Lymphovascular invasion (LVI) in lung cancer is a significant prognostic factor that influences treatment and outcomes, yet its reliable detection is challenging due to interobserver variability. This study aims to develop a deep learning model for LVI detection using whole slide images (WSIs) and evaluate its effectiveness within a pathologist's information system. Experienced pathologists annotated blood vessels and invading tumor cells in 162 WSIs of non-mucinous lung adenocarcinoma sourced from two external and one internal datasets. Two models were trained to segment vessels and identify images with LVI features. DeepLabV3+ model achieved an Intersection-over-Union of 0.8840 and an area under the receiver operating characteristic curve (AUC-ROC) of 0.9869 in vessel segmentation. For LVI classification, the ensemble model achieved a F1-score of 0.9683 and an AUC-ROC of 0.9987. The model demonstrated robustness and was unaffected by variations in staining and image quality. The pilot study showed that pathologists' evaluation time for LVI detecting decreased by an average of 16.95%, and by 21.5% in “hard cases”. The model facilitated consistent diagnostic assessments, suggesting potential for broader applications in detecting pathological changes in blood vessels and other lung pathologies.
In Colombia, cancer is recognized as a high-cost pathology by the national government and the Colombian High-Cost Disease Fund. As of 2020, the situation is most critical for adult cancer patients, particularly those under public healthcare and residing in remote regions of the country. The highest lag time for a diagnosis was observed for cervical cancer (79.13 days), followed by prostate (77.30 days), and breast cancer (70.25 days). Timely and accurate histopathological reporting plays a vital role in the diagnosis of cancer. In recent years, digital pathology has been globally implemented as a technological tool in two main areas: telepathology (TP) and computational pathology. TP has been shown to improve rapid and timely diagnosis in anatomic pathology by facilitating interaction between general laboratories and specialized pathologists worldwide through information and telecommunication technologies. Computational pathology provides diagnostic and prognostic assistance based on histopathological patterns, molecular, and clinical information, aiding pathologists in making more accurate diagnoses. We present the study protocol of the GLORIA digital pathology network, a pioneering initiative, and national grant-approved program aiming to design and pilot a Colombian digital pathology transformation focused on TP and computational pathology, in response to the general needs of pathology laboratories for diagnosing complex malignant tumors. The study protocol describes the design of a TP network to expand oncopathology services across all Colombian regions. It also describes an artificial intelligence proposal for lung cancer, one of Colombia's most prevalent cancers, and a freely accessible national histopathological image database to facilitate image analysis studies.
Cytomorphology evaluation of bone marrow cell is the initial step to diagnose different hematological diseases. This assessment is still manually performed by trained specialists, who may be a bottleneck within the clinical process. Deep learning algorithms are a promising approach to automate this bone marrow cell evaluation. These artificial intelligence models have focused on limited cell subtypes, mainly associated to a particular disease, and are frequently presented as black boxes. The herein introduced strategy presents an engineered feature representation, the region-attention embedding, which improves the deep learning classification performance of a cytomorphology with 21 bone marrow cell subtypes. This embedding is built upon a specific organization of cytology features within a squared matrix by distributing them after pre-segmented cell regions, i.e., cytoplasm, nucleus, and whole-cell. This novel cell image representation, aimed to preserve spatial/regional relations, is used as input of the network. Combination of region-attention embedding and deep learning networks (Xception and ResNet50) provides local relevance associated to image regions, adding up interpretable information to the prediction. Additionally, this approach is evaluated in a public database with the largest number of cell subtypes (21) by a thorough evaluation scheme with three iterations of a 3-fold cross-validation, performed in 80% of the images (n = 89,484), and a testing process in an unseen set of images composed by the remaining 20% of the images (n = 22,371). This evaluation process demonstrates the introduced strategy outperforms previously published approaches in an equivalent validation set, with a f1-score of 0.82, and presented competitive results on the unseen data partition with a f1-score of 0.56.
Advances in whole-slide imaging and artificial intelligence present opportunities for improvement in Pap test screening. To date, there have been limited studies published regarding how best to validate newer AI-based digital systems for screening Pap tests in clinical practice. In this study, we validated the Genius™ Digital Diagnostics System (Hologic) by comparing the performance to traditional manual light microscopic diagnosis of ThinPrep® Pap test slides. A total of 319 ThinPrep® Pap test cases were prospectively assessed by six cytologists and three cytopathologists by light microscopy and digital evaluation and the results compared to the original ground truth Pap test diagnosis. Concordance with the original diagnosis was significantly different by digital and manual light microscopy review when comparing across: (i) exact Bethesda System diagnostic categories (62.1% vs 55.8%, respectively, p = 0.014), (ii) condensed diagnostic categories (76.8% vs 71.5%, respectively, p = 0.027), and (iii) condensed diagnoses based on clinical management (71.5% vs 65.2%, respectively, p = 0.017). Time to evaluate cases was shorter for digital (M = 3.2 min, SD = 2.2) compared to manual (M = 5.9 min, SD = 3.1) review (t(352) = 19.44, p < 0.001, Cohen's d = 1.035, 95% CI [0.905, 1.164]). Not only did our validation study demonstrate that AI-based digital Pap test evaluation had improved diagnostic accuracy and reduced screening time compared to light microscopy, but that participants reported a positive experience using this system.