首页 > 最新文献

Journal of Pathology Informatics最新文献

英文 中文
Leveraging large language models for structured information extraction from pathology reports 利用大型语言模型从病理报告中提取结构化信息
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100521
Jeya Balaji Balasubramanian , Daniel Adams , Ioannis Roxanis , Amy Berrington de Gonzalez , Penny Coulson , Jonas S. Almeida , Montserrat García-Closas

Background

Structured information extraction from unstructured histopathology reports facilitates data accessibility for clinical research. Manual extraction by experts is time-consuming and expensive, limiting scalability. Large language models (LLMs) offer efficient automated extraction through zero-shot prompting, requiring only natural language instructions without labeled data or training. We evaluate LLMs' accuracy in extracting structured information from breast cancer histopathology reports, compared to manual extraction by a trained human annotator.

Methods

We developed the Medical Report Information Extractor, a web application leveraging LLMs for automated extraction. We also developed a gold-standard extraction dataset to evaluate the human annotator alongside five LLMs including GPT-4o, a leading proprietary model, and the Llama 3 model family, which allows self-hosting for data privacy. Our assessment involved 111 breast cancer histopathology reports from the Generations study, extracting 51 pathology features specified within the study's data dictionary.

Results

Evaluation against the gold-standard dataset showed that both Llama 3.1 405B (94.7% accuracy) and GPT-4o (96.1%) achieved extraction accuracy comparable to the human annotator (95.4%; p = 0.146 and p = 0.106, respectively). Whereas Llama 3.1 70B (91.6%) performed below human accuracy (p < 0.001), its reduced computational requirements make it a viable option for self-hosting.

Conclusion

We developed an open-source tool for structured information extraction that demonstrated expert human-level accuracy in our evaluation using state-of-the-art LLMs. The tool can be customized by non-programmers using natural language and the modular design enables reuse for diverse extraction tasks to produce standardized, structured data facilitating analytics through improved accessibility and interoperability.
从非结构化组织病理学报告中提取结构化信息有助于临床研究数据的可访问性。由专家手工提取既耗时又昂贵,限制了可扩展性。大型语言模型(llm)通过零采样提示提供高效的自动提取,只需要自然语言指令,而不需要标记数据或训练。我们评估了llm从乳腺癌组织病理学报告中提取结构化信息的准确性,与训练有素的人类注释者手动提取相比。方法我们开发了医学报告信息提取器,这是一个利用法学硕士进行自动提取的web应用程序。我们还开发了一个金标准提取数据集来评估人类注释器和五个llm,包括gpt - 40,一个领先的专有模型,以及Llama 3模型家族,它允许自托管数据隐私。我们的评估涉及了来自世代研究的111份乳腺癌组织病理学报告,提取了研究数据字典中指定的51个病理特征。结果对金标准数据集的评估表明,Llama 3.1 405B(准确率为94.7%)和gpt - 40(准确率为96.1%)的提取准确率与人类注释器相当(95.4%,p = 0.146和p = 0.106)。尽管Llama 3.1 70B(91.6%)的执行精度低于人类(p <; 0.001),但其减少的计算需求使其成为自托管的可行选择。我们开发了一个用于结构化信息提取的开源工具,在我们使用最先进的llm进行评估时展示了专家级的人类级别的准确性。该工具可以由非程序员使用自然语言定制,模块化设计可以重用不同的提取任务,通过改进的可访问性和互操作性来生成标准化、结构化的数据,从而促进分析。
{"title":"Leveraging large language models for structured information extraction from pathology reports","authors":"Jeya Balaji Balasubramanian ,&nbsp;Daniel Adams ,&nbsp;Ioannis Roxanis ,&nbsp;Amy Berrington de Gonzalez ,&nbsp;Penny Coulson ,&nbsp;Jonas S. Almeida ,&nbsp;Montserrat García-Closas","doi":"10.1016/j.jpi.2025.100521","DOIUrl":"10.1016/j.jpi.2025.100521","url":null,"abstract":"<div><h3>Background</h3><div>Structured information extraction from unstructured histopathology reports facilitates data accessibility for clinical research. Manual extraction by experts is time-consuming and expensive, limiting scalability. Large language models (LLMs) offer efficient automated extraction through zero-shot prompting, requiring only natural language instructions without labeled data or training. We evaluate LLMs' accuracy in extracting structured information from breast cancer histopathology reports, compared to manual extraction by a trained human annotator.</div></div><div><h3>Methods</h3><div>We developed the Medical Report Information Extractor, a web application leveraging LLMs for automated extraction. We also developed a gold-standard extraction dataset to evaluate the human annotator alongside five LLMs including GPT-4o, a leading proprietary model, and the Llama 3 model family, which allows self-hosting for data privacy. Our assessment involved 111 breast cancer histopathology reports from the Generations study, extracting 51 pathology features specified within the study's data dictionary.</div></div><div><h3>Results</h3><div>Evaluation against the gold-standard dataset showed that both Llama 3.1 405B (94.7% accuracy) and GPT-4o (96.1%) achieved extraction accuracy comparable to the human annotator (95.4%; <em>p</em> = 0.146 and <em>p</em> = 0.106, respectively). Whereas Llama 3.1 70B (91.6%) performed below human accuracy (<em>p</em> &lt; 0.001), its reduced computational requirements make it a viable option for self-hosting.</div></div><div><h3>Conclusion</h3><div>We developed an open-source tool for structured information extraction that demonstrated expert human-level accuracy in our evaluation using state-of-the-art LLMs. The tool can be customized by non-programmers using natural language and the modular design enables reuse for diverse extraction tasks to produce standardized, structured data facilitating analytics through improved accessibility and interoperability.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100521"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145578929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A web-based application for streamlined serum electrophoresis interpretation using federated queries across clinical and laboratory databases 一个基于web的应用程序,用于流线型血清电泳解释,使用跨临床和实验室数据库的联邦查询
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100496
Michael Olp , Keluo Yao , Roomi Nusrat , David Manthei , David Keren , Ulysses Balis
{"title":"A web-based application for streamlined serum electrophoresis interpretation using federated queries across clinical and laboratory databases","authors":"Michael Olp ,&nbsp;Keluo Yao ,&nbsp;Roomi Nusrat ,&nbsp;David Manthei ,&nbsp;David Keren ,&nbsp;Ulysses Balis","doi":"10.1016/j.jpi.2025.100496","DOIUrl":"10.1016/j.jpi.2025.100496","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100496"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation and validation of whole slide imaging for primary diagnosis across multiple affiliate locations at an academic medical center 在一个学术医疗中心的多个分支机构实施和验证用于初级诊断的全幻灯片成像
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100469
John Joseph , Nicola Dundas
{"title":"Implementation and validation of whole slide imaging for primary diagnosis across multiple affiliate locations at an academic medical center","authors":"John Joseph ,&nbsp;Nicola Dundas","doi":"10.1016/j.jpi.2025.100469","DOIUrl":"10.1016/j.jpi.2025.100469","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100469"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cost savings and sustainability benefits of digital pathology workflow versus conventional pathology workflow at USC Keck School of Medicine 南加州大学凯克医学院的数字病理工作流程与传统病理工作流程的成本节约和可持续性优势
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100482
Jeffrey Jean , Bhavna Sharma , Arash Motamed , Henry W. Odell , William Dean Wallace
{"title":"Cost savings and sustainability benefits of digital pathology workflow versus conventional pathology workflow at USC Keck School of Medicine","authors":"Jeffrey Jean ,&nbsp;Bhavna Sharma ,&nbsp;Arash Motamed ,&nbsp;Henry W. Odell ,&nbsp;William Dean Wallace","doi":"10.1016/j.jpi.2025.100482","DOIUrl":"10.1016/j.jpi.2025.100482","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100482"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of a digital pathology rotation for residents and fellows at the University of Minnesota: experiences and lessons learned 明尼苏达大学住院医师和研究员数字病理学轮转的实施:经验和教训
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100495
Mikael Haeggstroem , Brian Bagley , Michelle Stoffel
{"title":"Implementation of a digital pathology rotation for residents and fellows at the University of Minnesota: experiences and lessons learned","authors":"Mikael Haeggstroem ,&nbsp;Brian Bagley ,&nbsp;Michelle Stoffel","doi":"10.1016/j.jpi.2025.100495","DOIUrl":"10.1016/j.jpi.2025.100495","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100495"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large language model assisted analysis of unstructured pathology reports: detecting patterns of Helicobacter pylori IHC test utilization at scale 大型语言模型辅助分析非结构化病理报告:幽门螺杆菌免疫组化测试大规模使用的检测模式
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100501
Scott Robertson , Samer Albahra
{"title":"Large language model assisted analysis of unstructured pathology reports: detecting patterns of Helicobacter pylori IHC test utilization at scale","authors":"Scott Robertson ,&nbsp;Samer Albahra","doi":"10.1016/j.jpi.2025.100501","DOIUrl":"10.1016/j.jpi.2025.100501","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100501"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CONTEST: A generalization of ONEST to estimate sample size for predictive augmented intelligence method validation studies 竞赛:对预测增强智能方法验证研究估计样本大小的ONEST的推广
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100519
Benjamin K. Olson , Joseph H. Rosenthal , Ryan D. Kappedal , Niels H. Olson
Laboratories must verify and validate assays before reporting results in the clinical record. With the advent of machine learning algorithms, multiclass decision-support tools are coming online but the FDA explicitly does not contemplate multiclass problems in their guidance for test validation. Validation requires, for a laboratory's patient population, evaluation of four performance characteristics to a reference method: accuracy, precision, reportable range, and reference intervals. In the absence of a reference method, proportion of agreement is the appropriate metric (Meier 2007). For subjective tests, the traditional metrics for precision are in the area of interrater reliability, and interrater reliability is well studied in the pathology literature (“Gwet Handbook of Interrater Reliability 4th Ed.pdf,” n.d.). Recently, Guo and Han introduced an alternative framing, Observers Needed to Evaluate a Subjective Test (ONEST). This article introduces a treatment effect extension of ONEST, Cases and Observers Needed to Evaluate a Subjective Test (CONTEST) and demonstrates that the agreement and disagreement distributions can be reasonably specified with parametric probability distributions such that the required sample size for a test, at a given level and power, can be calculated. We argue that this would be an appropriate method to develop for validation of tools used to augment a subjective test, given a prior set of cases, observers, and decisions, such as from another archive, cohort, or dataset, particularly in resource-constrained settings.
实验室必须在临床记录中报告结果之前验证和验证分析。随着机器学习算法的出现,多类别决策支持工具即将上线,但FDA在其测试验证指南中明确没有考虑多类别问题。对于实验室的患者群体,验证需要对参考方法的四个性能特征进行评估:准确性、精密度、可报告范围和参考区间。在没有参考方法的情况下,一致性比例是合适的度量(Meier 2007)。对于主观测试,传统的精度度量是在互测信度领域,而互测信度在病理学文献中得到了很好的研究(“Gwet互测信度手册第4版pdf,”n.d)。最近,郭和韩提出了另一种框架,即观察者需要评估主观测试(ONEST)。本文介绍了ONEST,评估主观测试所需的案例和观察者(CONTEST)的治疗效果扩展,并证明了一致性和不一致性分布可以用参数概率分布合理地指定,从而可以计算出在给定水平和功率下测试所需的样本量。我们认为,这将是一种适当的方法,用于开发用于增强主观测试的工具的验证,给定一组先前的案例,观察者和决策,例如来自另一个档案,队列或数据集,特别是在资源受限的环境中。
{"title":"CONTEST: A generalization of ONEST to estimate sample size for predictive augmented intelligence method validation studies","authors":"Benjamin K. Olson ,&nbsp;Joseph H. Rosenthal ,&nbsp;Ryan D. Kappedal ,&nbsp;Niels H. Olson","doi":"10.1016/j.jpi.2025.100519","DOIUrl":"10.1016/j.jpi.2025.100519","url":null,"abstract":"<div><div>Laboratories must verify and validate assays before reporting results in the clinical record. With the advent of machine learning algorithms, multiclass decision-support tools are coming online but the FDA explicitly does not contemplate multiclass problems in their guidance for test validation. Validation requires, for a laboratory's patient population, evaluation of four performance characteristics to a reference method: accuracy, precision, reportable range, and reference intervals. In the absence of a reference method, proportion of agreement is the appropriate metric (Meier 2007). For subjective tests, the traditional metrics for precision are in the area of interrater reliability, and interrater reliability is well studied in the pathology literature (“Gwet Handbook of Interrater Reliability 4th Ed.pdf,” n.d.). Recently, Guo and Han introduced an alternative framing, Observers Needed to Evaluate a Subjective Test (ONEST). This article introduces a treatment effect extension of ONEST, Cases and Observers Needed to Evaluate a Subjective Test (CONTEST) and demonstrates that the agreement and disagreement distributions can be reasonably specified with parametric probability distributions such that the required sample size for a test, at a given level and power, can be calculated. We argue that this would be an appropriate method to develop for validation of tools used to augment a subjective test, given a prior set of cases, observers, and decisions, such as from another archive, cohort, or dataset, particularly in resource-constrained settings.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100519"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145465588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimension reduction of RNA fusion data to predict tumor site of origin RNA融合数据降维预测肿瘤起源部位
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100473
Frederick M. Allen , Amrom E. Obstfeld , Eitan Halper-Stromberg
{"title":"Dimension reduction of RNA fusion data to predict tumor site of origin","authors":"Frederick M. Allen ,&nbsp;Amrom E. Obstfeld ,&nbsp;Eitan Halper-Stromberg","doi":"10.1016/j.jpi.2025.100473","DOIUrl":"10.1016/j.jpi.2025.100473","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100473"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracting structured data from anatomic pathology reports: comparing the accuracy of rule-based logic with large language models 从解剖病理报告中提取结构化数据:比较基于规则的逻辑与大型语言模型的准确性
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100497
Yonah C. Ziemba , Syed Hassaan Ahmed Qasid , Christopher O. Familusi , Amy Entin , Cheryl B. Schleicher , Alain C. Borczuk
{"title":"Extracting structured data from anatomic pathology reports: comparing the accuracy of rule-based logic with large language models","authors":"Yonah C. Ziemba ,&nbsp;Syed Hassaan Ahmed Qasid ,&nbsp;Christopher O. Familusi ,&nbsp;Amy Entin ,&nbsp;Cheryl B. Schleicher ,&nbsp;Alain C. Borczuk","doi":"10.1016/j.jpi.2025.100497","DOIUrl":"10.1016/j.jpi.2025.100497","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100497"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An AI-assisted approach to automated labeling for laboratory developed tests: accelerating FDA compliance 实验室开发测试的人工智能辅助自动标签方法:加速FDA合规性
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100494
Samer Albahra , David Bosler , Scott Robertson , Mustafa Deebajah , Emilia Calvaresi , Jessica Colón-Franco , Walter Henricks
{"title":"An AI-assisted approach to automated labeling for laboratory developed tests: accelerating FDA compliance","authors":"Samer Albahra ,&nbsp;David Bosler ,&nbsp;Scott Robertson ,&nbsp;Mustafa Deebajah ,&nbsp;Emilia Calvaresi ,&nbsp;Jessica Colón-Franco ,&nbsp;Walter Henricks","doi":"10.1016/j.jpi.2025.100494","DOIUrl":"10.1016/j.jpi.2025.100494","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100494"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pathology Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1