首页 > 最新文献

Journal of Pathology Informatics最新文献

英文 中文
Measuring the clinical impact of a reflex celiac disease testing algorithm: improving the value of celiac biopsies 衡量反射性乳糜泻检测算法的临床影响:提高乳糜泻活检的价值
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100486
Lee Schroeder
{"title":"Measuring the clinical impact of a reflex celiac disease testing algorithm: improving the value of celiac biopsies","authors":"Lee Schroeder","doi":"10.1016/j.jpi.2025.100486","DOIUrl":"10.1016/j.jpi.2025.100486","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100486"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retrieval-augmented generation for interpreting clinical laboratory regulations using large language models 使用大型语言模型解释临床实验室规则的检索增强生成
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100520
Suparna Nanua , Raven Steward , Benjamin Neely , Michael Datto , Kenneth Youens
Large language models (LLMs) have demonstrated strong performance on general knowledge tasks, but they have important limitations as standalone tools for question answering in specialized domains where accuracy and consistency are critical. Retrieval-augmented generation (RAG) is a strategy in which LLM outputs are grounded in dynamically retrieved source documents, offering advantages in accuracy, explainability, and maintainability. We developed and evaluated a custom RAG system called Raven, designed to answer laboratory regulatory questions using the part of the Code of Federal Regulations (CFR) pertaining to laboratory (42 CFR Part 493) as an authoritative source. Raven employed a vector search pipeline and a LLM to generate grounded responses via a chatbot–style interface. The system was tested using 103 synthetic laboratory regulatory questions, 88 of which were explicitly addressed in the CFR. Compared to answers generated manually by a board-certified pathologist, Raven's responses were judged to be totally complete and correct in 92.0% of those 88 cases, with little irrelevant content and a low potential for regulatory or medical error. Performance declined significantly on questions not addressed in the CFR, confirming the system's grounding in the source documents. Most suboptimal responses were attributable to faulty source document retrieval rather than model hallucination or misinterpretation. These findings demonstrate that a basic RAG system can produce useful, accurate, and verifiable answers to complex regulatory questions. With appropriate safeguards and with thoughtful integration into user workflows, tools like Raven may serve as valuable decision-support systems in laboratory medicine and other knowledge-intensive healthcare domains.
大型语言模型(llm)已经在一般知识任务上展示了强大的性能,但是它们作为在准确性和一致性至关重要的专业领域的问题回答的独立工具有重要的局限性。检索增强生成(RAG)是一种策略,其中LLM输出以动态检索的源文档为基础,在准确性、可解释性和可维护性方面具有优势。我们开发并评估了一个名为Raven的定制RAG系统,该系统旨在使用联邦法规(CFR)有关实验室的部分(42 CFR part 493)作为权威来源来回答实验室监管问题。Raven采用矢量搜索管道和LLM,通过聊天机器人风格的界面生成接地响应。该系统使用103个合成实验室监管问题进行了测试,其中88个在CFR中明确解决。与经过专业认证的病理学家手动生成的答案相比,在这88个病例中,Raven的回答有92.0%被认为是完全完整和正确的,几乎没有不相关的内容,出现监管或医疗错误的可能性也很低。在CFR中未解决的问题上,性能显著下降,证实了源文件中系统的接地。大多数次优反应可归因于错误的源文件检索,而不是模型幻觉或误解。这些发现表明,一个基本的RAG系统可以为复杂的监管问题提供有用、准确和可验证的答案。通过适当的保护措施和周到地集成到用户工作流中,Raven等工具可以作为实验室医学和其他知识密集型医疗保健领域中有价值的决策支持系统。
{"title":"Retrieval-augmented generation for interpreting clinical laboratory regulations using large language models","authors":"Suparna Nanua ,&nbsp;Raven Steward ,&nbsp;Benjamin Neely ,&nbsp;Michael Datto ,&nbsp;Kenneth Youens","doi":"10.1016/j.jpi.2025.100520","DOIUrl":"10.1016/j.jpi.2025.100520","url":null,"abstract":"<div><div>Large language models (LLMs) have demonstrated strong performance on general knowledge tasks, but they have important limitations as standalone tools for question answering in specialized domains where accuracy and consistency are critical. Retrieval-augmented generation (RAG) is a strategy in which LLM outputs are grounded in dynamically retrieved source documents, offering advantages in accuracy, explainability, and maintainability. We developed and evaluated a custom RAG system called Raven, designed to answer laboratory regulatory questions using the part of the Code of Federal Regulations (CFR) pertaining to laboratory (42 CFR Part 493) as an authoritative source. Raven employed a vector search pipeline and a LLM to generate grounded responses via a chatbot–style interface. The system was tested using 103 synthetic laboratory regulatory questions, 88 of which were explicitly addressed in the CFR. Compared to answers generated manually by a board-certified pathologist, Raven's responses were judged to be totally complete and correct in 92.0% of those 88 cases, with little irrelevant content and a low potential for regulatory or medical error. Performance declined significantly on questions not addressed in the CFR, confirming the system's grounding in the source documents. Most suboptimal responses were attributable to faulty source document retrieval rather than model hallucination or misinterpretation. These findings demonstrate that a basic RAG system can produce useful, accurate, and verifiable answers to complex regulatory questions. With appropriate safeguards and with thoughtful integration into user workflows, tools like Raven may serve as valuable decision-support systems in laboratory medicine and other knowledge-intensive healthcare domains.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100520"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145415716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From scalpel to slide: predicting specimen volume in anatomic pathology 从手术刀到载玻片:预测解剖病理学中的标本体积
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100484
Brendan Graham
{"title":"From scalpel to slide: predicting specimen volume in anatomic pathology","authors":"Brendan Graham","doi":"10.1016/j.jpi.2025.100484","DOIUrl":"10.1016/j.jpi.2025.100484","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100484"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-powered deep learning model for prognosis and immunotherapy prediction in gastric cancer using whole-slide images 基于全片图像的胃癌预后和免疫治疗预测的ai深度学习模型
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100488
Mai Hanh Nguyen , Huy-Hoang Do-Huu , Phuc-Tan Nguyen , Hieu Le , Ngoc Dung Tran , Le Nguyen Quoc Khanh
{"title":"AI-powered deep learning model for prognosis and immunotherapy prediction in gastric cancer using whole-slide images","authors":"Mai Hanh Nguyen ,&nbsp;Huy-Hoang Do-Huu ,&nbsp;Phuc-Tan Nguyen ,&nbsp;Hieu Le ,&nbsp;Ngoc Dung Tran ,&nbsp;Le Nguyen Quoc Khanh","doi":"10.1016/j.jpi.2025.100488","DOIUrl":"10.1016/j.jpi.2025.100488","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100488"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Large Language Models (LLMs) for query optimization in electronic medical records databases 使用大型语言模型(llm)优化电子病历数据库的查询
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100476
Sushasree Vasudevan Suseel Kumar , Mustafa Deebajah , Samer Albahra
{"title":"Using Large Language Models (LLMs) for query optimization in electronic medical records databases","authors":"Sushasree Vasudevan Suseel Kumar ,&nbsp;Mustafa Deebajah ,&nbsp;Samer Albahra","doi":"10.1016/j.jpi.2025.100476","DOIUrl":"10.1016/j.jpi.2025.100476","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100476"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based analysis of TP53 immunohistochemistry for enhanced prognostic accuracy in acute myeloid leukemia 基于深度学习的TP53免疫组织化学分析提高急性髓性白血病预后准确性
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100508
Fatemeh Zabihollahy , Xiaotian Yuan , Maxim Mohareb , Dexter Boehm-North , Neil Fleshner , Hong Chang , George M. Yousef
{"title":"Deep learning-based analysis of TP53 immunohistochemistry for enhanced prognostic accuracy in acute myeloid leukemia","authors":"Fatemeh Zabihollahy ,&nbsp;Xiaotian Yuan ,&nbsp;Maxim Mohareb ,&nbsp;Dexter Boehm-North ,&nbsp;Neil Fleshner ,&nbsp;Hong Chang ,&nbsp;George M. Yousef","doi":"10.1016/j.jpi.2025.100508","DOIUrl":"10.1016/j.jpi.2025.100508","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100508"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a standardized lexicon of universal specimen types and sources 开发通用标本类型和来源的标准化词典
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100504
Victor Brodsky
{"title":"Developing a standardized lexicon of universal specimen types and sources","authors":"Victor Brodsky","doi":"10.1016/j.jpi.2025.100504","DOIUrl":"10.1016/j.jpi.2025.100504","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100504"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Artificial Intelligence (AI)-assisted automatic mitotic hotspot detection and counting for gastrointestinal stromal cell tumor grading 人工智能辅助有丝分裂热点自动检测与计数用于胃肠道间质细胞肿瘤分级
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100474
Wen-Yih Liang , Hsiang Sheng Wang
{"title":"Using Artificial Intelligence (AI)-assisted automatic mitotic hotspot detection and counting for gastrointestinal stromal cell tumor grading","authors":"Wen-Yih Liang ,&nbsp;Hsiang Sheng Wang","doi":"10.1016/j.jpi.2025.100474","DOIUrl":"10.1016/j.jpi.2025.100474","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100474"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing bioinformatics tools to detect contamination in NGS run through SNV analysis 利用生物信息学工具通过SNV分析检测NGS中的污染
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100509
Mustafa Deebajah , Joy Nakitandwe , Elizabeth M. Azzato , Samer Albahra , David Bosler , Zheng Jin Tu
{"title":"Utilizing bioinformatics tools to detect contamination in NGS run through SNV analysis","authors":"Mustafa Deebajah ,&nbsp;Joy Nakitandwe ,&nbsp;Elizabeth M. Azzato ,&nbsp;Samer Albahra ,&nbsp;David Bosler ,&nbsp;Zheng Jin Tu","doi":"10.1016/j.jpi.2025.100509","DOIUrl":"10.1016/j.jpi.2025.100509","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100509"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a thyroid histology classifier using CLAM for benign and malignant lesion detection 应用CLAM检测甲状腺良恶性病变的组织学分类器的研制
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100479
Katherine Poissant , Mustafa Deebajah , Scott Robertson , Samer Albahra
{"title":"Development of a thyroid histology classifier using CLAM for benign and malignant lesion detection","authors":"Katherine Poissant ,&nbsp;Mustafa Deebajah ,&nbsp;Scott Robertson ,&nbsp;Samer Albahra","doi":"10.1016/j.jpi.2025.100479","DOIUrl":"10.1016/j.jpi.2025.100479","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100479"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pathology Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1