The 2030 United Nations Sustainable Development Goals (SDGs) include ensuring universal and safe access to green spaces. Some cities feature extensive green areas on hills or elevated terrains integrated into the urban landscape. In such cases where the benefits for users are highly pronounced (e.g., views, isolation, etc.), it is challenging and particularly complex to design strategies to ensure accessible and spatial routes due to multiple slopes and a challenging topography. In Barcelona, the iconic Montjuïc mountain has been the focal point of a trail masterplan aimed at rethinking its various access points and internal network of routes. Furthermore, the city has committed to implementing an initial project from this plan, the so-called 360° route. This study presents an in-depth analysis of the Montjuïc mountain case, encompassing both the plan and the 360° project in hilly urban parks. The analysis reveals the values and transferability of the set of strategies proposed in the plan, such as activating inherent location characteristics by connecting the surrounding urban fabric with elements of recreational potential within the underlying traces of heritage value. Additionally, a quantitative assessment of the impact of the proposed accesses on the population is presented. The study highlights the improvements in quality of life for the diverse users of this type of green infrastructure.
{"title":"Enhancing Access to Urban Hill Parks: The Montjuïc Trail Masterplan and the 360° Route Design in Barcelona","authors":"Josep Mercadé-Aloy, Marina Cervera-Alonso-de-Medina","doi":"10.3390/land13010002","DOIUrl":"https://doi.org/10.3390/land13010002","url":null,"abstract":"The 2030 United Nations Sustainable Development Goals (SDGs) include ensuring universal and safe access to green spaces. Some cities feature extensive green areas on hills or elevated terrains integrated into the urban landscape. In such cases where the benefits for users are highly pronounced (e.g., views, isolation, etc.), it is challenging and particularly complex to design strategies to ensure accessible and spatial routes due to multiple slopes and a challenging topography. In Barcelona, the iconic Montjuïc mountain has been the focal point of a trail masterplan aimed at rethinking its various access points and internal network of routes. Furthermore, the city has committed to implementing an initial project from this plan, the so-called 360° route. This study presents an in-depth analysis of the Montjuïc mountain case, encompassing both the plan and the 360° project in hilly urban parks. The analysis reveals the values and transferability of the set of strategies proposed in the plan, such as activating inherent location characteristics by connecting the surrounding urban fabric with elements of recreational potential within the underlying traces of heritage value. Additionally, a quantitative assessment of the impact of the proposed accesses on the population is presented. The study highlights the improvements in quality of life for the diverse users of this type of green infrastructure.","PeriodicalId":37702,"journal":{"name":"Land","volume":" 687","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Opedes, Shafiq Nedala, C. A. Mücher, J. Baartman, F. Mugagga
Human-induced land degradation in biodiverse regions like Mount Elgon threatens vital ecosystems. This study employs drone mapping and community insights to assess land use changes, degradation, and restoration in Mount Elgon, Uganda. Drone monitoring (2020–2023) covered six sites, complemented by household surveys (n = 499), Focus Group Discussions (FDGs), and interviews. Drone imagery shows agriculture and planted forest as dominant land use types, gradually replacing tropical high forest, bushland, and grassland. Drone image results showed that smallholder subsistence farming is leading to and enhancing degradation. Landslides and encroachment into the park were detected in three of the six sites. Trenches were the most adopted Soil and Water Conservation (SWC) measure. The trench adoption varied by location and crop type, creating restoration potential, notably in Elgon, Nabyoko, and Shiteka. Interviews and FGDs revealed adoption of trenches, grass strips, and afforestation as remedies to land degradation. Complex interactions exists among land use, degradation, and SWC measures in the upper Manafwa watershed, underscoring the urgency of addressing landslides and encroachment into the forest. Community-based initiatives are vital for hands-on SWC training, emphasizing long-term benefits. Collaboration among government, local communities, and NGOs is crucial to enforce conservation and restore MENP, while encouraging diversified income sources can reduce land dependency and mitigate degradation risks.
{"title":"How Can Drones Uncover Land Degradation Hotspots and Restoration Hopespots? An Integrated Approach in the Mount Elgon Region with Community Perceptions","authors":"H. Opedes, Shafiq Nedala, C. A. Mücher, J. Baartman, F. Mugagga","doi":"10.3390/land13010001","DOIUrl":"https://doi.org/10.3390/land13010001","url":null,"abstract":"Human-induced land degradation in biodiverse regions like Mount Elgon threatens vital ecosystems. This study employs drone mapping and community insights to assess land use changes, degradation, and restoration in Mount Elgon, Uganda. Drone monitoring (2020–2023) covered six sites, complemented by household surveys (n = 499), Focus Group Discussions (FDGs), and interviews. Drone imagery shows agriculture and planted forest as dominant land use types, gradually replacing tropical high forest, bushland, and grassland. Drone image results showed that smallholder subsistence farming is leading to and enhancing degradation. Landslides and encroachment into the park were detected in three of the six sites. Trenches were the most adopted Soil and Water Conservation (SWC) measure. The trench adoption varied by location and crop type, creating restoration potential, notably in Elgon, Nabyoko, and Shiteka. Interviews and FGDs revealed adoption of trenches, grass strips, and afforestation as remedies to land degradation. Complex interactions exists among land use, degradation, and SWC measures in the upper Manafwa watershed, underscoring the urgency of addressing landslides and encroachment into the forest. Community-based initiatives are vital for hands-on SWC training, emphasizing long-term benefits. Collaboration among government, local communities, and NGOs is crucial to enforce conservation and restore MENP, while encouraging diversified income sources can reduce land dependency and mitigate degradation risks.","PeriodicalId":37702,"journal":{"name":"Land","volume":" 1030","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resilience thinking provides valuable insights into the dynamics of complex adaptive systems. To achieve resilience in urban systems, it can be fruitful to delve into the intricacies of resilience processes. This paper theorizes about how the specific characteristics of resilient systems can be integrated into the spatial design of cities. Emphasizing the importance of the built form and spatial systems in maintaining order within urban processes, we focus on how adaptive renewal cycles can be applied to various systems and dimensions where urban change, adaptation, and renewal occur. The paper identifies key resilient system characteristics applicable to urban spatial form and contextualizes urban renewal within the adaptive renewal cycle—a framework originally developed to capture temporal and spatial ecosystem dynamics. We integrate insights within ‘space syntax theory’, theorizing about how cities renew themselves over space and time. We discuss instances of ‘compressed resilience’ and the challenges posed by the ‘tyranny of small decisions’ in urban planning and development. In conclusion, we identify future research directions in the theory of spatial morphology and resilient urban systems, emphasizing the need for a deeper understanding of the interplay between urban processes, urban form, resilience, and adaptive renewal.
{"title":"Placing Urban Renewal in the Context of the Resilience Adaptive Cycle","authors":"Lars Marcus, J. Colding","doi":"10.3390/land13010008","DOIUrl":"https://doi.org/10.3390/land13010008","url":null,"abstract":"Resilience thinking provides valuable insights into the dynamics of complex adaptive systems. To achieve resilience in urban systems, it can be fruitful to delve into the intricacies of resilience processes. This paper theorizes about how the specific characteristics of resilient systems can be integrated into the spatial design of cities. Emphasizing the importance of the built form and spatial systems in maintaining order within urban processes, we focus on how adaptive renewal cycles can be applied to various systems and dimensions where urban change, adaptation, and renewal occur. The paper identifies key resilient system characteristics applicable to urban spatial form and contextualizes urban renewal within the adaptive renewal cycle—a framework originally developed to capture temporal and spatial ecosystem dynamics. We integrate insights within ‘space syntax theory’, theorizing about how cities renew themselves over space and time. We discuss instances of ‘compressed resilience’ and the challenges posed by the ‘tyranny of small decisions’ in urban planning and development. In conclusion, we identify future research directions in the theory of spatial morphology and resilient urban systems, emphasizing the need for a deeper understanding of the interplay between urban processes, urban form, resilience, and adaptive renewal.","PeriodicalId":37702,"journal":{"name":"Land","volume":" 11","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Piscitelli, Annalisa De Boni, R. Roma, Giovanni Ottomano Palmisano
The European Commission is directing efforts into triggering the storage of carbon in agricultural soils by encouraging the adoption of carbon farming practices under the European Green Deal and in other key EU policies. However, farmers that want to enter this production model urgently need to define the sustainable practices required for increasing soil organic carbon without overturning production systems and also need to adapt it for optimizing yields and improving carbon stocks. However, there is still a lack of tools that are easy to use and interpret for guiding farmers and stakeholders to find ways in which to increase soil organic carbon content. Therefore, this research aims to set up a novel bottom–up approach, in terms of the methodology and analysis process, for identifying tailored sustainable farming management strategies for the purpose of increasing soil carbon. We investigated 115 real food production cases that were carried out under homogeneous pedo-climatic conditions over a period of 20 years in the Apulia region (Southern Italy), which made it possible to create a dataset of 12 variables that were analyzed through a decision tree (created with the C4.5 algorithm). The overall results highlight that the treatment duration was the most crucial factor and affected the carbon stock both positively and negatively. This was followed by the use of cover crops alone and then those in combination with a type of irrigation system; hence, specific agricultural management strategies were successfully identified for obtaining effective carbon storage in the considered real food production cases. From a wider perspective, this research can serve as guidance to help EU private actors and public authorities to start carbon farming initiatives, pilot projects, or certification schemes at the local and/or regional levels.
{"title":"Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production","authors":"L. Piscitelli, Annalisa De Boni, R. Roma, Giovanni Ottomano Palmisano","doi":"10.3390/land13010005","DOIUrl":"https://doi.org/10.3390/land13010005","url":null,"abstract":"The European Commission is directing efforts into triggering the storage of carbon in agricultural soils by encouraging the adoption of carbon farming practices under the European Green Deal and in other key EU policies. However, farmers that want to enter this production model urgently need to define the sustainable practices required for increasing soil organic carbon without overturning production systems and also need to adapt it for optimizing yields and improving carbon stocks. However, there is still a lack of tools that are easy to use and interpret for guiding farmers and stakeholders to find ways in which to increase soil organic carbon content. Therefore, this research aims to set up a novel bottom–up approach, in terms of the methodology and analysis process, for identifying tailored sustainable farming management strategies for the purpose of increasing soil carbon. We investigated 115 real food production cases that were carried out under homogeneous pedo-climatic conditions over a period of 20 years in the Apulia region (Southern Italy), which made it possible to create a dataset of 12 variables that were analyzed through a decision tree (created with the C4.5 algorithm). The overall results highlight that the treatment duration was the most crucial factor and affected the carbon stock both positively and negatively. This was followed by the use of cover crops alone and then those in combination with a type of irrigation system; hence, specific agricultural management strategies were successfully identified for obtaining effective carbon storage in the considered real food production cases. From a wider perspective, this research can serve as guidance to help EU private actors and public authorities to start carbon farming initiatives, pilot projects, or certification schemes at the local and/or regional levels.","PeriodicalId":37702,"journal":{"name":"Land","volume":" 21","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brendan Mackey, Carly Campbell, Patrick Norman, S. Hugh, D. DellaSala, Jay R. Malcolm, Mélanie Desrochers, Pierre Drapeau
The Canadian boreal forest biome has been subjected to a long history of management for wood production. Here, we examined the cumulative impacts of logging on older forests in terms of area, distribution and patch configuration in the managed forest zones of the Eastern Canadian provinces of Ontario and Quebec. We also examined the consequences of these cumulative impacts on a once widely distributed and now threatened species, the woodland caribou (Rangifer tarandus caribou). The cumulative area of recently logged forest (since ~1976) was 14,024,619 ha, with 8,210,617 ha in Quebec and 5,814,002 ha in Ontario. The total area of older forest was 22,672,369 ha, with 12,390,740 ha in Quebec and 10,281,628 ha in Ontario. Patch statistics revealed that there were 1,085,822 older forests with core patches < 0.25 ha and an additional 603,052 < 1.0 ha. There were 52 > 10,00–50,000 ha and 8 < 50,000 ha. Older forest patches (critical caribou habitat) in the 21 local population ranges totalled 6,103,534 ha, distributed among ~387,102 patches with 362,933 < 10 ha and 14 > 50,000 ha. The median percentage of local population ranges that was disturbed was 53.5%, with Charlevoix having the maximum (90.3%) and Basse Côte-Nord the least (34.9%). Woodland caribou local population ranges with disturbed suitable habitats >35% are considered unable to support self-sustaining populations. We found that for the 21 caribou local population ranges examined, 3 were at very high risk (>75% area disturbed), 16 at high risk (>45 ≤ 75% area disturbed), and 2 at low risk (≤35% area disturbed). Major changes are needed in boreal forest management in Ontario and Quebec for it to be ecologically sustainable, including a greater emphasis on protection and restoration for older forests, and to lower the risks for caribou populations.
{"title":"Assessing the Cumulative Impacts of Forest Management on Forest Age Structure Development and Woodland Caribou Habitat in Boreal Landscapes: A Case Study from Two Canadian Provinces","authors":"Brendan Mackey, Carly Campbell, Patrick Norman, S. Hugh, D. DellaSala, Jay R. Malcolm, Mélanie Desrochers, Pierre Drapeau","doi":"10.3390/land13010006","DOIUrl":"https://doi.org/10.3390/land13010006","url":null,"abstract":"The Canadian boreal forest biome has been subjected to a long history of management for wood production. Here, we examined the cumulative impacts of logging on older forests in terms of area, distribution and patch configuration in the managed forest zones of the Eastern Canadian provinces of Ontario and Quebec. We also examined the consequences of these cumulative impacts on a once widely distributed and now threatened species, the woodland caribou (Rangifer tarandus caribou). The cumulative area of recently logged forest (since ~1976) was 14,024,619 ha, with 8,210,617 ha in Quebec and 5,814,002 ha in Ontario. The total area of older forest was 22,672,369 ha, with 12,390,740 ha in Quebec and 10,281,628 ha in Ontario. Patch statistics revealed that there were 1,085,822 older forests with core patches < 0.25 ha and an additional 603,052 < 1.0 ha. There were 52 > 10,00–50,000 ha and 8 < 50,000 ha. Older forest patches (critical caribou habitat) in the 21 local population ranges totalled 6,103,534 ha, distributed among ~387,102 patches with 362,933 < 10 ha and 14 > 50,000 ha. The median percentage of local population ranges that was disturbed was 53.5%, with Charlevoix having the maximum (90.3%) and Basse Côte-Nord the least (34.9%). Woodland caribou local population ranges with disturbed suitable habitats >35% are considered unable to support self-sustaining populations. We found that for the 21 caribou local population ranges examined, 3 were at very high risk (>75% area disturbed), 16 at high risk (>45 ≤ 75% area disturbed), and 2 at low risk (≤35% area disturbed). Major changes are needed in boreal forest management in Ontario and Quebec for it to be ecologically sustainable, including a greater emphasis on protection and restoration for older forests, and to lower the risks for caribou populations.","PeriodicalId":37702,"journal":{"name":"Land","volume":" 32","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corn grain moisture (CGM) is critical to estimate grain maturity status and schedule harvest. Traditional methods for determining CGM range from manual scouting, destructive laboratory analyses, and weather-based dry down estimates. Such methods are either time consuming, expensive, spatially inaccurate, or subjective, therefore they are prone to errors or limitations. Realizing that precision harvest management could be critical for extracting the maximum crop value, this study evaluates the estimation of CGM at a pre-harvest stage using high-resolution (1.3 cm/pixel) multispectral imagery and machine learning techniques. Aerial imagery data were collected in the 2022 cropping season over 116 experimental corn planted plots. A total of 24 vegetation indices (VIs) were derived from imagery data along with reflectance (REF) information in the blue, green, red, red-edge, and near-infrared imaging spectrum that was initially evaluated for inter-correlations as well as subject to principal component analysis (PCA). VIs including the Green Normalized Difference Index (GNDVI), Green Chlorophyll Index (GCI), Infrared Percentage Vegetation Index (IPVI), Simple Ratio Index (SR), Normalized Difference Red-Edge Index (NDRE), and Visible Atmospherically Resistant Index (VARI) had the highest correlations with CGM (r: 0.68–0.80). Next, two state-of-the-art statistical and four machine learning (ML) models (Stepwise Linear Regression (SLR), Partial Least Squares Regression (PLSR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor (KNN)), and their 120 derivates (six ML models × two input groups (REFs and REFs+VIs) × 10 train–test data split ratios (starting 50:50)) were formulated and evaluated for CGM estimation. The CGM estimation accuracy was impacted by the ML model and train-test data split ratio. However, the impact was not significant for the input groups. For validation over the train and entire dataset, RF performed the best at a 95:5 split ratio, and REFs+VIs as the input variables (rtrain: 0.97, rRMSEtrain: 1.17%, rentire: 0.95, rRMSEentire: 1.37%). However, when validated for the test dataset, an increase in the train–test split ratio decreased the performances of the other ML models where SVM performed the best at a 50:50 split ratio (r = 0.70, rRMSE = 2.58%) and with REFs+VIs as the input variables. The 95:5 train–test ratio showed the best performance across all the models, which may be a suitable ratio for relatively smaller or medium-sized datasets. RF was identified to be the most stable and consistent ML model (r: 0.95, rRMSE: 1.37%). Findings in the study indicate that the integration of aerial remote sensing and ML-based data-run techniques could be useful for reliably predicting CGM at the pre-harvest stage, and developing precision corn harvest scheduling and management strategies for the growers.
{"title":"Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques","authors":"Pius Jjagwe, A. Chandel, David Langston","doi":"10.3390/land12122188","DOIUrl":"https://doi.org/10.3390/land12122188","url":null,"abstract":"Corn grain moisture (CGM) is critical to estimate grain maturity status and schedule harvest. Traditional methods for determining CGM range from manual scouting, destructive laboratory analyses, and weather-based dry down estimates. Such methods are either time consuming, expensive, spatially inaccurate, or subjective, therefore they are prone to errors or limitations. Realizing that precision harvest management could be critical for extracting the maximum crop value, this study evaluates the estimation of CGM at a pre-harvest stage using high-resolution (1.3 cm/pixel) multispectral imagery and machine learning techniques. Aerial imagery data were collected in the 2022 cropping season over 116 experimental corn planted plots. A total of 24 vegetation indices (VIs) were derived from imagery data along with reflectance (REF) information in the blue, green, red, red-edge, and near-infrared imaging spectrum that was initially evaluated for inter-correlations as well as subject to principal component analysis (PCA). VIs including the Green Normalized Difference Index (GNDVI), Green Chlorophyll Index (GCI), Infrared Percentage Vegetation Index (IPVI), Simple Ratio Index (SR), Normalized Difference Red-Edge Index (NDRE), and Visible Atmospherically Resistant Index (VARI) had the highest correlations with CGM (r: 0.68–0.80). Next, two state-of-the-art statistical and four machine learning (ML) models (Stepwise Linear Regression (SLR), Partial Least Squares Regression (PLSR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor (KNN)), and their 120 derivates (six ML models × two input groups (REFs and REFs+VIs) × 10 train–test data split ratios (starting 50:50)) were formulated and evaluated for CGM estimation. The CGM estimation accuracy was impacted by the ML model and train-test data split ratio. However, the impact was not significant for the input groups. For validation over the train and entire dataset, RF performed the best at a 95:5 split ratio, and REFs+VIs as the input variables (rtrain: 0.97, rRMSEtrain: 1.17%, rentire: 0.95, rRMSEentire: 1.37%). However, when validated for the test dataset, an increase in the train–test split ratio decreased the performances of the other ML models where SVM performed the best at a 50:50 split ratio (r = 0.70, rRMSE = 2.58%) and with REFs+VIs as the input variables. The 95:5 train–test ratio showed the best performance across all the models, which may be a suitable ratio for relatively smaller or medium-sized datasets. RF was identified to be the most stable and consistent ML model (r: 0.95, rRMSE: 1.37%). Findings in the study indicate that the integration of aerial remote sensing and ML-based data-run techniques could be useful for reliably predicting CGM at the pre-harvest stage, and developing precision corn harvest scheduling and management strategies for the growers.","PeriodicalId":37702,"journal":{"name":"Land","volume":" 33","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138963643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research focuses on the governance of rural living environments in China from the perspective of “System-Life”. The objective of improving rural living environments is to construct a beautiful countryside, which is an important part of China’s rural revitalization strategy. Through a literature review, a field study, and quantitative analysis, this paper explores the tensions and interactions between local governments and social demand by investigating four elements of the village improvement program: the village’s appearance, sewage treatment, domestic garbage disposal, and the sanitation of toilets. We also examine the interactions between the main participants involved in the governance of rural living environments, including the primary-level governments, village committees, and the villagers themselves. It was found that there is a path toward constructing a benign interaction between “system” and “life”. In terms of “system”, the primary-level governments play a decisive role in the implementation of policies, offering a creative interpretation and flexible implementation of a policy. From the perspective of “life”, the village committee is the bridge between the primary-level governments and villagers. The villagers have their own understanding of policy and the logic of life. This probe leads us to suggest that primary-level governments need to respect the perceptions and priorities of villagers in order to improve the performance of this well-intentioned program.
{"title":"Research on the Governance of Rural Living Environments in China: A Perspective of “System-Life” Based on Field Research Conducted in Village A, Xiangtan County, Hunan Province","authors":"Yunjuan Liang, Qiyu Shi, Anthony Fuller","doi":"10.3390/land12122182","DOIUrl":"https://doi.org/10.3390/land12122182","url":null,"abstract":"This research focuses on the governance of rural living environments in China from the perspective of “System-Life”. The objective of improving rural living environments is to construct a beautiful countryside, which is an important part of China’s rural revitalization strategy. Through a literature review, a field study, and quantitative analysis, this paper explores the tensions and interactions between local governments and social demand by investigating four elements of the village improvement program: the village’s appearance, sewage treatment, domestic garbage disposal, and the sanitation of toilets. We also examine the interactions between the main participants involved in the governance of rural living environments, including the primary-level governments, village committees, and the villagers themselves. It was found that there is a path toward constructing a benign interaction between “system” and “life”. In terms of “system”, the primary-level governments play a decisive role in the implementation of policies, offering a creative interpretation and flexible implementation of a policy. From the perspective of “life”, the village committee is the bridge between the primary-level governments and villagers. The villagers have their own understanding of policy and the logic of life. This probe leads us to suggest that primary-level governments need to respect the perceptions and priorities of villagers in order to improve the performance of this well-intentioned program.","PeriodicalId":37702,"journal":{"name":"Land","volume":"39 3","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139176109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The spatial pattern of regional green space is an important dimension to describe and quantitatively express the characteristics of regional green spaces outside the built-up area of a city. With the expansion of urban and rural construction land, regional green space has been continuously encroached upon. This leads to a decline in regional ecological well-being and the loss of biodiversity. Based on the remote sensing data of Shanghai city from 2000 to 2020, we quantitatively studied the spatial morphological change characteristics of regional green space outside the built-up area of Shanghai city. Firstly, with the help of the GEE platform, the optimal decoding accuracy classification method was selected through machine learning (random forest, support vector machine, classification regression tree); then, based on the biophysical component (BCI) and CA binarization, the built-up area ranges for up to five time nodes were obtained; finally, through GIS spatial data analysis and processing technology, the regional green space dynamic data of Shanghai for five time nodes were extracted. Based on the above data, an analysis index system was constructed to quantitatively analyze the spatial morphology characteristics of the regional green space outside the built-up area of Shanghai. The results show that (1) the area of regional green space outside the built-up area of Shanghai had a fluctuating growth pattern of “decreasing and then increasing”. The arable land and water areas in Shanghai decreased, and the woodland area increased steadily, while the wetland and grassland areas showed a trend of first decreasing and then increasing. (2) The regional green patch fragmentation shows a fluctuating development trend of increasing, decreasing, and increasing. (3) The change in the spatial center of gravity of the regional green space in Shanghai had a high degree of consistency with the overall green space change. The center of gravity of the grasslands in the regional green space moved substantially to the northwest, while the center of gravity of the other types remained basically unchanged. This study reveals the spatial morphology characteristics of regional green spaces and provides a research method to study the dynamic changes in regional ecological resources. The results of this study can provide a scientific basis for the identification, protection, and development of regional ecological resources.
{"title":"Study on the Spatial and Temporal Evolution of Regional Green Space Morphology Outside Built-Up Areas based on the Google Earth Engine and Biophysical Component Modeling","authors":"Yiwen Ji, Lang Zhang, Xinchen Gu, Lei Zhang","doi":"10.3390/land12122184","DOIUrl":"https://doi.org/10.3390/land12122184","url":null,"abstract":"The spatial pattern of regional green space is an important dimension to describe and quantitatively express the characteristics of regional green spaces outside the built-up area of a city. With the expansion of urban and rural construction land, regional green space has been continuously encroached upon. This leads to a decline in regional ecological well-being and the loss of biodiversity. Based on the remote sensing data of Shanghai city from 2000 to 2020, we quantitatively studied the spatial morphological change characteristics of regional green space outside the built-up area of Shanghai city. Firstly, with the help of the GEE platform, the optimal decoding accuracy classification method was selected through machine learning (random forest, support vector machine, classification regression tree); then, based on the biophysical component (BCI) and CA binarization, the built-up area ranges for up to five time nodes were obtained; finally, through GIS spatial data analysis and processing technology, the regional green space dynamic data of Shanghai for five time nodes were extracted. Based on the above data, an analysis index system was constructed to quantitatively analyze the spatial morphology characteristics of the regional green space outside the built-up area of Shanghai. The results show that (1) the area of regional green space outside the built-up area of Shanghai had a fluctuating growth pattern of “decreasing and then increasing”. The arable land and water areas in Shanghai decreased, and the woodland area increased steadily, while the wetland and grassland areas showed a trend of first decreasing and then increasing. (2) The regional green patch fragmentation shows a fluctuating development trend of increasing, decreasing, and increasing. (3) The change in the spatial center of gravity of the regional green space in Shanghai had a high degree of consistency with the overall green space change. The center of gravity of the grasslands in the regional green space moved substantially to the northwest, while the center of gravity of the other types remained basically unchanged. This study reveals the spatial morphology characteristics of regional green spaces and provides a research method to study the dynamic changes in regional ecological resources. The results of this study can provide a scientific basis for the identification, protection, and development of regional ecological resources.","PeriodicalId":37702,"journal":{"name":"Land","volume":"31 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139173015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chrysa Vizmpa, G. Botzoris, P. Lemonakis, A. Galanis
Contemporary urban planning models include urban trail paths. These are paths that create active transportation corridors within a city’s built environment, providing more sustainable travel, especially for short trips. The benefits of their use are plentiful, including improvements in commuters’ health, reductions in energy footprint, and socio-economic benefits for the entire society. In modern urban planning approaches such as the “15-minute city”, urban trail paths serve as connectors, facilitating access to amenities beyond the close-proximity concept of a “neighborhood”. They act as a way of connecting residents to other 15-minute cities/neighborhoods via safe routes, reducing extensive car use. Micromobility constitutes a novel approach to short trips with proven results. This paper explores the possibility of introducing micromobility as a means of connecting 15-minute cities/neighborhoods through urban trail paths. Through a literature review, an analysis is conducted of the opportunities arising from the introduction of micromobility, as well as on the factors influencing its sustained use in urban mobility and the public realm.
{"title":"Micromobility in Urban Trail Paths: Expanding and Strengthening the Planning of 15-Minute Cities","authors":"Chrysa Vizmpa, G. Botzoris, P. Lemonakis, A. Galanis","doi":"10.3390/land12122181","DOIUrl":"https://doi.org/10.3390/land12122181","url":null,"abstract":"Contemporary urban planning models include urban trail paths. These are paths that create active transportation corridors within a city’s built environment, providing more sustainable travel, especially for short trips. The benefits of their use are plentiful, including improvements in commuters’ health, reductions in energy footprint, and socio-economic benefits for the entire society. In modern urban planning approaches such as the “15-minute city”, urban trail paths serve as connectors, facilitating access to amenities beyond the close-proximity concept of a “neighborhood”. They act as a way of connecting residents to other 15-minute cities/neighborhoods via safe routes, reducing extensive car use. Micromobility constitutes a novel approach to short trips with proven results. This paper explores the possibility of introducing micromobility as a means of connecting 15-minute cities/neighborhoods through urban trail paths. Through a literature review, an analysis is conducted of the opportunities arising from the introduction of micromobility, as well as on the factors influencing its sustained use in urban mobility and the public realm.","PeriodicalId":37702,"journal":{"name":"Land","volume":"121 ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139173020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wildfires are a pervasive natural phenomenon in Mediterranean forest ecosystems, causing significant ecological imbalances that demand immediate restoration efforts. The intricacy of reinstating the ecological balance necessitates a proactive approach to identifying and assessing suitable restoration sites. The assessment and investigation of the most suitable restoration sites is of particular importance both for the relevant authorities and for planning and decision making by the state. This study proposes the development of a user-friendly model for evaluating and identifying the most suitable restoration sites immediately after a fire, using geoinformation technologies. For the purposes of demonstrating the method’s applicability, the 2016 fire of “Prinos”, Thasos, Greece, an area that has been repeatedly affected by forest fires, was chosen as a case study. The methodology evaluation was carried out by applying the weighted multicriteria decision analysis method (MCDAM) and was based on a number of variables. The analysis, processing and extraction of the results were performed using primarily remote sensing datasets in a geographical information system (GIS) environment. The methodology proposed herein includes the classification of the individual criteria and their synthesis based on different weighting factors. In the final results, the restoration suitability maps are presented in five suitability zones based on two different scenarios. Based on this study, the integration of geospatial and remote sensing data offers a valuable and cost-effective means for promptly assessing post-fire landscapes, with the aim of identifying suitable restoration sites.
{"title":"A Geospatial Approach to Identify and Evaluate Ecological Restoration Sites in Post-Fire Landscapes","authors":"Stefanos Dosis, G. Petropoulos, K. Kalogeropoulos","doi":"10.3390/land12122183","DOIUrl":"https://doi.org/10.3390/land12122183","url":null,"abstract":"Wildfires are a pervasive natural phenomenon in Mediterranean forest ecosystems, causing significant ecological imbalances that demand immediate restoration efforts. The intricacy of reinstating the ecological balance necessitates a proactive approach to identifying and assessing suitable restoration sites. The assessment and investigation of the most suitable restoration sites is of particular importance both for the relevant authorities and for planning and decision making by the state. This study proposes the development of a user-friendly model for evaluating and identifying the most suitable restoration sites immediately after a fire, using geoinformation technologies. For the purposes of demonstrating the method’s applicability, the 2016 fire of “Prinos”, Thasos, Greece, an area that has been repeatedly affected by forest fires, was chosen as a case study. The methodology evaluation was carried out by applying the weighted multicriteria decision analysis method (MCDAM) and was based on a number of variables. The analysis, processing and extraction of the results were performed using primarily remote sensing datasets in a geographical information system (GIS) environment. The methodology proposed herein includes the classification of the individual criteria and their synthesis based on different weighting factors. In the final results, the restoration suitability maps are presented in five suitability zones based on two different scenarios. Based on this study, the integration of geospatial and remote sensing data offers a valuable and cost-effective means for promptly assessing post-fire landscapes, with the aim of identifying suitable restoration sites.","PeriodicalId":37702,"journal":{"name":"Land","volume":"256 ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139174152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}