首页 > 最新文献

Journal of Pathology Informatics最新文献

英文 中文
BloodImage: Benchmarking vision transformers for blast detection in digital blood films using public and clinical datasets blood image:使用公共和临床数据集对数字血液胶片中爆炸检测的视觉变压器进行基准测试
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100525
Concetta Piazzese , Sophie Williams , Gregory Slabaugh , Timothy Farren , Tanya Freeman , Laura Aiken , Juswal Dadhra , Stefan Browne , Simon Deltadahl , BloodCounts! Consortium, Suthesh Sivapalaratnam

Background and objectives

Leukemia is one of the most common cancers in the UK and it is usually initially diagnosed through the time-consuming and subjective analysis of blood films by an expert hematologist. When a small number of blast cells may be present on a blood film, it is difficult to detect them even after a thorough review. Automating blood film image analysis could significantly speed up the process and improve diagnostic accuracy. This study benchmarks a machine learning framework based on vision transformers (ViTs) for automated blast detection in digitized blood films, evaluating their generalizability across public and clinical datasets.

Methods

We investigated different training strategies (hold-out/k-fold cross-validation), optimization (Adam or stochastic gradient descent (SGD)), and data preprocessing techniques (data augmentation, Gaussian pyramid downsampling) to assess their impact on the ViT performance when tested using both public (ALL-IDB) and clinical datasets from Barts Health NHS Trust.

Results

Models trained with Adam performed better than those trained with SGD. The best-performing model, ViT2-Adam, achieved the highest accuracy (≥0.86) and area under the receiver operating characteristic curvearea under the curve (AUROC ≥ 0.95), which exceeded other stochastic models demonstrating its potential for integration into clinical diagnostic workflows.

Conclusions

Our findings support the viability of ViTs for clinical integration in blood film analysis. Augmentation, advanced data splitting, and Gaussian downsampling enhance model generalization, offering a promising strategy for resource-limited or high-throughput diagnostic environments.
背景和目的白血病是英国最常见的癌症之一,通常是通过血液学专家对血液片进行耗时且主观的分析来诊断的。当少量胚细胞可能出现在血膜上时,即使经过彻底检查也很难发现它们。自动化血膜图像分析可以显著加快过程,提高诊断准确性。本研究对基于视觉变压器(ViTs)的机器学习框架进行了基准测试,用于数字化血膜中的自动爆炸检测,评估了它们在公共和临床数据集中的通用性。方法我们研究了不同的训练策略(保留/k-fold交叉验证)、优化(Adam或随机梯度下降(SGD))和数据预处理技术(数据增强、高斯金字塔下采样),以评估它们在使用公共(ALL-IDB)和Barts Health NHS Trust的临床数据集进行测试时对ViT性能的影响。结果Adam训练的模型表现优于SGD训练的模型。表现最好的模型ViT2-Adam获得了最高的准确度(≥0.86)和受试者工作特征曲线下面积(AUROC ≥ 0.95),这超过了其他随机模型,显示了其集成到临床诊断工作流程中的潜力。结论研究结果支持ViTs在血膜分析中的临床应用。增强、高级数据分割和高斯下采样增强了模型泛化,为资源有限或高通量诊断环境提供了一种有前途的策略。
{"title":"BloodImage: Benchmarking vision transformers for blast detection in digital blood films using public and clinical datasets","authors":"Concetta Piazzese ,&nbsp;Sophie Williams ,&nbsp;Gregory Slabaugh ,&nbsp;Timothy Farren ,&nbsp;Tanya Freeman ,&nbsp;Laura Aiken ,&nbsp;Juswal Dadhra ,&nbsp;Stefan Browne ,&nbsp;Simon Deltadahl ,&nbsp;BloodCounts! Consortium,&nbsp;Suthesh Sivapalaratnam","doi":"10.1016/j.jpi.2025.100525","DOIUrl":"10.1016/j.jpi.2025.100525","url":null,"abstract":"<div><h3>Background and objectives</h3><div>Leukemia is one of the most common cancers in the UK and it is usually initially diagnosed through the time-consuming and subjective analysis of blood films by an expert hematologist. When a small number of blast cells may be present on a blood film, it is difficult to detect them even after a thorough review. Automating blood film image analysis could significantly speed up the process and improve diagnostic accuracy. This study benchmarks a machine learning framework based on vision transformers (ViTs) for automated blast detection in digitized blood films, evaluating their generalizability across public and clinical datasets.</div></div><div><h3>Methods</h3><div>We investigated different training strategies (hold-out/k-fold cross-validation), optimization (Adam or stochastic gradient descent (SGD)), and data preprocessing techniques (data augmentation, Gaussian pyramid downsampling) to assess their impact on the ViT performance when tested using both public (ALL-IDB) and clinical datasets from Barts Health NHS Trust.</div></div><div><h3>Results</h3><div>Models trained with Adam performed better than those trained with SGD. The best-performing model, ViT2-Adam, achieved the highest accuracy (≥0.86) and area under the receiver operating characteristic curvearea under the curve (AUROC ≥ 0.95), which exceeded other stochastic models demonstrating its potential for integration into clinical diagnostic workflows.</div></div><div><h3>Conclusions</h3><div>Our findings support the viability of ViTs for clinical integration in blood film analysis. Augmentation, advanced data splitting, and Gaussian downsampling enhance model generalization, offering a promising strategy for resource-limited or high-throughput diagnostic environments.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100525"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145690695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automating training image generation for clinical pathology 临床病理学自动训练图像生成
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100471
William Brent Cookson , Christopher Williams
{"title":"Automating training image generation for clinical pathology","authors":"William Brent Cookson ,&nbsp;Christopher Williams","doi":"10.1016/j.jpi.2025.100471","DOIUrl":"10.1016/j.jpi.2025.100471","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100471"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of large-language models to generate automated drug screen interpretations 使用大语言模型生成自动药物筛选解释
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100491
Brody H. Foy , Nathan Laha , Michael W. Keebaugh , Patrick C. Mathias , Nathan Breit , Hsuan-Chieh (Joyce) Liao , Abed Pablo
{"title":"Use of large-language models to generate automated drug screen interpretations","authors":"Brody H. Foy ,&nbsp;Nathan Laha ,&nbsp;Michael W. Keebaugh ,&nbsp;Patrick C. Mathias ,&nbsp;Nathan Breit ,&nbsp;Hsuan-Chieh (Joyce) Liao ,&nbsp;Abed Pablo","doi":"10.1016/j.jpi.2025.100491","DOIUrl":"10.1016/j.jpi.2025.100491","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100491"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streamlining HLA quality control applications: simplified development and role-based authorization with Next.js and NextUI 简化HLA质量控制应用:使用Next.js和NextUI简化开发和基于角色的授权
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100467
Jacob Kinskey , Scott Long , Paul Christensen , Todd Eagar
{"title":"Streamlining HLA quality control applications: simplified development and role-based authorization with Next.js and NextUI","authors":"Jacob Kinskey ,&nbsp;Scott Long ,&nbsp;Paul Christensen ,&nbsp;Todd Eagar","doi":"10.1016/j.jpi.2025.100467","DOIUrl":"10.1016/j.jpi.2025.100467","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100467"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-driven platform for streamlined breast biopsy interpretation: enhancing turnaround time and clinical workflow in digital pathology 简化乳腺活检解释的人工智能驱动平台:提高数字病理学的周转时间和临床工作流程
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100489
Ashbaker Kathleen , Soraki Rustin , Krishnan Tara , T. Nelson Maria , Rizkalla Carol , Kilgore Mark , C. Henriksen Jonathan , Hosny Kareem
{"title":"AI-driven platform for streamlined breast biopsy interpretation: enhancing turnaround time and clinical workflow in digital pathology","authors":"Ashbaker Kathleen ,&nbsp;Soraki Rustin ,&nbsp;Krishnan Tara ,&nbsp;T. Nelson Maria ,&nbsp;Rizkalla Carol ,&nbsp;Kilgore Mark ,&nbsp;C. Henriksen Jonathan ,&nbsp;Hosny Kareem","doi":"10.1016/j.jpi.2025.100489","DOIUrl":"10.1016/j.jpi.2025.100489","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100489"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking big data: practical solutions to common challenges 解锁大数据:应对共同挑战的实用解决方案
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100483
Yonah C. Ziemba , Suhyeon Yoon , Harvey W. Kaufman , William A. Meyer III , Laura Gillim , Nkemakonam Okoye , Vincent Streva , Syed Qasid , Cheryl B. Schleicher , Ligia A. Pinto , Lynne Penberthy , James M. Crawford
{"title":"Unlocking big data: practical solutions to common challenges","authors":"Yonah C. Ziemba ,&nbsp;Suhyeon Yoon ,&nbsp;Harvey W. Kaufman ,&nbsp;William A. Meyer III ,&nbsp;Laura Gillim ,&nbsp;Nkemakonam Okoye ,&nbsp;Vincent Streva ,&nbsp;Syed Qasid ,&nbsp;Cheryl B. Schleicher ,&nbsp;Ligia A. Pinto ,&nbsp;Lynne Penberthy ,&nbsp;James M. Crawford","doi":"10.1016/j.jpi.2025.100483","DOIUrl":"10.1016/j.jpi.2025.100483","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100483"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and implementation of a self-hosted web application for automated Ki67 index calculation 开发和实现用于自动Ki67索引计算的自托管web应用程序
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100493
Jitin Makker , Alireza Samiei
{"title":"Development and implementation of a self-hosted web application for automated Ki67 index calculation","authors":"Jitin Makker ,&nbsp;Alireza Samiei","doi":"10.1016/j.jpi.2025.100493","DOIUrl":"10.1016/j.jpi.2025.100493","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100493"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of pathology associated collagen in murine models of pulmonary tuberculosis with whole-slide pixel classification of stained images and localized label- free second harmonic generation imaging 用染色图像的全切片像素分类和局部无标记的二次谐波成像定量小鼠肺结核模型的病理相关胶原
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100502
Shatavisha Dasgupta , Yuming Liu , Melisa Gillis , Kevin W. Elicieri , Amy K. Barczak , Beth A. Cimini
{"title":"Quantification of pathology associated collagen in murine models of pulmonary tuberculosis with whole-slide pixel classification of stained images and localized label- free second harmonic generation imaging","authors":"Shatavisha Dasgupta ,&nbsp;Yuming Liu ,&nbsp;Melisa Gillis ,&nbsp;Kevin W. Elicieri ,&nbsp;Amy K. Barczak ,&nbsp;Beth A. Cimini","doi":"10.1016/j.jpi.2025.100502","DOIUrl":"10.1016/j.jpi.2025.100502","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100502"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of inappropriate 1,25-dihydroxy Vitamin D ordering within a large, tertiary healthcare system 鉴定不适当的1,25-二羟基维生素D订购在一个大型,三级医疗保健系统
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100498
Christopher M. Zarbock , Ronald Jackups
{"title":"Identification of inappropriate 1,25-dihydroxy Vitamin D ordering within a large, tertiary healthcare system","authors":"Christopher M. Zarbock ,&nbsp;Ronald Jackups","doi":"10.1016/j.jpi.2025.100498","DOIUrl":"10.1016/j.jpi.2025.100498","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100498"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the robustness of slide-level AI predictions on out-of-focus whole slide images: A retrospective observational study 评估幻灯片级AI对失焦整张幻灯片图像预测的稳健性:一项回顾性观察研究
Q2 Medicine Pub Date : 2025-09-16 DOI: 10.1016/j.jpi.2025.100518
Ho Heon Kim , Young Sin Ko , Won Chan Jeong , Seokju Yun , Kyungeun Kim

Background

Blurriness in whole slide images (WSIs) is a common issue in digital pathology. Whereas severe blurriness is known to degrade artificial intelligence (AI) model performance, the impact of typical levels of blurriness observed in real-world settings remains unclear.

Objectives

To evaluate the effect of WSI blurring on robustness of AI predictions in real-world settings.

Methods

A retrospective study was conducted using 7529 WSIs and the corresponding AI predictions from 4 AI models trained on data from 2 scanners and 2 organs. The WSIs were categorized into concordant and discordant groups based on the AI prediction accuracy. Analyses included: (1) comparing blur metrics between groups, (2) determining the odds ratio between the proportions of blurry patch in WSIs and prediction concordance, (3) assessing model performance across various blur intensities, and (4) examining the similarity of slide- and patch-level embeddings across focal planes using Z-stacks.

Results

Regarding each organ–scanner pair, the average wavelet score and Laplacian variance did not show statistically significant differences between the two groups and no significant association was observed between prediction concordance and the proportion of blurry regions (p > 0.05, except one pair). Model performance remained robust even at a high blur level (radius = 1), where the patch image had a Laplacian variance of 133.14 and a wavelet score of 1667.98, corresponding to the top 8.6% and 12.15% of blurriness, respectively, in our dataset. In addition, embedding analysis across focal planes using Z-stacks revealed that both patch- and slide-level representations were preserved up to ±3 μm. Slide-level embeddings consistently exhibited cosine similarity values above 0.99.

Conclusions

These findings empirically suggest that the typical levels of WSI blurriness encountered in clinical practice may not significantly compromise the robustness of slide-level AI classification.
背景模糊在整个幻灯片图像(wsi)是一个常见的问题,在数字病理学。虽然已知严重的模糊会降低人工智能(AI)模型的性能,但在现实环境中观察到的典型模糊水平的影响尚不清楚。目的评估WSI模糊对现实世界中人工智能预测鲁棒性的影响。方法利用2台扫描仪和2个器官数据训练的4个人工智能模型的7529个wsi和相应的人工智能预测进行回顾性研究。根据人工智能预测精度将wsi分为一致性组和不一致性组。分析包括:(1)比较各组之间的模糊度量,(2)确定wsi中模糊斑块比例与预测一致性之间的比值比,(3)评估不同模糊强度下的模型性能,以及(4)使用z堆栈检查滑动和斑块级嵌入在焦平面上的相似性。结果各脏器扫描对的平均小波评分和拉普拉斯方差在两组间差异无统计学意义,预测一致性与模糊区域比例无显著相关性(p >; 0.05,除一对外)。即使在高模糊水平(半径 = 1)下,模型性能仍然保持稳健,其中patch图像的拉普拉斯方差为133.14,小波评分为1667.98,分别对应于我们数据集中前8.6%和12.15%的模糊程度。此外,使用z堆叠进行的跨焦平面嵌入分析显示,贴片和幻灯片级表示在±3 μm范围内都保持不变。幻灯片级嵌入的余弦相似度值始终高于0.99。这些研究结果表明,临床实践中遇到的典型WSI模糊程度可能不会显著影响幻灯片级AI分类的稳健性。
{"title":"Evaluating the robustness of slide-level AI predictions on out-of-focus whole slide images: A retrospective observational study","authors":"Ho Heon Kim ,&nbsp;Young Sin Ko ,&nbsp;Won Chan Jeong ,&nbsp;Seokju Yun ,&nbsp;Kyungeun Kim","doi":"10.1016/j.jpi.2025.100518","DOIUrl":"10.1016/j.jpi.2025.100518","url":null,"abstract":"<div><h3>Background</h3><div>Blurriness in whole slide images (WSIs) is a common issue in digital pathology. Whereas severe blurriness is known to degrade artificial intelligence (AI) model performance, the impact of typical levels of blurriness observed in real-world settings remains unclear.</div></div><div><h3>Objectives</h3><div>To evaluate the effect of WSI blurring on robustness of AI predictions in real-world settings.</div></div><div><h3>Methods</h3><div>A retrospective study was conducted using 7529 WSIs and the corresponding AI predictions from 4 AI models trained on data from 2 scanners and 2 organs. The WSIs were categorized into concordant and discordant groups based on the AI prediction accuracy. Analyses included: (1) comparing blur metrics between groups, (2) determining the odds ratio between the proportions of blurry patch in WSIs and prediction concordance, (3) assessing model performance across various blur intensities, and (4) examining the similarity of slide- and patch-level embeddings across focal planes using <em>Z</em>-stacks.</div></div><div><h3>Results</h3><div>Regarding each organ–scanner pair, the average wavelet score and Laplacian variance did not show statistically significant differences between the two groups and no significant association was observed between prediction concordance and the proportion of blurry regions (<em>p</em> &gt; 0.05, except one pair). Model performance remained robust even at a high blur level (radius = 1), where the patch image had a Laplacian variance of 133.14 and a wavelet score of 1667.98, corresponding to the top 8.6% and 12.15% of blurriness, respectively, in our dataset. In addition, embedding analysis across focal planes using <em>Z</em>-stacks revealed that both patch- and slide-level representations were preserved up to ±3 μm. Slide-level embeddings consistently exhibited cosine similarity values above 0.99.</div></div><div><h3>Conclusions</h3><div>These findings empirically suggest that the typical levels of WSI blurriness encountered in clinical practice may not significantly compromise the robustness of slide-level AI classification.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100518"},"PeriodicalIF":0.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145320091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pathology Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1