首页 > 最新文献

Journal of Pathology Informatics最新文献

英文 中文
Use of large-language models to generate automated drug screen interpretations 使用大语言模型生成自动药物筛选解释
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100491
Brody H. Foy , Nathan Laha , Michael W. Keebaugh , Patrick C. Mathias , Nathan Breit , Hsuan-Chieh (Joyce) Liao , Abed Pablo
{"title":"Use of large-language models to generate automated drug screen interpretations","authors":"Brody H. Foy , Nathan Laha , Michael W. Keebaugh , Patrick C. Mathias , Nathan Breit , Hsuan-Chieh (Joyce) Liao , Abed Pablo","doi":"10.1016/j.jpi.2025.100491","DOIUrl":"10.1016/j.jpi.2025.100491","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100491"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streamlining HLA quality control applications: simplified development and role-based authorization with Next.js and NextUI 简化HLA质量控制应用:使用Next.js和NextUI简化开发和基于角色的授权
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100467
Jacob Kinskey , Scott Long , Paul Christensen , Todd Eagar
{"title":"Streamlining HLA quality control applications: simplified development and role-based authorization with Next.js and NextUI","authors":"Jacob Kinskey , Scott Long , Paul Christensen , Todd Eagar","doi":"10.1016/j.jpi.2025.100467","DOIUrl":"10.1016/j.jpi.2025.100467","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100467"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-driven platform for streamlined breast biopsy interpretation: enhancing turnaround time and clinical workflow in digital pathology 简化乳腺活检解释的人工智能驱动平台:提高数字病理学的周转时间和临床工作流程
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100489
Ashbaker Kathleen , Soraki Rustin , Krishnan Tara , T. Nelson Maria , Rizkalla Carol , Kilgore Mark , C. Henriksen Jonathan , Hosny Kareem
{"title":"AI-driven platform for streamlined breast biopsy interpretation: enhancing turnaround time and clinical workflow in digital pathology","authors":"Ashbaker Kathleen , Soraki Rustin , Krishnan Tara , T. Nelson Maria , Rizkalla Carol , Kilgore Mark , C. Henriksen Jonathan , Hosny Kareem","doi":"10.1016/j.jpi.2025.100489","DOIUrl":"10.1016/j.jpi.2025.100489","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100489"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking big data: practical solutions to common challenges 解锁大数据:应对共同挑战的实用解决方案
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100483
Yonah C. Ziemba , Suhyeon Yoon , Harvey W. Kaufman , William A. Meyer III , Laura Gillim , Nkemakonam Okoye , Vincent Streva , Syed Qasid , Cheryl B. Schleicher , Ligia A. Pinto , Lynne Penberthy , James M. Crawford
{"title":"Unlocking big data: practical solutions to common challenges","authors":"Yonah C. Ziemba , Suhyeon Yoon , Harvey W. Kaufman , William A. Meyer III , Laura Gillim , Nkemakonam Okoye , Vincent Streva , Syed Qasid , Cheryl B. Schleicher , Ligia A. Pinto , Lynne Penberthy , James M. Crawford","doi":"10.1016/j.jpi.2025.100483","DOIUrl":"10.1016/j.jpi.2025.100483","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100483"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and implementation of a self-hosted web application for automated Ki67 index calculation 开发和实现用于自动Ki67索引计算的自托管web应用程序
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100493
Jitin Makker , Alireza Samiei
{"title":"Development and implementation of a self-hosted web application for automated Ki67 index calculation","authors":"Jitin Makker , Alireza Samiei","doi":"10.1016/j.jpi.2025.100493","DOIUrl":"10.1016/j.jpi.2025.100493","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100493"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of pathology associated collagen in murine models of pulmonary tuberculosis with whole-slide pixel classification of stained images and localized label- free second harmonic generation imaging 用染色图像的全切片像素分类和局部无标记的二次谐波成像定量小鼠肺结核模型的病理相关胶原
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100502
Shatavisha Dasgupta , Yuming Liu , Melisa Gillis , Kevin W. Elicieri , Amy K. Barczak , Beth A. Cimini
{"title":"Quantification of pathology associated collagen in murine models of pulmonary tuberculosis with whole-slide pixel classification of stained images and localized label- free second harmonic generation imaging","authors":"Shatavisha Dasgupta , Yuming Liu , Melisa Gillis , Kevin W. Elicieri , Amy K. Barczak , Beth A. Cimini","doi":"10.1016/j.jpi.2025.100502","DOIUrl":"10.1016/j.jpi.2025.100502","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100502"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of inappropriate 1,25-dihydroxy Vitamin D ordering within a large, tertiary healthcare system 鉴定不适当的1,25-二羟基维生素D订购在一个大型,三级医疗保健系统
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100498
Christopher M. Zarbock , Ronald Jackups
{"title":"Identification of inappropriate 1,25-dihydroxy Vitamin D ordering within a large, tertiary healthcare system","authors":"Christopher M. Zarbock , Ronald Jackups","doi":"10.1016/j.jpi.2025.100498","DOIUrl":"10.1016/j.jpi.2025.100498","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100498"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the robustness of slide-level AI predictions on out-of-focus whole slide images: A retrospective observational study 评估幻灯片级AI对失焦整张幻灯片图像预测的稳健性:一项回顾性观察研究
Q2 Medicine Pub Date : 2025-09-16 DOI: 10.1016/j.jpi.2025.100518
Ho Heon Kim , Young Sin Ko , Won Chan Jeong , Seokju Yun , Kyungeun Kim

Background

Blurriness in whole slide images (WSIs) is a common issue in digital pathology. Whereas severe blurriness is known to degrade artificial intelligence (AI) model performance, the impact of typical levels of blurriness observed in real-world settings remains unclear.

Objectives

To evaluate the effect of WSI blurring on robustness of AI predictions in real-world settings.

Methods

A retrospective study was conducted using 7529 WSIs and the corresponding AI predictions from 4 AI models trained on data from 2 scanners and 2 organs. The WSIs were categorized into concordant and discordant groups based on the AI prediction accuracy. Analyses included: (1) comparing blur metrics between groups, (2) determining the odds ratio between the proportions of blurry patch in WSIs and prediction concordance, (3) assessing model performance across various blur intensities, and (4) examining the similarity of slide- and patch-level embeddings across focal planes using Z-stacks.

Results

Regarding each organ–scanner pair, the average wavelet score and Laplacian variance did not show statistically significant differences between the two groups and no significant association was observed between prediction concordance and the proportion of blurry regions (p > 0.05, except one pair). Model performance remained robust even at a high blur level (radius = 1), where the patch image had a Laplacian variance of 133.14 and a wavelet score of 1667.98, corresponding to the top 8.6% and 12.15% of blurriness, respectively, in our dataset. In addition, embedding analysis across focal planes using Z-stacks revealed that both patch- and slide-level representations were preserved up to ±3 μm. Slide-level embeddings consistently exhibited cosine similarity values above 0.99.

Conclusions

These findings empirically suggest that the typical levels of WSI blurriness encountered in clinical practice may not significantly compromise the robustness of slide-level AI classification.
背景模糊在整个幻灯片图像(wsi)是一个常见的问题,在数字病理学。虽然已知严重的模糊会降低人工智能(AI)模型的性能,但在现实环境中观察到的典型模糊水平的影响尚不清楚。目的评估WSI模糊对现实世界中人工智能预测鲁棒性的影响。方法利用2台扫描仪和2个器官数据训练的4个人工智能模型的7529个wsi和相应的人工智能预测进行回顾性研究。根据人工智能预测精度将wsi分为一致性组和不一致性组。分析包括:(1)比较各组之间的模糊度量,(2)确定wsi中模糊斑块比例与预测一致性之间的比值比,(3)评估不同模糊强度下的模型性能,以及(4)使用z堆栈检查滑动和斑块级嵌入在焦平面上的相似性。结果各脏器扫描对的平均小波评分和拉普拉斯方差在两组间差异无统计学意义,预测一致性与模糊区域比例无显著相关性(p >; 0.05,除一对外)。即使在高模糊水平(半径 = 1)下,模型性能仍然保持稳健,其中patch图像的拉普拉斯方差为133.14,小波评分为1667.98,分别对应于我们数据集中前8.6%和12.15%的模糊程度。此外,使用z堆叠进行的跨焦平面嵌入分析显示,贴片和幻灯片级表示在±3 μm范围内都保持不变。幻灯片级嵌入的余弦相似度值始终高于0.99。这些研究结果表明,临床实践中遇到的典型WSI模糊程度可能不会显著影响幻灯片级AI分类的稳健性。
{"title":"Evaluating the robustness of slide-level AI predictions on out-of-focus whole slide images: A retrospective observational study","authors":"Ho Heon Kim ,&nbsp;Young Sin Ko ,&nbsp;Won Chan Jeong ,&nbsp;Seokju Yun ,&nbsp;Kyungeun Kim","doi":"10.1016/j.jpi.2025.100518","DOIUrl":"10.1016/j.jpi.2025.100518","url":null,"abstract":"<div><h3>Background</h3><div>Blurriness in whole slide images (WSIs) is a common issue in digital pathology. Whereas severe blurriness is known to degrade artificial intelligence (AI) model performance, the impact of typical levels of blurriness observed in real-world settings remains unclear.</div></div><div><h3>Objectives</h3><div>To evaluate the effect of WSI blurring on robustness of AI predictions in real-world settings.</div></div><div><h3>Methods</h3><div>A retrospective study was conducted using 7529 WSIs and the corresponding AI predictions from 4 AI models trained on data from 2 scanners and 2 organs. The WSIs were categorized into concordant and discordant groups based on the AI prediction accuracy. Analyses included: (1) comparing blur metrics between groups, (2) determining the odds ratio between the proportions of blurry patch in WSIs and prediction concordance, (3) assessing model performance across various blur intensities, and (4) examining the similarity of slide- and patch-level embeddings across focal planes using <em>Z</em>-stacks.</div></div><div><h3>Results</h3><div>Regarding each organ–scanner pair, the average wavelet score and Laplacian variance did not show statistically significant differences between the two groups and no significant association was observed between prediction concordance and the proportion of blurry regions (<em>p</em> &gt; 0.05, except one pair). Model performance remained robust even at a high blur level (radius = 1), where the patch image had a Laplacian variance of 133.14 and a wavelet score of 1667.98, corresponding to the top 8.6% and 12.15% of blurriness, respectively, in our dataset. In addition, embedding analysis across focal planes using <em>Z</em>-stacks revealed that both patch- and slide-level representations were preserved up to ±3 μm. Slide-level embeddings consistently exhibited cosine similarity values above 0.99.</div></div><div><h3>Conclusions</h3><div>These findings empirically suggest that the typical levels of WSI blurriness encountered in clinical practice may not significantly compromise the robustness of slide-level AI classification.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100518"},"PeriodicalIF":0.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145320091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From traditional to deep learning approaches in whole slide image registration: A methodological review 从传统到深度学习的全幻灯片图像配准方法综述
Q2 Medicine Pub Date : 2025-09-16 DOI: 10.1016/j.jpi.2025.100512
Behnaz Elhaminia , Abdullah Alsalemi , Esha Nasir , Mostafa Jahanifar , Ruqayya Awan , Lawrence S. Young , Nasir M. Rajpoot , Fayyaz Minhas , Shan E. Ahmed Raza
Whole slide image (WSI) registration is an essential task for analyzing the tumor microenvironment (TME) in histopathology. It involves the alignment of spatial information between WSIs of the same section or serial sections of a tissue sample. The tissue sections are usually stained with single or multiple biomarkers before imaging, and the goal is to identify neighboring nuclei along the Z-axis for creating a 3D image or identifying subclasses of cells in the TME. This task is considerably more challenging compared to radiology image registration, such as magnetic resonance imaging or computed tomography, due to various factors. These include gigapixel size of images, variations in appearance between differently stained tissues, changes in structure and morphology between non-consecutive sections, and the presence of artifacts, tears, and deformations. Currently, there is a noticeable gap in the literature regarding a review of the current approaches and their limitations, as well as the challenges and opportunities they present. We aim to provide a comprehensive understanding of the available approaches and their application for various purposes. Furthermore, we investigate current deep learning methods used for WSI registration, emphasizing their diverse methodologies. We examine the available datasets and explore tools and software employed in the field. Finally, we identify open challenges and potential future trends in this area of research.
全切片图像配准是组织病理学中分析肿瘤微环境的一项重要任务。它涉及组织样本的相同切片或连续切片的wsi之间的空间信息对齐。组织切片通常在成像前用单个或多个生物标志物染色,目标是沿z轴识别邻近的细胞核,以创建3D图像或识别TME中的细胞亚类。由于各种因素,与磁共振成像或计算机断层扫描等放射学图像配准相比,这项任务更具挑战性。这些包括图像的十亿像素大小,不同染色组织之间的外观变化,非连续切片之间结构和形态的变化,以及伪影,撕裂和变形的存在。目前,关于审查当前方法及其局限性以及它们所带来的挑战和机遇的文献中存在明显的差距。我们的目标是提供一个全面的了解可用的方法和他们的应用于各种目的。此外,我们研究了当前用于WSI配准的深度学习方法,强调了它们的不同方法。我们检查可用的数据集,并探索在该领域使用的工具和软件。最后,我们确定了这一研究领域的开放挑战和潜在的未来趋势。
{"title":"From traditional to deep learning approaches in whole slide image registration: A methodological review","authors":"Behnaz Elhaminia ,&nbsp;Abdullah Alsalemi ,&nbsp;Esha Nasir ,&nbsp;Mostafa Jahanifar ,&nbsp;Ruqayya Awan ,&nbsp;Lawrence S. Young ,&nbsp;Nasir M. Rajpoot ,&nbsp;Fayyaz Minhas ,&nbsp;Shan E. Ahmed Raza","doi":"10.1016/j.jpi.2025.100512","DOIUrl":"10.1016/j.jpi.2025.100512","url":null,"abstract":"<div><div>Whole slide image (WSI) registration is an essential task for analyzing the tumor microenvironment (TME) in histopathology. It involves the alignment of spatial information between WSIs of the same section or serial sections of a tissue sample. The tissue sections are usually stained with single or multiple biomarkers before imaging, and the goal is to identify neighboring nuclei along the Z-axis for creating a 3D image or identifying subclasses of cells in the TME. This task is considerably more challenging compared to radiology image registration, such as magnetic resonance imaging or computed tomography, due to various factors. These include gigapixel size of images, variations in appearance between differently stained tissues, changes in structure and morphology between non-consecutive sections, and the presence of artifacts, tears, and deformations. Currently, there is a noticeable gap in the literature regarding a review of the current approaches and their limitations, as well as the challenges and opportunities they present. We aim to provide a comprehensive understanding of the available approaches and their application for various purposes. Furthermore, we investigate current deep learning methods used for WSI registration, emphasizing their diverse methodologies. We examine the available datasets and explore tools and software employed in the field. Finally, we identify open challenges and potential future trends in this area of research.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100512"},"PeriodicalIF":0.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The path forward: Evolving standards for a smarter digital pathology ecosystem 前进的道路:为更智能的数字病理生态系统不断发展标准
Q2 Medicine Pub Date : 2025-09-08 DOI: 10.1016/j.jpi.2025.100516
Liron Pantanowitz, Anil Parwani
{"title":"The path forward: Evolving standards for a smarter digital pathology ecosystem","authors":"Liron Pantanowitz,&nbsp;Anil Parwani","doi":"10.1016/j.jpi.2025.100516","DOIUrl":"10.1016/j.jpi.2025.100516","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100516"},"PeriodicalIF":0.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pathology Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1