首页 > 最新文献

Journal of Pathology Informatics最新文献

英文 中文
Assessing the diagnostic potential of the foundation model Prov-GigaPath for mesothelioma 评估基础模型prof - gigapath对间皮瘤的诊断潜力
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100480
John Chenxi Song , Karthika Venugopalan , Yuhe Gao , Michael Becich , Rashidi Hooman , Yingci Liu , Ye Ye
{"title":"Assessing the diagnostic potential of the foundation model Prov-GigaPath for mesothelioma","authors":"John Chenxi Song , Karthika Venugopalan , Yuhe Gao , Michael Becich , Rashidi Hooman , Yingci Liu , Ye Ye","doi":"10.1016/j.jpi.2025.100480","DOIUrl":"10.1016/j.jpi.2025.100480","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100480"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating data science into pathology training: a case study based on analysis of A1C during the COVID-19 pandemic 将数据科学融入病理学培训:基于COVID-19大流行期间糖化血红蛋白分析的案例研究
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100470
Georgia Louise Gurley , James M. Crawford , Cheryl B. Schleicher , Yonah C. Ziemba
{"title":"Integrating data science into pathology training: a case study based on analysis of A1C during the COVID-19 pandemic","authors":"Georgia Louise Gurley , James M. Crawford , Cheryl B. Schleicher , Yonah C. Ziemba","doi":"10.1016/j.jpi.2025.100470","DOIUrl":"10.1016/j.jpi.2025.100470","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100470"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of Applied Spectral Imaging (ASI) with electronic medical records using lightweight XML automation 使用轻量级XML自动化将应用光谱成像(ASI)与电子医疗记录集成
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100472
Kimberly J. Newsom , Amy Leftwich , Rachel D. Burnside , Petr Starostik
{"title":"Integration of Applied Spectral Imaging (ASI) with electronic medical records using lightweight XML automation","authors":"Kimberly J. Newsom , Amy Leftwich , Rachel D. Burnside , Petr Starostik","doi":"10.1016/j.jpi.2025.100472","DOIUrl":"10.1016/j.jpi.2025.100472","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100472"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro CT based whole block imaging of asthma induced airway remodeling and co-occurrence of Mycobacterium Avium granulomas: 3-dimensional nondestructive analysis 基于微CT的哮喘气道重构及并发鸟分枝杆菌肉芽肿的全块成像:三维无损分析
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100500
Tetsuya Tsukamoto , Alexei Teplov , Emmy Yanagita , Yasushi Hoshikawa , Yukako Yagi
{"title":"Micro CT based whole block imaging of asthma induced airway remodeling and co-occurrence of Mycobacterium Avium granulomas: 3-dimensional nondestructive analysis","authors":"Tetsuya Tsukamoto , Alexei Teplov , Emmy Yanagita , Yasushi Hoshikawa , Yukako Yagi","doi":"10.1016/j.jpi.2025.100500","DOIUrl":"10.1016/j.jpi.2025.100500","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100500"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SegRenalSegRenal: AI-driven segmentation of frozen sections in transplant kidney biopsies – a comparative analysis of deep learning models SegRenalSegRenal:移植肾活检中冷冻切片的人工智能驱动分割——深度学习模型的比较分析
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100485
Ibrahim Yilmaz , Heba M. Alazab , Fatih Doganay , Bryan Dangott , Sam Albardi , Aziza Nassar , Zeynettin Akkus , Fadi Salem
{"title":"SegRenalSegRenal: AI-driven segmentation of frozen sections in transplant kidney biopsies – a comparative analysis of deep learning models","authors":"Ibrahim Yilmaz , Heba M. Alazab , Fatih Doganay , Bryan Dangott , Sam Albardi , Aziza Nassar , Zeynettin Akkus , Fadi Salem","doi":"10.1016/j.jpi.2025.100485","DOIUrl":"10.1016/j.jpi.2025.100485","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100485"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving diagnostic accuracy for hematologic malignancies: the impact of clear test nomenclature on BCR::ABL1 test ordering in electronic medical records 提高血液恶性肿瘤的诊断准确性:明确的测试命名法对BCR的影响::电子医疗记录中ABL1测试订购
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100487
Patricia V. Hernandez, Kilannin Krysiak, Bijal Parikh, Ronald Jackups
{"title":"Improving diagnostic accuracy for hematologic malignancies: the impact of clear test nomenclature on BCR::ABL1 test ordering in electronic medical records","authors":"Patricia V. Hernandez, Kilannin Krysiak, Bijal Parikh, Ronald Jackups","doi":"10.1016/j.jpi.2025.100487","DOIUrl":"10.1016/j.jpi.2025.100487","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100487"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicability of PD-L1 expression in cancer cells based solely on H&E-stained sections 仅基于h&e染色切片的癌细胞中PD-L1表达的可预测性
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100524
Gavino Faa , Matteo Fraschini , Pina Ziranu , Andrea Pretta , Giuseppe Porcu , Luca Saba , Mario Scartozzi , Nazar Shokun , Massimo Rugge
PD-L1 expression is an important biomarker for selecting patients who are eligible for immune checkpoint inhibitor (ICI) therapy. However, evaluating PD-L1 through immunohistochemistry often faces significant interobserver variability and requires considerable time and resources. Recent advancements in artificial intelligence (AI) have transformed the field of pathology, leading to more standardized and reproducible methods for biomarker quantification. In this study, we examine the application of AI-driven models, particularly deep learning algorithms, to predict PD-L1 expression directly from hematoxylin and eosin-stained histological slides. Several AI-based approaches have been studied, demonstrating high accuracy in estimating PD-L1 expression and predicting responses to ICIs across various cancer types. AI-driven assessments of PD-L1 have been shown to reduce the subjectivity associated with manual scoring methods, such as the Tumor Proportion Score and the Combined Positive Score. Moreover, integrating AI with multimodal data, including genomics, radiomics, and real-world clinical data, can further enhance predictive accuracy and improve patient stratification for immunotherapy. Finally, AI-driven computational pathology offers a transformative approach to biomarker evaluation, providing a faster, more objective, and cost-effective alternative to traditional methods, with significant implications for personalized oncology and precision medicine. Despite these promising results, several challenges remain to be addressed, such as the need for large-scale validation, standardization of AI models, and regulatory approvals for clinical implementation. Tackling these issues will be crucial for incorporating AI-based PD-L1 assessments into routine pathology workflows.
PD-L1表达是选择有资格接受免疫检查点抑制剂(ICI)治疗的患者的重要生物标志物。然而,通过免疫组织化学评估PD-L1往往面临显著的观察者之间的差异,需要大量的时间和资源。人工智能(AI)的最新进展已经改变了病理学领域,导致了更多标准化和可重复的生物标志物量化方法。在这项研究中,我们研究了人工智能驱动模型的应用,特别是深度学习算法,直接从苏木精和伊红染色的组织学切片中预测PD-L1的表达。已经研究了几种基于人工智能的方法,表明在估计PD-L1表达和预测各种癌症类型对ICIs的反应方面具有很高的准确性。人工智能驱动的PD-L1评估已被证明可以减少人工评分方法(如肿瘤比例评分和联合阳性评分)相关的主观性。此外,将人工智能与多模式数据(包括基因组学、放射组学和现实世界的临床数据)相结合,可以进一步提高预测的准确性,并改善免疫治疗的患者分层。最后,人工智能驱动的计算病理学为生物标志物评估提供了一种变革性的方法,提供了一种比传统方法更快、更客观、更经济的替代方法,对个性化肿瘤学和精准医学具有重要意义。尽管取得了这些令人鼓舞的成果,但仍有一些挑战有待解决,例如需要大规模验证、人工智能模型的标准化以及临床实施的监管批准。解决这些问题对于将基于人工智能的PD-L1评估纳入常规病理工作流程至关重要。
{"title":"Predicability of PD-L1 expression in cancer cells based solely on H&E-stained sections","authors":"Gavino Faa ,&nbsp;Matteo Fraschini ,&nbsp;Pina Ziranu ,&nbsp;Andrea Pretta ,&nbsp;Giuseppe Porcu ,&nbsp;Luca Saba ,&nbsp;Mario Scartozzi ,&nbsp;Nazar Shokun ,&nbsp;Massimo Rugge","doi":"10.1016/j.jpi.2025.100524","DOIUrl":"10.1016/j.jpi.2025.100524","url":null,"abstract":"<div><div>PD-L1 expression is an important biomarker for selecting patients who are eligible for immune checkpoint inhibitor (ICI) therapy. However, evaluating PD-L1 through immunohistochemistry often faces significant interobserver variability and requires considerable time and resources. Recent advancements in artificial intelligence (AI) have transformed the field of pathology, leading to more standardized and reproducible methods for biomarker quantification. In this study, we examine the application of AI-driven models, particularly deep learning algorithms, to predict PD-L1 expression directly from hematoxylin and eosin-stained histological slides. Several AI-based approaches have been studied, demonstrating high accuracy in estimating PD-L1 expression and predicting responses to ICIs across various cancer types. AI-driven assessments of PD-L1 have been shown to reduce the subjectivity associated with manual scoring methods, such as the Tumor Proportion Score and the Combined Positive Score. Moreover, integrating AI with multimodal data, including genomics, radiomics, and real-world clinical data, can further enhance predictive accuracy and improve patient stratification for immunotherapy. Finally, AI-driven computational pathology offers a transformative approach to biomarker evaluation, providing a faster, more objective, and cost-effective alternative to traditional methods, with significant implications for personalized oncology and precision medicine. Despite these promising results, several challenges remain to be addressed, such as the need for large-scale validation, standardization of AI models, and regulatory approvals for clinical implementation. Tackling these issues will be crucial for incorporating AI-based PD-L1 assessments into routine pathology workflows.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100524"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145578928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintaining and broadening DICOM adoption in digital pathology: A response to “wearing a fur coat in the summertime” 保持和扩大DICOM在数字病理学中的应用:对“夏天穿皮大衣”的回应
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100517
Mustafa Yousif , Brian Napora , John Groth , Kenneth Philbrick , Norman Zerbe , David Clunie , Ulysses G.J. Balis
{"title":"Maintaining and broadening DICOM adoption in digital pathology: A response to “wearing a fur coat in the summertime”","authors":"Mustafa Yousif ,&nbsp;Brian Napora ,&nbsp;John Groth ,&nbsp;Kenneth Philbrick ,&nbsp;Norman Zerbe ,&nbsp;David Clunie ,&nbsp;Ulysses G.J. Balis","doi":"10.1016/j.jpi.2025.100517","DOIUrl":"10.1016/j.jpi.2025.100517","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100517"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145415715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting low- and high-resolution features for HER2 scoring using deep learning 对比使用深度学习的HER2评分的低分辨率和高分辨率特征
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100529
Ekansh Chauhan , Anila Sharma , Amit Sharma , Vikas Nishadham , Karan Vrajlal Padariya , Asha Ghughtyal , Ankur Kumar , Gurudutt Gupta , Anurag Mehta , C.V. Jawahar , P.K. Vinod
Breast cancer, the most common malignancy among women, requires precise detection and classification for effective treatment. Among immunohistochemistry (IHC) biomarkers, HER2 plays a critical role in guiding therapy decisions. In particular, a recent clinical trial has shown that 3-way classification of HER2 (0, low, and high) using IHC is essential for identifying patients with HER2 low expression who may benefit from new targeted therapies. However, traditional IHC classification relies on the expertise of pathologists, making it labor-intensive and prone to significant inter-observer variability. To address these challenges, this study introduces the India Pathology Breast Cancer Dataset, comprising HER2 IHC slides from 500 patients, with a primary focus on automating 3-way HER2 classification. Evaluation of multiple deep learning models revealed that an end-to-end ConvNeXt network using low-resolution IHC images achieved an F1 score of 83.52%, representing an improvement of 5.35% over patch-based methods. Class-wise F1 scores were 75.6% for HER2-0, 82.4% for HER2-low, and 91.5% for HER2-high, indicating the challenge in distinguishing HER2-0 and HER2-low cases. This study highlights the potential of simple yet effective deep learning techniques to significantly improve accuracy and reproducibility in breast cancer classification, supporting their integration into clinical workflows for better patient outcomes.
乳腺癌是女性中最常见的恶性肿瘤,需要精确的检测和分类才能有效治疗。在免疫组织化学(IHC)生物标志物中,HER2在指导治疗决策中起着关键作用。特别是,最近的一项临床试验表明,利用免疫结构对HER2进行三向分类(0、低和高)对于识别HER2低表达患者至关重要,这些患者可能受益于新的靶向治疗。然而,传统的IHC分类依赖于病理学家的专业知识,这使得它是劳动密集型的,并且容易在观察者之间产生显著的差异。为了应对这些挑战,本研究引入了印度病理学乳腺癌数据集,其中包括来自500名患者的HER2 IHC幻灯片,主要侧重于HER2三向分类的自动化。对多个深度学习模型的评估表明,使用低分辨率IHC图像的端到端ConvNeXt网络的F1得分为83.52%,比基于补丁的方法提高了5.35%。分级F1评分为HER2-0为75.6%,HER2-low为82.4%,HER2-high为91.5%,表明区分HER2-0和HER2-low病例存在挑战。这项研究强调了简单而有效的深度学习技术的潜力,可以显著提高乳腺癌分类的准确性和可重复性,并支持将其整合到临床工作流程中,以获得更好的患者结果。
{"title":"Contrasting low- and high-resolution features for HER2 scoring using deep learning","authors":"Ekansh Chauhan ,&nbsp;Anila Sharma ,&nbsp;Amit Sharma ,&nbsp;Vikas Nishadham ,&nbsp;Karan Vrajlal Padariya ,&nbsp;Asha Ghughtyal ,&nbsp;Ankur Kumar ,&nbsp;Gurudutt Gupta ,&nbsp;Anurag Mehta ,&nbsp;C.V. Jawahar ,&nbsp;P.K. Vinod","doi":"10.1016/j.jpi.2025.100529","DOIUrl":"10.1016/j.jpi.2025.100529","url":null,"abstract":"<div><div>Breast cancer, the most common malignancy among women, requires precise detection and classification for effective treatment. Among immunohistochemistry (IHC) biomarkers, HER2 plays a critical role in guiding therapy decisions. In particular, a recent clinical trial has shown that 3-way classification of HER2 (0, low, and high) using IHC is essential for identifying patients with HER2 low expression who may benefit from new targeted therapies. However, traditional IHC classification relies on the expertise of pathologists, making it labor-intensive and prone to significant inter-observer variability. To address these challenges, this study introduces the India Pathology Breast Cancer Dataset, comprising HER2 IHC slides from 500 patients, with a primary focus on automating 3-way HER2 classification. Evaluation of multiple deep learning models revealed that an end-to-end ConvNeXt network using low-resolution IHC images achieved an F1 score of 83.52%, representing an improvement of 5.35% over patch-based methods. Class-wise F1 scores were 75.6% for HER2-0, 82.4% for HER2-low, and 91.5% for HER2-high, indicating the challenge in distinguishing HER2-0 and HER2-low cases. This study highlights the potential of simple yet effective deep learning techniques to significantly improve accuracy and reproducibility in breast cancer classification, supporting their integration into clinical workflows for better patient outcomes.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100529"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145690579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selecting high throughput scanners for clinical usage: a multi-center institution experience 为临床使用选择高通量扫描仪:多中心机构经验
Q2 Medicine Pub Date : 2025-11-01 DOI: 10.1016/j.jpi.2025.100506
Joice Soliman , Ioannis Prassas , Shaza Zeidan , Christine Bruce , Blaise Clarke , George M. Yousef
{"title":"Selecting high throughput scanners for clinical usage: a multi-center institution experience","authors":"Joice Soliman ,&nbsp;Ioannis Prassas ,&nbsp;Shaza Zeidan ,&nbsp;Christine Bruce ,&nbsp;Blaise Clarke ,&nbsp;George M. Yousef","doi":"10.1016/j.jpi.2025.100506","DOIUrl":"10.1016/j.jpi.2025.100506","url":null,"abstract":"","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"19 ","pages":"Article 100506"},"PeriodicalIF":0.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pathology Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1