study is based on the analysis of 787 relevés made between 1989 and 2019. Relevés and their further analysis were performed according to the Braun-Blanquet aproach (Braun-Blanquet, 1964; Westhoff, Maarel, 1978). Two suballiances, 5 associations, 14 subassociations, 12 variants, and 1 facies were described in the alliance Aconito-Tilion. The combinations of diagnostic species were determined for each syntaxa. Nomenclatural types for new syntaxa are given in phytocoenotic tables and in the text. Сommunities of the alliance Aconito-Tilion are distributed meridionally from the southern taiga subzone (southern border of Perm Krai and Sverdlovsk Region), where they border with boreal forests. They are replaced by thermophilous oak forests of the alliance Lathyro pisiformis–Quercion roboris Solomeshch et Grigoriev in Willner et al. 2015 in the southern edge of the Ural Mountains and the Ural River basin of Orenburg Region (Fig. 1). In the latitudinal direction, forests of the alliance Aconito-Tilion are distributed in the forest-steppe zone of Bashkir Urals, Bugulma-Belebey Upland and foothills of western macroslope of Ural Mountains. Eastwards, they border hemiboreal light-coniferous–small-leaved herbaceous forests of the order Chamaecytiso ruthenici–Pinetalia sylvestris Solomeshch et Ermakov in Ermakov et al. 2000, class Brachypodio pinnati–Betuletea pendulae Ermakov, Korolyuk et Lashchinsky 1991. In the west, the communities of the alliance Aconito-Tilion are replaced by mesophytic broad-leaved forests of the­ ­alliance Querco roboris–Tilion cordatae Solomeshch et Laivinņš ex Bulokhov et Solomeshch in Bulokhov et Semenishchenkov 2015. According to floristic and structural-physiognomic characters, two suballiances were distinguished within this alliance. Suballiance Aconito lycoctoni–Tilienion cordatae suball. nov. combines broad-leaved forests typical for the region. Suballiance Tilio cordatae–Pinenion sylvestris suball. nov. includes pine–broad-leaved forests which represent ecotone communities in the transition stripe between European temperate broad-leaved forests of the class Carpino-Fagetea and Siberian hemiboreal light-coniferous–small-leaved herbaceous forests of the class Brachypodio-Betuletea. Suballiance Aconito-Tilienion (holotypus: Stachyo sylvaticae–Tilietum cordatae ass. Martynenko et al. 2005) includes broad-leaved forests growing near the eastern border of their range. In these forests, the main dominants of the tree layer are Tilia cordata, Ulmus glabra and Acer platanoides. Co-dominants of herb layer are shade-tolerant broad h","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69504149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
How the errors in the process of vegetation analysis in the field and the data processing affect the results of classification (with arctic communities as an example) 野外植被分析和数据处理过程中的误差如何影响分类结果(以北极群落为例)
Q4 Agricultural and Biological Sciences Pub Date : 2020-07-01 DOI: 10.31111/vegrus/2020.38.139
N. Matveyeva
A list of species with an access of their “amount” (number of individuals, true/projective cover, biomass) on a plot of a standard size is the information that is necessary for an objective classification of plant communities, no matter what principles it is based on. Information on species composition, the variation both in their “amount” and constancy in the pool of geobotanical relevés is the basis for their clustering and the delimitation of syntaxonomical units. The only possible documents recording this information are geobotanical relevés, both published in the open press and stored in databases/archives. The completeness of species list within these depends on such parameters as time spent working in the field and technique (standard eye assessment at the sample plot (25 or 100 m2), a series of smaller (less than 1 m2) plots as well the researcher’s professionalism. The statement about the need to obtain a complete list of species in each stand seems an axiom, which is not fulfilled in practice. In Taymyr, when describing zonal communities for more than 2 hours, were recorded about 75 % of species, found on a permanent, carefully studied, sample plot of the same association. It is not necessary to comment that eye assessment of both composition and quantitative parameters are far fr om perfect. The same “amount” of species (abundance, cover) can be reflected differently not only by various researchers, but even by one, and not only in different years and areas, but as well in one season depending on such factors as what reléve was before, at what time of day (evening lighting in the Arctic is a serious factor), in what weather, etc. The result is influenced by factors such as the size and shape of a sample plot. The size is obvious: it should be no smaller than minimal area i. e. an area that gives an adequate idea of the composition of the described plot (Barkman, 1958, 1993). For the Arctic, according to the results of special work (Matveyeva, 1998), an area of 25 m2 was recommended for the species richest communities with a complex horizontal structure and 9 m2 for all others. The most frequent, generally accepted shape is a square. The use of another one depends on the community configuration: in narrow, elongated, winding, it must be “adjusted” to the outline of the stand, or it is better to abandon a single large plot in favor of several smaller ones. Location of the sample plot in space: preferably the most central, equidistant from the community boundaries. The smaller size of the community in general or its narrowness is fraught by the effect of visinizm (Barkman, 1958, 1990): the plot and therefore the list will get species of neighboring communities. No less problematic is the eye assessment of the species”amount”. It is generally accepted to evaluate projective cover, since neither to count the number of individuals, nor the determine of the true cover, and even more no biomass, in numerous relevés, is unrealistic. Despite the
在标准大小的地块上,可以访问其“数量”(个体数量、真实/投影覆盖率、生物量)的物种列表是对植物群落进行客观分类所必需的信息,无论其基于什么原则,它们在地植物亲缘关系库中的“数量”和恒定性的变化是它们聚类和构造组学单元划界的基础。记录这些信息的唯一可能的文件是地理植物学相关文件,这些文件都在公开媒体上发布,并存储在数据库/档案中。其中物种清单的完整性取决于这些参数,如在实地工作的时间和技术(在样本地块(25或100平方米)进行标准眼睛评估,一系列较小(小于1平方米)的地块,以及研究人员的专业精神。关于需要获得每个林分中物种的完整列表的说法似乎是一条公理,但在实践中并没有得到实现。在Taymir,当描述带状群落超过2个小时时,记录了大约75%的物种,这些物种是在同一协会的永久、仔细研究的样本区上发现的。不需要评论的是,眼睛对成分和定量参数的评估都远远不够完美。同样的物种“数量”(丰度、覆盖率)不仅可以由不同的研究人员来反映,甚至可以由一个人来反映,不仅可以在不同的年份和地区,也可以在一个季节反映,这取决于以前的气候、一天中的时间(北极的夜间照明是一个严重因素)、天气等因素。结果受到诸如样本图的大小和形状等因素的影响。大小是显而易见的:它应该不小于最小面积,即一个对所描述的地块的组成有足够想法的面积(Barkman,19581993)。对于北极,根据特别工作的结果(Matveyeva,1998),建议具有复杂水平结构的物种最丰富的群落面积为25平方米,其他群落面积为9平方米。最常见、最普遍接受的形状是正方形。另一个地块的使用取决于社区配置:在狭窄、细长、蜿蜒的情况下,必须根据看台的轮廓进行“调整”,或者最好放弃一个大地块,而选择几个较小的地块。样本地块在空间中的位置:最好是最中心的,与社区边界等距。总体而言,群落的较小规模或其狭窄程度充满了视觉主义的影响(Barkman,19581990):该地块和因此的列表将获得相邻群落的物种。同样有问题的是对物种“数量”的眼睛评估。评估投影覆盖是普遍接受的,因为无论是计算个体数量,还是确定真实覆盖,甚至在许多相关研究中,没有生物量都是不现实的。尽管西欧植物社会学家在上世纪上半叶有着丰富的实地经验,他们确信不可能用眼睛以1%的准确度确定投影覆盖,但他们还是做出了使用等级的合理决定。在根据Brown-Blanquet方法进行分类的实践中,7级量表(r,+,1,2,3,4,5),经过周期性的轻微修改,成为最广泛使用的量表(见:Becking,1957)。令我们非常遗憾的是,我们逐渐开始使用分数较多的个人作者量表——因此,不同量表中相同的数字代表不同的覆盖率。只要我们谈论的是一篇论文,这或多或少是可以接受的。然而,当从不同的、通常地理位置偏远的地区收集大量数据,并将大量相关数据放在一个表中时,在评估物种覆盖率时出错的可能性很大。最近,研究再次表明投影覆盖的准确率为1%,认为百分比可以转换为等级,但不能反过来。反对意见是一样的:不可能用眼睛以1%的准确度来确定投影覆盖。不仅每个研究人员都有自己的错误(在Taymir开始这一领域的工作之前,我们不止一次地检查了我们的估计:较小值的差异总是1-3%,较高值(25%之后)的差异是5-10%);同一个人会根据多种原因给出不同的百分比。因此,如果没有具体说明如何评估投影覆盖(例如,在每1平方米的100平方米样本图上,即100个正方形),那么8%、11%、19%、38%、41%等数字是故意歪曲的。野外误差讨论的一个中间结果是:对成分、物种总数及其数量的眼睛评估取决于大量的技巧,其准确性还有很多不足之处。 在对群落的物种多样性进行任何比较以及使用这些数据进行分类时,都应该记住
{"title":"How the errors in the process of vegetation analysis in the field and the data processing affect the results of classification (with arctic communities as an example)","authors":"N. Matveyeva","doi":"10.31111/vegrus/2020.38.139","DOIUrl":"https://doi.org/10.31111/vegrus/2020.38.139","url":null,"abstract":"A list of species with an access of their “amount” (number of individuals, true/projective cover, biomass) on a plot of a standard size is the information that is necessary for an objective classification of plant communities, no matter what principles it is based on. Information on species composition, the variation both in their “amount” and constancy in the pool of geobotanical relevés is the basis for their clustering and the delimitation of syntaxonomical units. The only possible documents recording this information are geobotanical relevés, both published in the open press and stored in databases/archives. The completeness of species list within these depends on such parameters as time spent working in the field and technique (standard eye assessment at the sample plot (25 or 100 m2), a series of smaller (less than 1 m2) plots as well the researcher’s professionalism. The statement about the need to obtain a complete list of species in each stand seems an axiom, which is not fulfilled in practice. In Taymyr, when describing zonal communities for more than 2 hours, were recorded about 75 % of species, found on a permanent, carefully studied, sample plot of the same association. It is not necessary to comment that eye assessment of both composition and quantitative parameters are far fr om perfect. The same “amount” of species (abundance, cover) can be reflected differently not only by various researchers, but even by one, and not only in different years and areas, but as well in one season depending on such factors as what reléve was before, at what time of day (evening lighting in the Arctic is a serious factor), in what weather, etc. The result is influenced by factors such as the size and shape of a sample plot. The size is obvious: it should be no smaller than minimal area i. e. an area that gives an adequate idea of the composition of the described plot (Barkman, 1958, 1993). For the Arctic, according to the results of special work (Matveyeva, 1998), an area of 25 m2 was recommended for the species richest communities with a complex horizontal structure and 9 m2 for all others. The most frequent, generally accepted shape is a square. The use of another one depends on the community configuration: in narrow, elongated, winding, it must be “adjusted” to the outline of the stand, or it is better to abandon a single large plot in favor of several smaller ones. Location of the sample plot in space: preferably the most central, equidistant from the community boundaries. The smaller size of the community in general or its narrowness is fraught by the effect of visinizm (Barkman, 1958, 1990): the plot and therefore the list will get species of neighboring communities. No less problematic is the eye assessment of the species”amount”. It is generally accepted to evaluate projective cover, since neither to count the number of individuals, nor the determine of the true cover, and even more no biomass, in numerous relevés, is unrealistic. Despite the","PeriodicalId":37606,"journal":{"name":"Rastitel''nost'' Rossii","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47208938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Rastitel''nost'' Rossii
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1