In this paper, a novel solution is introduced for visual Simultaneous Localization and Mapping (vSLAM) that is built up of Deep Learning components. The proposed architecture is a highly modular framework in which each component offers state of the art results in their respective fields of vision-based Deep Learning solutions. The paper shows that with the synergic integration of these individual building blocks, a functioning and efficient all-through deep neural (ATDN) vSLAM system can be created. The Embedding Distance Loss function is introduced and using it the ATDN architecture is trained. The resulting system managed to achieve 4.4% translation and 0.0176 deg/m rotational error on a subset of the KITTI dataset. The proposed architecture can be used for efficient and low-latency autonomous driving (AD) aiding database creation as well as a basis for autonomous vehicle (AV) control.
{"title":"ATDN vSLAM: An all-through Deep Learning-Based Solution for Visual Simultaneous Localization and Mapping","authors":"M'aty'as Sz'ant'o, Gyorgy R. Bog'ar, L. Vajta","doi":"10.3311/PPee.20437","DOIUrl":"https://doi.org/10.3311/PPee.20437","url":null,"abstract":"In this paper, a novel solution is introduced for visual Simultaneous Localization and Mapping (vSLAM) that is built up of Deep Learning components. The proposed architecture is a highly modular framework in which each component offers state of the art results in their respective fields of vision-based Deep Learning solutions. The paper shows that with the synergic integration of these individual building blocks, a functioning and efficient all-through deep neural (ATDN) vSLAM system can be created. The Embedding Distance Loss function is introduced and using it the ATDN architecture is trained. The resulting system managed to achieve 4.4% translation and 0.0176 deg/m rotational error on a subset of the KITTI dataset. The proposed architecture can be used for efficient and low-latency autonomous driving (AD) aiding database creation as well as a basis for autonomous vehicle (AV) control.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"83 1","pages":"236-247"},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89919943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transient stability analysis is a very important tool to deal with many behaviors of electrical power systems during and after being subjected to various disturbances. this paper propose a method for electrical power systems transient stability assessment using phase plane trajectories. A methodology for computing the critical stability conditions of generators is proposed. The critical conditions such as critical clearing time (CCT) and critical clearing angle (CCA) were obtained. The computation of CCA and CCT is curried out step by step using the characteristics of the faulted and postfault trajectories from given initial conditions until their intersection point. The angle and time values founded represent, by definition, the critical conditions of the system. The proposed algorithm can be used for complex models since it is based on solving systems of differential equations by iterative methods in the phase plane. The advantage provided by this method is it's accurate and small time consuming. To demonstrate the effectiveness of the proposed method, first, critical conditions calculation procedures are given, then the process used in judging power system stability is provided, finally, simulation results for various test cases of a single machine infinite bus (SMIB) system highlight the proposed methodology.
{"title":"Critical Clearing Time and Angle for Power Systems Postfault Stability Assessment","authors":"Lounis Latiki, Abdallah Medjdoub, N. Taib","doi":"10.3311/ppee.19858","DOIUrl":"https://doi.org/10.3311/ppee.19858","url":null,"abstract":"Transient stability analysis is a very important tool to deal with many behaviors of electrical power systems during and after being subjected to various disturbances. this paper propose a method for electrical power systems transient stability assessment using phase plane trajectories. A methodology for computing the critical stability conditions of generators is proposed. The critical conditions such as critical clearing time (CCT) and critical clearing angle (CCA) were obtained. The computation of CCA and CCT is curried out step by step using the characteristics of the faulted and postfault trajectories from given initial conditions until their intersection point. The angle and time values founded represent, by definition, the critical conditions of the system. The proposed algorithm can be used for complex models since it is based on solving systems of differential equations by iterative methods in the phase plane. The advantage provided by this method is it's accurate and small time consuming. To demonstrate the effectiveness of the proposed method, first, critical conditions calculation procedures are given, then the process used in judging power system stability is provided, finally, simulation results for various test cases of a single machine infinite bus (SMIB) system highlight the proposed methodology.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"7 1","pages":"277-285"},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87733287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two models to describe the phenomenon of corona discharge are presented: the first is known as the plasma model which with plasma chemistry defines the volumetric and surface reactions among charge carriers such as electrons, positive, and negative ions. This model uses Poisson's equation and a formulation of the space-charge density to calculate the electric field necessary to solve the species transport equations. Besides, only the plasma model determines the density of the charge carriers. The second is a simplified model which describes the corona discharge in terms of current conservation coupled with Poisson's equation. This model does not have any connection with the attributes of plasma chemistry. Both models propose solutions for the electric potential and space charge density distribution from the corona electrode to the ground electrode.
{"title":"Study and Numerical Simulation of Negative and Positive Corona Discharge: A Review","authors":"Angel Asipuela, T. Iváncsy","doi":"10.3311/ppee.19952","DOIUrl":"https://doi.org/10.3311/ppee.19952","url":null,"abstract":"Two models to describe the phenomenon of corona discharge are presented: the first is known as the plasma model which with plasma chemistry defines the volumetric and surface reactions among charge carriers such as electrons, positive, and negative ions. This model uses Poisson's equation and a formulation of the space-charge density to calculate the electric field necessary to solve the species transport equations. Besides, only the plasma model determines the density of the charge carriers. The second is a simplified model which describes the corona discharge in terms of current conservation coupled with Poisson's equation. This model does not have any connection with the attributes of plasma chemistry. Both models propose solutions for the electric potential and space charge density distribution from the corona electrode to the ground electrode.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"56 1","pages":"294-300"},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79134509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An estimation model is key in the design and development of an unmanned aerial vehicle's control system. This work presents a complete methodology for modelling the dynamics of a fixed-wing UAV for aerobatic maneuvers. The UAV dynamic non-linear model considered uses total variables instead of a nominal values and perturbation values about certain trimmed conditions for conventional flight envelopes. Such modelling allows the expansion of the flight envelope of an unmanned aerial vehicle to cover the full range of the angle of attack. The quaternion formulation is used since it eliminates the nonlinearity of the aerodynamics due to Euler angles for high angle of attacks. The objective is to have a complete and accurate representation of a highly dynamic fixed wing UAV capable of making aerobatic maneuvers without encountering singularities. A set of controllers are then designed for the inner and outer loops for attitude control using nonlinear dynamic inversion in cascade with a PI controller. Simulations carried out show robust tracking of reference attitude angles.
{"title":"Modelling and Attitude Control of an Agile Fixed Wing UAV based on Nonlinear Dynamic Inversion","authors":"Stephen Muchai Kimathi, B. Lantos","doi":"10.3311/ppee.20287","DOIUrl":"https://doi.org/10.3311/ppee.20287","url":null,"abstract":"An estimation model is key in the design and development of an unmanned aerial vehicle's control system. This work presents a complete methodology for modelling the dynamics of a fixed-wing UAV for aerobatic maneuvers. The UAV dynamic non-linear model considered uses total variables instead of a nominal values and perturbation values about certain trimmed conditions for conventional flight envelopes. Such modelling allows the expansion of the flight envelope of an unmanned aerial vehicle to cover the full range of the angle of attack. The quaternion formulation is used since it eliminates the nonlinearity of the aerodynamics due to Euler angles for high angle of attacks. The objective is to have a complete and accurate representation of a highly dynamic fixed wing UAV capable of making aerobatic maneuvers without encountering singularities. A set of controllers are then designed for the inner and outer loops for attitude control using nonlinear dynamic inversion in cascade with a PI controller. Simulations carried out show robust tracking of reference attitude angles.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"70 1","pages":"227-235"},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84462111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents dynamic modeling and control of Doubly Fed Induction Generator (DFIG) based on wind turbine systems, where the stator of DFIG is directly connected to the grid and the rotor was fed by a three level PWM NPC inverter. The active and reactive power control of the DFIG is based on the feedback technique by vector control method by using a classical regulator of Proportional-Integral (PI) type which allows us, in association with the looping of powers, to obtain an efficient and robust system. This approach is a very attractive solution for devices using DFIG as wind energy conversion systems; because, it is a simple, practical implementation, commonly applied in the wind turbine industry and it presents very acceptable performance, However, this control approach has certain limitations and has several causes, vector command with NPC three-level inverter pulse width modulation (PWM) is used to control the reactive power and active power of the generator. Then, use the neural network design to replace the traditional proportional-integral (PI) controller. Finally, the Matlab/Simulink software is used for simulation to prove the effectiveness of the command strategy.
{"title":"Robust Neural Control of Wind Turbine Based Doubly Fed Induction Generator and NPC Three Level Inverter","authors":"Khadraoua Narimene, Mendaz Kheira, Flitti Mohamed","doi":"10.3311/ppee.19921","DOIUrl":"https://doi.org/10.3311/ppee.19921","url":null,"abstract":"This paper presents dynamic modeling and control of Doubly Fed Induction Generator (DFIG) based on wind turbine systems, where the stator of DFIG is directly connected to the grid and the rotor was fed by a three level PWM NPC inverter. The active and reactive power control of the DFIG is based on the feedback technique by vector control method by using a classical regulator of Proportional-Integral (PI) type which allows us, in association with the looping of powers, to obtain an efficient and robust system. This approach is a very attractive solution for devices using DFIG as wind energy conversion systems; because, it is a simple, practical implementation, commonly applied in the wind turbine industry and it presents very acceptable performance, However, this control approach has certain limitations and has several causes, vector command with NPC three-level inverter pulse width modulation (PWM) is used to control the reactive power and active power of the generator. Then, use the neural network design to replace the traditional proportional-integral (PI) controller. Finally, the Matlab/Simulink software is used for simulation to prove the effectiveness of the command strategy.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"158 1","pages":"191-204"},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84678822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electric vehicles are becoming increasingly popular in societies and an important part of smart grids. Utility companies should be able to provide them with vital energy as they need electric energy instead of fuel, and this is where new challenges emerge in the network. In order to avoid causing utilities to incur additional energy and economic losses, researchers have proposed smart charging as a way to provide adequate energy to vehicles. When developing a charging schedule for a fleet of EVs, special considerations are made on variables such as energy, cost, and EVs milage. In this review paper, the importance of EVs integration into smart grids is studied, and then different methods to develop EVs charging scheduling are investigated. These methods can vary from optimization algorithms to learning-based, and game theory-based approaches. Then, as the considered system consists of three main actors, including EV users, the utility operator, and aggregators, a systematic review is conducted on these actors, and objectives related to each one are analyzed. Finally, research gaps related to the problem are studied. Researchers can use this review to conduct further research on the integration of EVs into smart grids.
{"title":"A Review on Electric Vehicles Charging Strategies Concerning Actors Interests","authors":"Shahab Sabzi, L. Vajta, T. Faghihi","doi":"10.3311/ppee.19625","DOIUrl":"https://doi.org/10.3311/ppee.19625","url":null,"abstract":"Electric vehicles are becoming increasingly popular in societies and an important part of smart grids. Utility companies should be able to provide them with vital energy as they need electric energy instead of fuel, and this is where new challenges emerge in the network. In order to avoid causing utilities to incur additional energy and economic losses, researchers have proposed smart charging as a way to provide adequate energy to vehicles. When developing a charging schedule for a fleet of EVs, special considerations are made on variables such as energy, cost, and EVs milage. In this review paper, the importance of EVs integration into smart grids is studied, and then different methods to develop EVs charging scheduling are investigated. These methods can vary from optimization algorithms to learning-based, and game theory-based approaches. Then, as the considered system consists of three main actors, including EV users, the utility operator, and aggregators, a systematic review is conducted on these actors, and objectives related to each one are analyzed. Finally, research gaps related to the problem are studied. Researchers can use this review to conduct further research on the integration of EVs into smart grids.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"71 1","pages":"148-162"},"PeriodicalIF":0.0,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83616947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lung cancer is a form of malignant tumor distinguished by aggressive multiplication of abnormal cells in lung tissues. If we can assure the detection of lung cancer in the early stage, then we have a chance to increase the survival rate by five years as effective treatment is still available at this stage. Many researchers in the field of image processing sector have built various systems to detect cancer by using image processing techniques. Internationally TNM (Tumor, Nodule, Metastases respectively) method is followed by a physician and radiologist to describe the stage of lung cancer. Our proposed system uses image processing techniques to detect and classify the tumor according to the TNM staging method. First, a series of image processing techniques are performed in a Computed tomography (CT) image. Then, features are extracted to identify the region of interest (ROI). In our proposed system, the classification approach is different from the reviewed existing systems, and the detection rate is comparatively high.
{"title":"Detection of Lung Cancer Stages on Computed Tomography Image Using Laplacian Filter and Marker Controlled Watershed Segmentation Technique","authors":"Tamanna Tajrin, Mamun Ahmed, S. Zaman","doi":"10.3311/ppee.19755","DOIUrl":"https://doi.org/10.3311/ppee.19755","url":null,"abstract":"Lung cancer is a form of malignant tumor distinguished by aggressive multiplication of abnormal cells in lung tissues. If we can assure the detection of lung cancer in the early stage, then we have a chance to increase the survival rate by five years as effective treatment is still available at this stage. Many researchers in the field of image processing sector have built various systems to detect cancer by using image processing techniques. Internationally TNM (Tumor, Nodule, Metastases respectively) method is followed by a physician and radiologist to describe the stage of lung cancer. Our proposed system uses image processing techniques to detect and classify the tumor according to the TNM staging method. First, a series of image processing techniques are performed in a Computed tomography (CT) image. Then, features are extracted to identify the region of interest (ROI). In our proposed system, the classification approach is different from the reviewed existing systems, and the detection rate is comparatively high.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"59 1","pages":"105-115"},"PeriodicalIF":0.0,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83977166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Axial flux electric motors have received a lot of attention in recent years due to successful implementations in industrial or traction applications. Particularly, axial flux permanent magnet synchronous motors (AFPMSM) can be an attractive choice in case of high torque-density requirements or when the drive environment (packaging) is geometrically limited to a disc-shaped motor. However, compared to radial flux motors, axial flux machine modeling possibilities are much less documented. In the present study, different electromagnetic modeling approaches have been compared through an example AFPMSM design. The motor parameters were determined by analytical and finite element methods. A 2D equivalent model (2D Linear Motor Modeling Approach – 2D-LMMA) and a 3D model results have been compared. The calculated values were used to carry out a drive control analysis of the axial flux motor.
{"title":"Parameter Determination and Drive Control Analysis of Axial Flux Permanent Magnet Synchronous Motors","authors":"Attila Nyitrai, G. Szabó, S. Horváth","doi":"10.3311/ppee.19714","DOIUrl":"https://doi.org/10.3311/ppee.19714","url":null,"abstract":"Axial flux electric motors have received a lot of attention in recent years due to successful implementations in industrial or traction applications. Particularly, axial flux permanent magnet synchronous motors (AFPMSM) can be an attractive choice in case of high torque-density requirements or when the drive environment (packaging) is geometrically limited to a disc-shaped motor. However, compared to radial flux motors, axial flux machine modeling possibilities are much less documented. In the present study, different electromagnetic modeling approaches have been compared through an example AFPMSM design. The motor parameters were determined by analytical and finite element methods. A 2D equivalent model (2D Linear Motor Modeling Approach – 2D-LMMA) and a 3D model results have been compared. The calculated values were used to carry out a drive control analysis of the axial flux motor.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"44 9","pages":"205-214"},"PeriodicalIF":0.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72450055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a new antenna system for rapidly emerging multifunction devices is presented. The proposed antenna system consists of four antenna components each one operating at different frequency bands separately. The designed antennas are isolated and integrated on a single substrate. The first antenna is designed to operate at 1920–2170 MHz covering the UMTS band, whereas the second antenna is proposed for the lower band 5G systems and WiMAX operating within the frequency range of 3.4–4.2 GHz. Furthermore, another antenna is designed to cover the higher band 5G system and the IEEE 820.11a WLAN within the frequency range of 5.1–5.85 GHz. Finally, a 28 GHz bowtie-based MIMO antenna array is designed and simulated for the mmWave future 5G mobile networks. The proposed antennas were designed and simulated by using CST microwave studio. The results showed that all of the proposed antennas exhibited excellent reflection characteristics below −20 dB at the resonant frequency and achieved high radiation efficiency reached 99% in some cases with a peak gain ranging between 4–6 dBi. The proposed antenna system helps smartphones to perform multitasks and achieve a better-quality operation especially with the enormous growth of IoT techniques.
{"title":"Multiband Handset Antenna System for UMTS/LTE/WLAN/Sub-6 5G and mmWave 5G Future Smartphones","authors":"A. Sabaawi, K. Younus","doi":"10.3311/ppee.19679","DOIUrl":"https://doi.org/10.3311/ppee.19679","url":null,"abstract":"In this paper, a new antenna system for rapidly emerging multifunction devices is presented. The proposed antenna system consists of four antenna components each one operating at different frequency bands separately. The designed antennas are isolated and integrated on a single substrate. The first antenna is designed to operate at 1920–2170 MHz covering the UMTS band, whereas the second antenna is proposed for the lower band 5G systems and WiMAX operating within the frequency range of 3.4–4.2 GHz. Furthermore, another antenna is designed to cover the higher band 5G system and the IEEE 820.11a WLAN within the frequency range of 5.1–5.85 GHz. Finally, a 28 GHz bowtie-based MIMO antenna array is designed and simulated for the mmWave future 5G mobile networks. The proposed antennas were designed and simulated by using CST microwave studio. The results showed that all of the proposed antennas exhibited excellent reflection characteristics below −20 dB at the resonant frequency and achieved high radiation efficiency reached 99% in some cases with a peak gain ranging between 4–6 dBi. The proposed antenna system helps smartphones to perform multitasks and achieve a better-quality operation especially with the enormous growth of IoT techniques.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"83 1","pages":"116-121"},"PeriodicalIF":0.0,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85539721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mrad, K. Csorba, D. Galata, Z. Nagy, Brigitta Nagy
In pharmaceutical industry, dissolution testing is part of the target product quality that essentials are in the approval of new products. The prediction of the dissolution profile based on spectroscopic data is an alternative to the current destructive and time-consuming method. RAMAN and Near Infrared (NIR) spectroscopy are two complementary methods, that provide information on the physical and chemical properties of the tablets and can help in predicting their dissolution profiles. This work aims to use the information collected by these methods to support the decision of how much of the dissolution profile should be measured and which methods to use, so that by estimating the remaining part, the accuracy requirement of the industry is met. Artificial neural network models were created, in which parts of the measured dissolution profiles, along with the spectroscopy data and the measured compression curves were used as an input to estimate the remaining part of the dissolution profiles. It was found that by measuring the dissolution profiles for 30 minutes, the remaining part was estimated within the acceptance limits of the f2 similarity factor. Adding further spectroscopy methods along with the measured parts of the dissolution profile significantly increased the prediction accuracy.
{"title":"Spectroscopy-Based Partial Prediction of In Vitro Dissolution Profile Using Artificial Neural Networks","authors":"M. Mrad, K. Csorba, D. Galata, Z. Nagy, Brigitta Nagy","doi":"10.3311/ppee.18552","DOIUrl":"https://doi.org/10.3311/ppee.18552","url":null,"abstract":"In pharmaceutical industry, dissolution testing is part of the target product quality that essentials are in the approval of new products. The prediction of the dissolution profile based on spectroscopic data is an alternative to the current destructive and time-consuming method. RAMAN and Near Infrared (NIR) spectroscopy are two complementary methods, that provide information on the physical and chemical properties of the tablets and can help in predicting their dissolution profiles. This work aims to use the information collected by these methods to support the decision of how much of the dissolution profile should be measured and which methods to use, so that by estimating the remaining part, the accuracy requirement of the industry is met. Artificial neural network models were created, in which parts of the measured dissolution profiles, along with the spectroscopy data and the measured compression curves were used as an input to estimate the remaining part of the dissolution profiles. It was found that by measuring the dissolution profiles for 30 minutes, the remaining part was estimated within the acceptance limits of the f2 similarity factor. Adding further spectroscopy methods along with the measured parts of the dissolution profile significantly increased the prediction accuracy.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"75 1","pages":"122-131"},"PeriodicalIF":0.0,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88965671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}